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Abstract Propagation of two beams through a birefringent calcite crystal is considered. Exper-
iments are proposed the same as the ones performed with down conversion photons in nonlinear
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1 Introduction

Electromagnetic waves and photons, they are an endless source of research of themselves and as a
tool of investigation in many branches of physics. Here their own properties are under consideration,
the properties, which are related to such fundamental topics as photon’s pair correlations [1,2,3,4,5],
interference and coincidence counts. However, instead of using a nonlinear crystal [1,2,3,4] we propose
here to use a linear one. It became possible after development of the new theory [6] of optics in anisotropic
media. The investigations can be performed along the same scheme as in [3], shown in Fig.1

It is possible to measure an interference in every detector in dependence of position of the beam
splitter, the coincidence probability and to check the Bells inequalities. Below we present calculation of
the exiting two beams angular separation after a uniaxial birefringent crystal with tensor ε represented
as

εij = ε0δij + ε′aiaj , (1)

where ε0 is isotropic part, and anisotropy is characterized by the unit vector a with components ai and
by anisotropy parameter ε′. We will consider calcite for which ε0 = 2.751 and η = ε′/ε0 = −0.197.

Figure 1. Outline of the experimental setup. It differs from that shown in [3] by absence of different filters.
The two photons exiting from the crystal are related to birefringence and not to parametric down conversion.
Polarizers P can change polarization. Variation of polarization of the incident beam changes the relative intensity
of two beams at the calcite exit.
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2 Splitting of Waves by an Anisotropic Crystal

Let’s consider a plane wave incident on the left side of the prism, as shown in Fig.2. Let the the anisotropy
vector be parallel to the left surface of the prism and at π/4 to the incidence plane i.e. a ·l = a ·t =

√
2/2.

Inside the prism two modes will appear: E1 with wave vector k1 and polarization

e1 = [a× κ], (2)

which is orthogonal to the plane, containing the anisotropy vector a and the wave vector k. Here κ = k/k
is the unit vector in the direction of the wave propagation, k = k0

√
ε0 and k0 = ω/c. Another mode, E2,

has polarization in the above plane along the vector

e2 = a− κ(κ · a)
1 + η

1 + η(κ · a)2
≡ a− κ(κ · a)ε(χ)/ε0, (3)

where η = ε′/ε0 and χ is the angle between unit vectors κ and a. This mode propagates with k = k0

√
ε(χ),

where
ε(χ) = ε0

1 + η

1 + η cos2 χ
(4)

is the value of anisotropic dielectric permittivity. It is convenient to call the mode e1 as orthogonal, and
the mode e2 as mixed because in general it has a longitudinal component along the wave vector k. Such
a nomenclature looks more appropriate than the ordinary and extraordinary commonly used.

Figure 2. Beam splitting of light with the help of a birefringent prism. The splitting angle θ′ inside the prism is
calculated in (11). The splitting angle θ of two beams after the prism is calculated in (15). Vectors n and n′ are
normals to two interfaces, vector l is in the incidence plane and on the left interface, while t is orthogonal to the
incidence plane. Vector l′ (not shown)is in the scattering plane and on the right interface.

We do not need to consider in details the boundary conditions to find reflection and refraction
amplitudes, which depend on polarization of the incident beam. All that was considered in [6]. We need
here only to find wave vectors of two modes, created in the anisotropic medium. There is no problem for
e1 mode, since for it

k1 = lk‖ + nk1⊥, k1⊥ =
√

ε0k2
0 − k2

‖. (5)

The problem is for e2 mode, for which k2⊥, defined as

k2⊥ =
√

k2
0ε(χ)− k2

‖, (6)

does not determine the value of k2⊥, because it enters also the definition of the angle χ, so to find the
explicit dependence of k2⊥ on a it is necessary to solve the equation

k2
‖ + x2 + η(k‖(l · a) + x(n · a))2 = k2

0ε0(1 + η), (7)
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where x denotes k2⊥, n is a unit vector of normal, directed toward isotropic medium, and l is a unit
vector along k‖, which together with n constitutes the plane of incidence. Solution of this equation is

x =
−ηk‖(n · a)(l · a) +

√
ε0k2

0(1 + η)(1 + η(n · a)2)− k2
‖(1 + η(l · a)2 + η(n · a)2)

