Solvent-Free Synthesis and Spectral Correlation of ${}^{1}N$ -Acetyl-3-(4- β -Methacrylate)-5-(Substituted Phenyl)-4,5-Dihydro- ${}^{1}H$ -Pyrazolines

G. Thirunarayanan^{1*} and K. G. Sekar²

¹ Department of Chemistry, Annamalai University, Annamalainagar-608002, India ² Department of Chemistry, National College, Tiruchirappalli-620001, India. Email: drgtnarayanan@gmail.com

Abstract. A series containing fourteen ¹*N*-acetyl-3-(4- β -methacrylate)-5-(substituted phenyl)-4, 5dihydro-¹*H*-pyrazolines were synthesized by KF/Al₂O₃ catalyzed solvent-free condensation of ¹*N*acetyl-3-(4-hydroxyphenyl)-5-(substituted phenyl)-4, 5-dihydro-¹*H*-pyrazolines and (*E*)-methyl-2-[2-(bromo methyl)-phenyl]-3-methoxyacrylate under microwave irradiation. The yields of the above ¹*N*acetyl-3-(4- β -methacrylate)-5-(substituted phenyl)-4, 5-dihydro-¹*H*-pyrazolines were more than 90%. These pyrazolines were characterized by their physical constants, IR, NMR and Mass spectral data. The infrared spectral frequencies (ν , cm⁻¹) and NMR chemical shifts (δ , ppm) of proton and carbons of these pyrazolines were assigned and correlated with Hammett substituent constants, F and R parameters. From the results of statistical analyses, the effects of substituent on the above spectral data have been discussed.

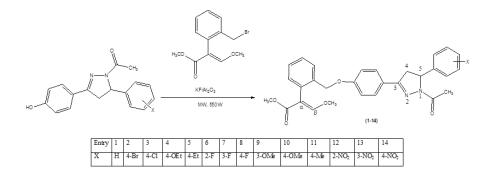
Keywords: Solvent-free synthesis, $\rm KF/Al_2O_3,\ \beta$ -methacrylate- 1N -acetylpyrazolines, IR spectra, NMR spectra, Hammett correlation

1 Introduction

The ${}^{1}H$ -4,5-dihydropyrazoline and ${}^{1}N$ -acetyl-4,5-dihydroprazoline derivatives play structurally more important roles in pharmaceutical field of research because they possess numerous biological activities. The important biological activities of pyrazoline derivatives are anti-bacterial[1], anti-fungal[2], antidepressants[3], anti-convulsant[4], anti-inflammatory[5], anti-tumour [6], anaesthetic[7], analgesic[8], anti-cancer[9], anti-Helicobacter pylori[10], MAO-B inhibitors[11], steroidal, nitric oxide synthase inhibitor, anti-viral and cannabinoid CBI receptor antagonists[5]. They belong to the bi-nitrogen five membered heterocyclic compounds containing three hydrogens in different planes [12-14]. This spatial arrangement of the protons was confirmed by ¹H NMR and XRD analysis. Many solvent assisted and solvent-free methods including cyclization[15,16],N-acetylation, N-thio-acetylation[17], Nphenylation[15], N-thio-amination[12,13] and condensation[14] were reported in the literature for synthesis of these pyrazoline derivatives. The catalysts such as, Lewis acids, weak acids [18], polyacids [19], sodium acetate [20], clays[21], fly-ash: H_2SO_4 [14], SiO₂- H_3PO_4 [22], preheated fly-ash[12], fly-ash: PTS [13], with or without microwave and ultrasound irradiation [23] were utilized for the above reactions. Now-a-days chemists and organic researchers have paid more attention to solvent-free methods. These methods are important and play vital role for synthesis of organics due to easy work-up procedure, technique, shorter time, less hazardousness, less pollution to the environment, higher yield. Sasikala et al.,[15] have synthesised some 5-chloro-2-thienyl based pyrazoline derivatives by solvent-free method and studied the antimicrobial activities. Sakthinathan et al. [20] have synthesised and studied the effects of substituent on 2-naphthyl based pyrazolines. Spectroscopic data were used for prediction of ground state equilibration of organic compounds such as, E, Z or cis-trans isomers of unsaturated compounds such as, alkenes, alkynes, polyenes, enol-enones, unsaturated acid chlorides, ω -halo-acyl compounds and pyrazoline derivatives. These spectroscopic data were applied for the study of spectral linear regression through Hammett equation. Thirunarayanan et al. have studied the effects of substituents and solventfree synthesis of some 5-bromo-2-thienyl based pyrazolines [22]. The solvent-free synthesis and the

