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Abstract In a certain sense Riemannian geometry can be thought of as geometry built up from
the Finslerian properties of point particles. The string and membrane generalization of this to a
geometry similar but not the same as Finslerian geometry is investigated. Solely classical arguments
suggest a physical interpretation in which microscopic strings are directly related to macroscopic
geometry; alternatively the resulting geometry can be interpreted as that describing microscopic
spacetime. The construction presented can be thought of as providing a mechanism for oxidization.
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1 Introduction

A problem with string theory is the nature of the relationship between microscopic strings and macroscopic
spacetime. A property of string theory is that, in the limit that the string becomes a point, a corresponding
field theory is recovered. General relativity is based upon geometry defined at points: from a Finslerian
point of view the Riemmanian geometry of general relativity is just a macroscopic geometry constructed
from the point particles’ Lagrangian. This leads to the question of what sort of geometry corresponds to
the string and membrane Lagrangians. This is the problem looked at here. An alternative way of looking
at a physical motivation for the construction presented here is given two dimensional physics where how
and why do higher dimensions come about, in particular d = 4 spacetime from d = 2 strings. One builds
up higher dimensions on point particles for general relativity and end up with something similar to Finsler
geometry, build up from the string worldsheet the result is more complex. This is the only paper that
attempts to mathematically model any mechanism for increasing the number of dimensions from two
dimensions: that there is a higher dimensional ambient space is usually just assumed by fiat. Throughout
only classical cases where h̄ is absent are looked at.

Geometry based upon area, although not world sheet area, has been studied by Cartan [7], see also
Akivis and Rosenfeld [2], Brickell [6] and Vacaru [17]; Brickell considers dependence on position and
area. The difference of these approaches to the present one is that dependence on velocities is also
needed. In modern canonical gravity objects which are not point-like are sometimes studied, see for
example Abdalla, Castello-Branco and Lima-Santos [1]. Punzi, Schuller and Wohlfarth [13] have studied
motion in Finsler spaces. Spacetime as an emergent structure has been studied by Barcelo, Liberati and
Visser [3], Bekenstein [5] and Pavsic [12]. An introduction to Finsler geometry has given by Chern [8];
textbooks on Finslerian geometry include Bejancu [4], Matsumato [11] and Rund [16], here Rund Chap.1
is followed wherever possible. The string worldsheet is d = 2 and spacetime is d = 4, to get to higher
dimensions one ’oxidizes’ see for example [10]; so the construction presented here can be thought of as
providing a mechanism for oxidization. The terminology used here is that ĝ is the hat metric and g is
the indicial metric used for simple raising and lowering of indices. The systems that Rund [16] considers
have Hamiltonian normalized to one, as here systems which are weakly zero are often used, Rund’s
Hamiltonian approach is not looked at. The connection and curvature can be defined several ways, here
we use the familiar Christoffel connection and Riemann curvature except that now the metric can be
velocity dependent. microscopic macroscopic
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2 Finsler Geometry

Following Rund [16] pages 1-23 assume that a given space has points, curves, and velocities

xi, xi(t), ẋi ≡ dxi(t)
dt ,

∑
i

(ẋi)2 6= 0. (2)

The distance between two close points A(xi) and B(xi + dxi) is given by

ds = F (xi,dxj). (3)

Introduce the notation
Fẋi(x, ẋ) ≡ ∂

∂ẋi
F (x, ẋ). (4)

The function F (xi, ẋi) is positively homogeneous of degree one in the velocities ẋi

F (xi, kẋi) = kF (xi, ẋi), k > 0. (5)

Euler’s theorem on homogeneous functions can be expressed as

Fẋi(x, ẋ)ẋi = F (x, ẋ), Fẋiẋj (x, ẋ)ẋi = 0, det |Fẋiẋj | = 0. (6)

Using the notation
F ≡ F (x, ẋ), F 2

ẋi ≡
(
F 2)

ẋi =
(
F (x, ẋ)2)

ẋi , (7)

the chain rule is
1
2F

2
ẋiẋj = FẋiFẋj + FFẋiẋj , (8)

multipling by ẋiẋj and applying Euler’s theorem (Eq. (6)) gives the second order equality

1
2F

2
ẋiẋj (x, ẋ)ẋiẋj = F 2(x, ẋ). (9)

One can define a hat metric
ĝij(x, ẋ) ≡ 1

2F
2
ẋiẋj (x, ẋ), (10)

then using the second order equality (Eq. (9)) gives the hat metric Finsler function relationship

ẋiẋj ĝij(x, ẋ) = F 2(x, ẋ), (11)

comparing with Eq. (3) the familar expression for infinitesimal distance is recovered. Rund [16] goes on
to discuss Hamiltonian systems.

