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Abstract This paper presents a new wormhole solution by assuming that a homogeneously
distributed fluid with equation of state p = ωρ can be adapted to an anisotropic spacetime such
as a wormhole and that this spacetime admits a one-parameter group of conformal motions. The
pressure p in the equation of state becomes the lateral pressure pt instead of the radial pressure pr,
as assumed in previous studies. Given that pt = ωρ, pr is then determined from the Einstein field
equations. A wormhole solution can be obtained only if ω < −1 or 0 < ω < 1. Since the former case
corresponds to phantom dark energy, which has been the subject of earlier studies, we concentrate
mainly on the latter. This case implies that given the above conditions, dark matter can support
traversable wormholes.
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1 Introduction

Wormholes are hypothetical handles or tunnels in spacetime that connect different regions of our Universe
or completely different universes altogether. That wormholes could be actual physical structures was first
proposed by Morris and Thorne [1]. These could be described by the static and spherically symmetric
line element

ds2 = −e2Φ(r)dt2 + dr2

1− b(r)/r + r2(dθ2 + sin2θ dφ2), (1)

using units in which c = G = 1. Here Φ = Φ(r) is referred to as the redshift function, which must be
everywhere finite to avoid an event horizon. The function b = b(r) is called the shape function since
it helps to determine the spatial shape of the wormhole when viewed, for example, in an embedding
diagram [1]. The spherical surface r = r0 is the radius of the throat of the wormhole. Here b = b(r) must
satisfy the following conditions: b(r0) = r0, b(r) < r for r > r0, and b′(r0) < 1, usually called the flare-out
condition. This condition can only be satisfied by violating the null energy condition (NEC), defined as
follows: for the stress-energy tensor Tαβ , we must have

Tαβk
αkβ ≥ 0

for all null vectors kα. For Morris-Thorne wormholes, matter that violates the NEC is called “exotic."
The equation of state (EoS) for a standard perfect fluid, p = ωρ, 0 < ω < 1, was studied a long time

ago by Chandrasekhar [2]. The realization that the Universe is undergoing an accelerated expansion [3, 4]
has led to the value of ω < −1/3 due to the Friedmann equation

..
a
a = − 4π

3 (ρ+ 3p). This case is known as
quintessence dark energy. The value of ω = −1 corresponds to the existence of Einstein’s cosmological
constant [5]. The case that has attracted the most attention in wormhole physics is ω < −1, referred to
as phantom dark energy since this case leads to a violation of the NEC: given the null vector (1, 1, 0, 0),
p + ρ = −ωρ + ρ < 0. The EoS p = ωρ, 0 < ω < 1, refers to ordinary (baryonic) matter, as well as to
dark matter.

In this paper we also make use of conformal symmetry, the existence of a conformal Killing vector ξ
defined by the action of Lξ on the metric tensor

Lξgµν = ψ(r) gµν ; (2)

here Lξ is the Lie derivative operator and ψ(r) is the conformal factor.
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It is shown in this paper that the assumption of conformal symmetry implies that a Morris-Thorne
wormhole is necessarily anisotropic. It is then assumed that a perfect-fluid distribution with EoS p = ωρ
can be adapted to an inhomogeneous spacetime such as a wormhole by letting p be the lateral pressure pt
instead of pr, as assumed in previous studies [6,7]. It is subsequently shown that a wormhole solution can
exist only if ω < −1 or 0 < ω < 1.

2 Conformal Killing Vectors and Wormhole Construction

This section consists of a brief discussion of the assumption that our spacetime admits a one-parameter
group of conformal motions. First we need to recall that these are motions along which the metric tensor
of the spacetime remains invariant up to a scale factor, which is equivalent to stating that there exists a
set of conformal Killing vectors such that

Lξgµν = gην ξ
η

;µ + gµη ξ
η

;ν = ψ(r) gµν , (3)

where the left-hand side is the Lie derivative of the metric tensor and ψ(r) is the conformal factor. Eq. (3)
shows that the vector ξ characterizes the conformal symmetry since the metric tensor gµν is conformally
mapped into itself along ξ. It must be emphasized that the assumption of conformal symmetry has proved
to be fruitful in numerous ways, not only leading to new solutions but to new geometric and kinematical
insights [8–13]. Another fairly recent discovery is that the Kerr black hole is conformally symmetric [14].