1 + η(n · a)2
. (8)

The sign chosen before square root provides the correct asymptotics at η = 0 equal to isotropic value√
ε1k2

0 − k2
‖. In the following for simplicity we use the case, when a lies in the interface and directed at

the angle π/2 with respect to l. Therefore (n · a) = 0 and (l · a)2 = 0.5, so we get

k2⊥ =
√

ε0k2
0(1 + η)− k2

‖(1 + η/2). (9)

In the case of calcite, where η < 0, k2⊥ < k1⊥, the parallel to the interface components of the wave
vectors inside and outside the prism are equal, but the normal components are

k1⊥ =
√

ε0k2
0 − k2

‖, k2⊥ =
√

ε0k2
0(1 + η)− k2

‖(1 + η(l · a)2). (10)

The angular separation θ′ of two modes inside the crystal is found from

cos θ′ =
k2
‖ + k1⊥k2⊥

k1k2
=

k2
‖ +

√
ε0k2

0 − k2
‖
√

ε0k2
0(1 + η)− k2

‖(1 + η/2)

k0
√

ε0

√
ε0k2

0(1 + η)− k2
‖η/2

=

=
x +

√
1− x

√
1− x + η(1− x/2)√

1 + η(1− x/2)
, (11)

where x = sin2 φ/ε0 and φ is the incidence angle in vacuum. For the incident angle φ0 = 0.6 we can find
θ′ ≈ 0.1.

At the exit through the right facet with vectors n′ = n cos ψ + l sin ψ, l′ = l cos ψ − n sin ψ in
transmission plane the parallel to the exit interface components of two modes wave vectors are k1‖ =

(k‖l + k1⊥n) · l′ = k‖ cos ψ − k1⊥ sinψ, k2‖ = (k‖l + k2⊥n) · l′ = k‖ cos ψ − k2⊥ sinψ, k01⊥ =
√

k2
0 − k2

1‖,

k02⊥ =
√

k2
0 − k2

2‖. Therefore the angular divergence of two beams after exit from the prism is

cos θ = [k01⊥k02⊥ + k1‖k2‖]/k0 =
[√

k2
0 − k2

1‖
√

k2
0 − k2

2‖ + k1‖k2‖
]
/k2

0, (12)

where
k1‖ = k‖ cosψ −

√
ε0k2

0 − k2
‖ sin ψ = k0

[
x cos ψ − sin ψ

√
ε0 − x2

]
, x = sin φ, (13)

k2‖ = k‖ cos ψ −
√

ε0k2
0(1 + η)− k2

‖(1 + η(l · a)2) sin ψ =

= k0

[
x cosψ − sin ψ

√
ε0(1 + η)− x2(1 + η/2)

]
. (14)

Therefore
cos θ = [k01⊥k02⊥ + k1‖k2‖]/k2

0 =

=

[√
1−

[
x cos ψ − sin ψ

√
ε0 − x2

]2
√

1−
[
x cos ψ − sin ψ

√
ε0(1 + η)− x2(1 + η/2)

]2

+

+
[
x cosψ − sin ψ

√
ε0 − x2

] [
x cosψ − sin ψ

√
ε0(1 + η)− x2(1 + η/2)

]]
. (15)

Dependence of the divergence angle θ(φ) is shown in Fig.3.
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Figure 3. Beam splitting of light exiting from the birefringent prism shown in Fig.2 in dependence on incident
angle φ and the angle ψ between normals n and n′. The curves θ1, 2, 3(φ) correspond to ψ = 0.7; 0.5; 0.3
respectively.

3 Discussion

We have calculated here the angular divergence of beams after transmission through a linear birefringent
calcite crystal. There are no down conversion. Therefore two beams represent a single photon and one
can easily observe an interference after superposition of the beams in one of the detectors. Nevertheless
the photons are Bose particles. Therefore one cannot take for granted that the two beams correspond to a
single photon. It can be that the two beams are related to two photons and these photons are entangled.
Therefore one can expect that coincidence measurements will show nonzero result. It will depend on
intensity of the incident beam. It is also interesting to look what result will be found in measurement
of the Bell inequality in this scheme. The advantage of this scheme is the possibility of variation of
the relative two beams intensity by varying polarization of the incident beam. And everything can be
calculated analytically [6].
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