3 The Point Particle

For the point particle the non linear or square root form of the Lagrangian is equal to the length

L = F = −m` ≡ −m
√
−ẋ2 (12)

This Lagrangian obeys the homogeneity relationship (Eq. (5)) as

F (xi, kẋi) = −m
√
−kẋa · kẋa = −mk` = kF. (13)

Euler’s homogeneous equations (Eq. (6)) become

pi ≡ Fẋi
= mẋi

`
, ẋiFẋi

= −m`, wij ≡ Fẋiẋj = m

`
hij , ẋiFẋiẋj

= 0, (14)
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where the projection operator
hij ≡ gij −

ẋiẋj
ẋ2 , (15)

is the familar one from general relativity, and pi and wij and the momentum and Hessain, compare
Eq. (12) [14]. The second order relationship (Eq. (9)) becomes

F 2
ẋi = −2m2ẋi, F 2

ẋiẋj = −2m2gij ,
1
2F

2
ẋiẋj ẋj = FFẋi

,
1
2F

2
ẋiẋj ẋiẋj = F 2, (16)

From the second equation (Eq. (16)) the hat metric Finsler function relationship is given by

ĝij ≡ −
1

2mF 2
ẋiẋj

, (17)

the minus sign coming about because of Lorentz signature, for a positive definite signature there would
be a plus sign. In terms of the momentum and Hessian (Eq. (14)), Eq. (17) is

ĝij = − 1
m
pipj + `wij , (18)

and the hat metric Finsler function relationship Eq. (11) becomes

ẋiẋj ĝij = − 1
m
F 2. (19)

One difference is that from Eq. (6)

det |Fẋiẋj | = m

`
det | − h| (20)

It is apparent that ĝ = g so that the metric and geometry are the same as that of general relativity.

4 The String

For simplicity a specific string parameterization is looked at now: a parameterization invariant approach
is considered in the next section Sect. 5. The string the square root or non linear Lagrangian is equal to
the area

L = F = − A
2πα′ , A ≡

√
(ẋ · x′)2 − ẋ2x′2, (21)

where ẋ = ∂τx and x′ = ∂σx, τ is the proper time of the string and σ is the spanning parameter. In the
velocity only approach F = F (xi, ẋi) in particular F is not a function of x′. For the string use F (x, ẋ) as
before and the x′ come out as new terms, there are other possibilities that are discussed under membranes
Eq. (43). The Lagrangian Eq. (21) obeys the homogeneity relationship (Eq. (5)) as

F (xi, kẋi) = − 1
2πα′

√
k2(ẋ · x′)2 − kẋa · kẋax′2 = − k

2πα′A = kF, (22)

Euler’s homogeneous equations (Eq. (6)) become

pi ≡ Fẋi = 1
2πα′A

(
−ẋ · x′x′

i + x′2ẋi
)
, ẋiFẋi = −A

2πα′ ,

wij ≡ Fẋiẋj = x′2hij

2πα′A
, ẋiFẋiẋj = 0, (23)

where the projection tensor is

hij ≡ gij + 1
A2

(
ẋ2x′ix′j + x′2ẋiẋj − (ẋ · x′)(ẋix′j + x′iẋj)

)
, h = d− 2, (24)
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and d is the dimension of the space and h is the dimension of the projection. compare [14, Sect. 3.4] .
The second order relationship (Eq. (9)) becomes

F 2
ẋi = − A

πα′ pi, F 2
ẋiẋj

= 1
2π2α′2

(
x′ix′j − x′2gij

)
,

1
2F

2
ẋiẋj ẋj = FFẋi ,

1
2F

2
ẋiẋj ẋiẋj = F 2, (25)

The hat metric ĝ (Eq. (17)) generalizes to

ĝij ≡ −
1
2F

2
ẋiẋj = 1

4π2α′2 (−x′
ix

′
j + x′2gij), (26)

and in this case does not equal the indicial metric g. In terms of the momentum and Hessian(Sect. 4),
Eq. (26) is

ĝij = −pipj + A
2πα′wij , (27)

the hat metric Finsler function relationship (Eq. (11)) becomes

ẋiẋj ĝij = − A2

4π2α′2 = −F 2. (28)

In the present case equation (Eq. (26)) shows that the two metrics g and ĝ are not the same. Suppose
one seeks an inverse of the metric (Eq. (27)) of the form

ĝij = αẋiẋj + β(ẋix′j + x′iẋj) + γx′ix′j + bgij , (29)

then using Eq. (26) to form the identity, dimension d = ĝij ĝij , the β and γ terms self-cancel and the b
term leads to a contradiction, leaving the α term

ĝij = −4π2α′2d

A2 ẋiẋj . (30)

The inverse metric allows construction of a Christoffel symbol which is a sum of
1
Γ ijk = ẋid

A2

(
ẋ · x′x′

(j,k) + ẋlx′
jx

′
[l,k] + ẋlx′

kx
′
[l,j]

)
, (31)

2
Γ ijk = ẋid

2A2

(
−ẋlx′2{jlk} − 2ẋ(jx

′2
,k) + gjkẋ

lx′2
,l

)
,

and from this a Riemann tensor can be constructed, but its interpretation is obscure.