Exact solutions of traversable wormholes admitting conformal motions are discussed in Ref. [15] by
assuming a noncommutative-geometry background. Two earlier studies assumed a non-static conformal
symmetry [16,17].

It is shown in Ref. [18] that the line element

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2θ dφ2). (4)

is particularly convenient for discussing the consequences of the conformal-symmetry assumption. In
particular,

eν = Cr2 (5)

and
eλ = ψ−2. (6)

Moreover, the Einstein field equations are

1
r2 (1− ψ2)− (ψ2)′

r
= 8πρ, (7)

1
r2 (3ψ2 − 1) = 8πpr, (8)

and
ψ2

r2 + (ψ2)′

r
= 8πpt. (9)

It is clear from Eq. (5) that the wormhole spacetime cannot be asymptotically flat. So the wormhole
material must be cut off at some r = a and joined to an exterior Schwarzschild solution

ds2 = −
(

1− 2M
r

)
dt2 + dr2

1− 2M/r
+ r2(dθ2 + sin2θ dφ2). (10)

We see from line element (1) that M = 1
2b(a). So for eν = Ca2, we have Ca2 = 1−2M/a and the constant

of integration becomes

C = 1
a2

(
1− b(a)

a

)
. (11)
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3 Wormhole Solution

In this section we take a closer look at the EoS p = ωρ as it relates to wormholes. In a cosmological
setting, we are dealing with a homogeneously distributed fluid. On the other hand, for a given wormhole,
the pressure may or may not be isotropic, but a wormhole admitting conformal motion is definitely not:
suppose, on the contrary, that pr = pt. Then from Eqs. (8) and (9),

1
r2 (3ψ2 − 1) = ψ2

r2 + (ψ2)′

r
. (12)

After simplifying, we obtain the differential equation

(ψ2)′ − 2
r
ψ2 = −1

r
,

which is linear in ψ2 and readily solved to obtain

ψ2 = 1
2 + cr2.

We will see a bit later that to obtain a wormhole solution, the equation must satisfy the initial condition
ψ2(r0) = 0, where r = r0 is the throat of the wormhole. The result is

ψ2(r) = 1
2 −

1
2r2

0
r2. (13)

Now observe that for r > r0, ψ2(r0) < 0, which is impossible since ψ(r) is a real-valued function.
Returning now to the EoS p = ωρ describing a homogeneous distribution, it is emphasized in Refs. [6,7]

that an extension to an inhomogeneous spherically symmetric spacetime is possible by making p the radial
pressure pr, so that the transverse pressure pt can then be determined from the Einstein field equations.

In this paper we follow the same strategy, but instead of assuming that pr = ωρ, it is more convenient
to use the EoS

pt = ωρ; (14)

(pr is then determined by the Einstein field equations.) Substituting in this equation,

1
8π

(
ψ2

r2 + (ψ2)′

r

)
= ω

8π

[
1
r2 (1− ψ2)− (ψ2)′

r

]
. (15)

After simplifying, we obtain the differential equation

(ψ2)′ + 1
r
ψ2 = ω

1 + ω

1
r
, (16)

again linear in ψ2. The solution is
ψ2(r) = ω

1 + ω
+ c

r
. (17)

Comparing Eqs. (1) and (4), observe that

b(r) = r(1− e−λ(r)) = r[1− ψ2(r)] (18)

by Eq. (6). The condition b(r0) = r0 at the throat implies that ψ2(r0) = 0, as noted earlier. It follows
that the shape function is

b(r) = r

(
1− ω

1 + ω
+ 1
r

r0ω

1 + ω

)
. (19)

To check the flare-out condition, we need to find b′(r0):

b′(r0) = 1− ω

1 + ω
+ 1
r

r0ω

1 + ω
+ r

(
− r0ω

r2(1 + ω)

)∣∣∣∣
r=r0

= 1− ω

1 + ω
. (20)
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Now observe that b′(r0) < 1 only if
− ω

1 + ω
< 0, ω 6= −1.

