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Abstract. The article found that quasi-classic quantum approach allows to calculate temperature 
and entropy of black holes. Installed border applicability of quasi classical approximation: the mass of 
the black hole must be greater than the Planck mass.  
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1    Introduction 

Physics of black holes (BH) is described in many books and reviews [1-8]. It was found that BH with the 
classical point of view to the distant observer represents the sky blacker black circle of radius 

22 /R M cγ= . Here M is observed from a distance the mass BH, γ  - Newton's gravitational constant, c 
– the speed of light. The availability of mass in BH means that BH has internal energy 2E Mc= . Since 
the position of a distant observer, in 3D space with nothing selected, the BH is a ball with the surface 
area 24A Rπ= . The perfectly smooth surface is called the event horizon. The inclusion of quantum 
mechanics to two fundamental constant γ  and c makes even Planck constant options . The 
emergence  of substantially changes the physics BH. It is determined that the event horizon is no 
longer perfectly smooth. The presence of a strong gravitational field nearby leads to quantum 
fluctuations. Space near the event horizon, it boils is heat or stove, of which external space by virtue of 
quantum tunneling constantly happen with radiation S. Hawking. Such radiation means that BH has 
temperature and entropy. All these features can be installed from the dimensional considerations, if 
three permanents , c and  (from Planck units which are) add a mass M of BH.  

The paper suggests a theoretical approach to calculate the characteristics BH. Our approach is based 
on the fact that the presence of large masses at BH allows you to apply quantum quasi-lassic 
uncertainty principle as set out in [9]. The attraction of this principle lets you find the condition of its 
applicability. As further establish a lot of BH should be considerably more weight.  

2    Quasi-classical Approximation and Tunneling. 

Proceed to the application of quasi-classical principle of uncertainty. We introduce the radial coordinate, 
z, which is taken as a result of quantum fluctuations of the event horizon from his classical equilibrium 

value. As a result, these fluctuations of the event horizon are always in motion, i.e. have speed z
•

, and 

together with it is the momentum M z
•

. Since the thermal atmosphere boils, she has a scattering of 
energy that determines the temperature T (energy units) the heat of the atmosphere. According to the 
quasi-classical principle of uncertainty entered values are subject to the following expression:  

 
 ~T z z

•

   (1) 
Using this ratio, one can find the entropy, S, which is stocked in BH. Due to that fluctuations of the 

event horizon are shifting to a distance of the order of the size of the event horizon, then part of the BH 
can quantum tunneling evaporate into outer space. The probability of such an event, according to the 
quasi-classical tunneling, will be proportional to the exhibitor  
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∫   (2) 
Taking the logarithm, we find the entropy lnS = − (probability), which is blown in the outer space 

and which, accordingly, has itself BH:  

 
0

2 R

S M z dz
•

= ∫   

Replacing with the formula (1) speed z
•

 on the z coordinate and integrate, we find:  

 
2

2

MTS a R=
  (3) 

Changing R on 22 /M cγ , we get:  

 

2
3

2 2
4S a TM

c
γ

=
  (4) 

Here you have entered numerical multiplier a, which arose due to the mark of proportionality in the 
formula (1) and the approximate upper limit of integration in the formula (2).  

3    Entropy and Temperature. 

Next, you must use the known thermodynamic formulas, set out, for example, [10]. It is known that if 
the system has entropy S and the energy E, then its temperature T can be found from the relationship:  

1 dS
T dE

= . 
Substituting 2E Mc= , we get:  

2

1 dS
T c dM

= . 
Expressing equation (3) temperature T via the entropy S, we get a differential equation:  

2

2 4 2
4 M dSa

Sc c dM
γ

= . 
By integrating it with the initial condition ( )0 0S M = = , we get:  

 
22S a M

c
γ

=   (5) 
If you replace a mass M BH at radius R BH and enter area event horizon, then you get a more 

familiar expression for entropy BH:  
32

16
a сS A
π γ

= . 
Since the Planck units, according to S. Hawking,  

1
4

S A= , then 2 4a π= . 

Substituting equation (4) into equation (3), we find the famous phrase for the temperature of BH:  
31 1

8
c

T
Mπ γ

= . 

4    Border Applicability of Quasi-classical Approximation. 

You can now consider the applicability of the quasi-classical approximation. Its applicability, as it is 
known, means that the exponential multiplier in equation (2) must be significantly more than 1. This 
constraint leads to specifying that S >> 1, or, as can be seen from equation (4):  
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M  >> 
c
γ

 = Planck mass. 

Thus, the classical approximation is applicable for BH, massing significantly more Planck mass.  

5    Holographic Principle 

The holographic principle of the internal structure of the BH fully reflected its event horizon. The 
principle means that the entropy of the BH should be equal to the entropy fluctuations of event horizon, 
i.e. should be given by the expression (4). Together with equity entropy will be equal and low heat of 
the atmosphere and temperature of BH consistent with thermodynamic equilibrium. Since the entropy is 
proportional to the square of one side event horizon, and, on the other hand, is proportional to the 
square of the mass of BH, the Planck units with accuracy to numerical multipliers will be equal 2M  = 
A. Or, taking into account all fundamental constants, the holographic principle mathematically means 
that  

3
2 cM A

c
γ

γ
= . 

Ratio reduced to linear connection, the size of the event horizon and masses of BH. Received 100 
years ago Schwarzschild solution already contained the holographic principle!  

6    Conclusion. 

Quasi-classical approximation currently applies to all BH in the universe, and allows you to get all of 
the known characteristics of the BH.  
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