5 The Membrane

The square root or non linear membrane action is

SD = k

∫
M

dp+1ξ
√
−γ, γab = gij∂axi∂bxj,

√
−γ = (−det γab) 1

2 , (32)

a is an internal membrane index which generalizes the proper time τ and spanning parameter σ of the
previous section. The Finsler function is given by

L = F (x, xa) = k
√
−γ. (33)

Choosing

p = 1, k = − 1
2πα′ , a, b · · · = τ, σ, d2ξ = dτdσ, (34)

γ = det(γab) = −A2, γab =
(

ẋ2 ẋ · x′

x′ · ẋ x′2

)
, γγab =

(
x′2 −x′ · ẋ
−ẋ · x′ ẋ2

)
,
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the string Lagrangian (Eq. (21)) is recovered. The first fundamental form is defined by

ℵij ≡ γabxiax
j
b, ℵikℵj.k = ℵij , ℵk.k = γc.c = xkc.. xkc = p+ 1, (35)

which allows the generalization of the projection tensors Eq. (15) and Eq. (24) to be expressed as

hij = gij − ℵij , h = d− 1− p. (36)

One can form the Christoffel symbol for the metric γ

{abc} = xa · xb,c, (37)

using the last equation of Eq. (35) partial derivatives can be replaced by covariant derivatives

x;bc = x,bc − {ebc}xe = x,bc(1− xexe) = −px,bc, (38)

and Eq. (37) becomes
{abc} = −1

p
xa · x;bc, (39)

which must be torsion free. The Riemann tensor is defined by

Rabcd ≡ {adb},c − {acb},d + {acf}{
f
db} − {

a
df}{

f
cb}, (40)

using Eq. (39) this is
Rabcd = −2

p

(
xa · x;[d|b|

)
;c] + 2

p2x
e · x;[c|bx

a · x;e|d] (41)

contracting and using 0 = (p+ 1),e = (xaxa);e = 2xax;ae gives

Rbd = −1
p

(xa · x;db);a + 1
p2x

e · x;abx
a · x;ed, R = −1

p
(xa · xdd);a + 1

p2x
e · x;abx

a · x b
;e . (42)

The Ricci scalar is a total derivative so that it has limited use as a classical Lagrangian. The Lagrangian
obeys a generalization of the homogeneity condition Eq. (5) and Eq. (22)

F (xi, kAxiA) = kAF, (43)

where A is an unsummed internal index. From [15] the momentum and Hessian are

pia = ∂L
∂xia

= +k
√
−γxia, wijab = ∂2L

∂xjb∂xia
= +k

√
−γ(gijγab + xiaxjb), (44)

The generalization of the second order relationship (Sect. 4) is

F 2
xia

= 2k
√
−γpia, F 2

xiaxjb
= −2k2γ(gijγab + 2xbjxai) (45)

from which the generalization of the hat metric (Eq. (26)) is

ĝijMab ≡ −1
2F

2
xiaxbj

= k2γ
(
gijγab + 2xiaxbj

)
, (46)

where M is a matrix to be determined. There are three possible ways of removing the internal indices
occuring in Mab: the first is to pick out a component

ĝijMττ = k2γ (gijγττ + 2ẋiẋj) (47)

proceeding as for Eq. (29) there are more possibilities, but choosing that ĝ has only explicit ẋ dependence
and not x′ dependence

ĝij = dMττ ẋ
iẋj

k2γẋ2(γττ + 2ẋ2) , (48)
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the second is to trace over the internal indices

ĝijM
a
a = k2γ ((p+ 1)gij + 2ℵij) (49)

where the first fundamental form ℵ is given by (Eq. (35)), the inverse metric is of the form

ĝij = αgij + βℵij , (50)

where α and β are constrained by

(d+ 2)α+ (p+ 3)β = dM c
c

k2γ(p+ 1) (51)

the third is to take determinants over the internal indices

ĝij det(Mab) = k2(−γ)
(
−gij − 2 det

ab
(xiaxbj)

)
(52)

where detab signifies that the determinant is taken over the internal indices a, b, this choice does not
seem to have an explicit inverse because of the determinant. For Eq. (47) and Eq. (49) it is possible to
construct Christoffel symbols similar to Sect. 4.

6 Conclusion

The Finsler point particle (Eq. (12)) allows construction of a hatted metric ĝ (Eq. (17)) which has
identical infinitesimal length ds2 = gij ẋ

iẋj to that of Riemannian geometry, so that in this sense the
point particle’s metric generates Riemannian geometry. Given this identity it is natural to ask what sort
of geometry is generated by string (Eq. (21)) and membrane (Eq. (32)) actions. It is found that the
relationship between the hat metric ĝ and the indicial metric g given by Eq. (26) and Eq. (46) is no
longer an equality as terms dependent on the internal properties of the string or membrane appear. This
macroscopic dependence on microscopic internal properties might be small enough to produce realistic
models but large enough to lead to new predictions. There is the possibility that this geometric picture
might have a thermodynamic analogy, compare [9], in which entropy could be assigned to the string’s area
A and related to macroscopic properties. The geometry used does not involve h̄ so that the relationship
between microscopic and macroscopic is classical: a more usual picture would be to take it that quantum
and many body properties of strings are necessary to build medium size systems, in other words that
physically intermediate length scale properties are necessary. Alternatively the geometry presented here
could be interpreted as that the geometry of microscopic spacetime.
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