We conclude that ω < −1 or ω > 0, or, more completely,

ω < −1 or 0 < ω < 1. (21)

According to Ref. [1], the flare-out condition is equivalent to pr + ρ < 0, i.e., the NEC is violated for
the null vector (1, 1, 0, 0). Recalling the EoS pt = ωρ, Eq. (21) with ω < −1 implies that the NEC is
violated for any null vector of the form

(1, 0, a, 1− a), 0 ≤ a ≤ 1.

For 0 < ω < 1, the NEC is actually met. It is readily checked, however, that

pr + ρ|r=r0
= − 1

8π
1
r2

0

ω

1 + ω
< 0

whenever
ω < −1 or 0 < ω < 1,

as before.
It is interesting to note that

pr(r0) = − 1
8πr2

0
,

which is independent of ω and coincides with pr(r0) in Ref. [1].

4 The Shadow Universe

Even though our starting point was the lateral pressure in the EoS pt = ωρ, it soon became apparent that
pr + ρ < 0 whenever ω < −1 or 0 < ω < 1. In a cosmological setting, we normally associate ω < −1 with
phantom dark energy and 0 < ω < 1 with dark matter or normal (baryonic) matter. It is well known that
phantom energy can support traversable wormholes since the NEC is violated [6, 7]. So in the present
situation, the case 0 < ω < 1 is by far the more interesting.

For the EoS pt = ωρ, the conditions ω < −1 and 0 < ω < 1 cannot be met simultaneously. Well outside
the galactic halo, however, the case ω < −1 would apply since on large scales, the Universe is undergoing
an accelerated expansion. Inside the galactic halo, on the other hand, dark matter dominates since the
galaxies themselves do not participate in the expansion, being bound gravitationally by predominantly
dark matter. So in the halo region, conformal-symmetry wormholes can be supported by dark matter.
These wormholes would be part of what is often called the shadow universe, normally invisible to us.
Detection of wormholes may nevertheless be possible by means of gravitational lensing [19–21].

For completeness let us note that it is shown in Ref. [22] that the Navarro-Frenk-White model can be
used to show that dark matter can support traversable wormholes provided that we confine ourselves to
the outer regions of the galactic halo. This restriction does not apply to the present study.

5 Conclusion

This paper discusses a new wormhole solution by making the common and presumably reasonable
assumptions that a homogeneously distributed cosmic fluid can be adapted to an anisotropic spacetime
such as a wormhole and that this spacetime admits a one-parameter group of conformal motions. The
pressure p in the perfect-fluid EoS p = ωρ becomes the lateral pressure pt instead of the radial pressure
pr, as assumed in previous studies. Since pt = ωρ in this paper, pr is determined from the Einstein field
equations.

After showing that the assumption of conformal symmetry implies that any Morris-Thorne wormhole
must be anisotropic, the EoS pt = ωρ is used to determine the conformal factor ψ(r) and hence the shape
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function b = b(r). Neither could exist unless ω < −1 or 0 < ω < 1. In both cases, pr + ρ < 0, so that the
NEC is violated.

Well outside the galactic halo region the EoS p = ωρ, ω < −1, is normally interpreted as phantom
dark energy, which is known to support traversable wormholes. So the more interesting case is 0 < ω < 1,
representing primarily dark matter in the galactic halo region. This shows that given the above conditions,
dark matter can support traversable wormholes.
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