Hammett linearity on some pyrazoline-1-carbothioamides have been studied by Thirunarayanan and Sekar [12, 13]. Spectroscopic data are applied for prediction of ground sate equilibration of organic molecules such as unsaturated ketones, aldehydes, alkenes, alkynes, acyl halides and its esters [24]. The effect of substituents on the functional group of the molecules can be evaluated by the correlation of the respective spectral group frequencies with Hammett substituent constants, F and R parameters using linear regression analysis [25]. The correlation analysis has been applied for the study of electrochemical behaviour of organic molecules, E, Z, *s-cis-* and *s-trans* configuration and isomers of unsaturated systems, *cis-* and *gauche-* forms of rotamers of ω -halo acyl compounds [26]. There is no information available about solvent-free synthesis and the study of spectral linearity on ¹N-acetyl-3-(4- β methacrylate)-5-(substituted phenyl)-4,5-dihydro-¹H-pyrazolines. Therefore the authors have taken efforts to synthesize of ¹N-acetyl-3-(4- β -methacrylate)-5-(substituted phenyl)-4,5-dihydro-¹H-pyrazolines by solvent-free by KF/Al₂O₃ catalyzed condensation of ¹N-acetyl-3-(4-hydroxyphenyl)-5-(substituted phenyl)-4,5-dihydro-¹H-pyrazolines and (E)-methyl-2-[2-(bromomethyl)-phenyl]-3-methoxyacrylate under microwave irradiation and record their infrared and NMR spectra in order to investigate the effect of

2 Experimental


2.1 General

substituents.

All chemicals used were procured from Sigma-Aldrich and Merck chemical companies. The infrared spectra of all pyrazolines were recorded with KBr discs in SHIMADAZU Fourier Transform spectrophotometer. The NMR spectra of all synthesized compounds were recorded in BRUKER AV400 NMR spectrometer applying 400 MHz for ¹H and 100MHz frequencies for ¹³C NMR spectra using CDCl₃ solvent and tetramethylsilane as standard. The mass spectra of all pyrazolines were recorded in SHIMADZU spectrometer using chemical ionization technique.

2.2 Synthesis of ¹*N*-acetyl-3-(4- β -methacrylate)-5-(substituted phenyl)-4,5-dihydro-¹*H*-pyrazolines

An appropriate equi-molar quantities of 3-(4-hydroxphenyl)-(4,5-dihydro-¹*H*-pyrazole-1-yl) ethanones (2 mmol), *E*-methyl-2-[2-(bromomethyl)-phenyl]-3-methoxyacrylate (2 mmol), and KF/Al₂O₃ (0.4 g) were taken in a 50 mL borosil beaker and closed with lid. The mixture has been subjected to microwave irradiation for 6-8 minutes in a microwave oven at 550 watts, 2540 MHz frequency (Scheme 1) (Samsung Grill, GW73BD Microwave oven, 230V A/c, 50Hz, 2450Hz, 100-750W (IEC-705), and then cooled to room temperature. After separating the organic layer with dichloromethane, the solid product has been obtained on evaporation. The solid, on recrystallization from benzene-hexane mixture afforded glittering product. The insoluble catalyst has been recycled by washing with ethyl acetate (8 mL) followed by drying in an oven at 100°C for 1h and reused for further reactions.

Scheme 1. Structure of 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹*H*-pyrazole-1-yl) ethanones by solvent-free condensation of 3-(4-hydroxyphenyl)-5-(substitutedphenyl)-(4,5-dihydro-¹*H*-pyrazole-1-yl)ethanones and *E*-methyl-2-[2-(bromomethyl)-phenyl]-3-methoxyacrylate in the presence of KF/Al₂O₃ catalyst.

3 Results and Discussion

The authors have taken efforts for the synthesis of $3-(4-\beta-methoxyacrylate)-5-(substituted phenyl)-(4,5$ derivatives dihydro-¹*H*-pyrazole-1-yl) ethanone by condensation of 3-(4-hydroxyphenyl)-5-(substitutedphenyl)-4,5-dihydro-¹H-pyrazole-1-yl) ethanones possessing electron withdrawing as well as electron donating groups as substituents in 5^{th} positioned phenyl ring, and E-methyl-2-[2-(bromomethyl)-phenyl]-3-methoxyacrylate in the presence of acidic catalyst KF/Al₂O₃ under microwave irradiation. Hence the authors have synthesized the 3-(4-β-methoxyacrylate)-5-(substitutedphenyl)-(4,5dihydro- ^{1}H -pyrazole-1-yl) ethanone derivatives by the cyclization of 2 mmol of corresponding ^{1}N -acetyl pyrazoline, 2 mmol of E-methyl-2-[2-(bromomethyl)-phenyl]-3-methoxyacrylate under microwave irradiation with 0.4 g of KF/Al₂O₃ catalyst at 550 W, 6-8 minutes (Samsung Grill, GW73BD Microwave oven, 230V A/c, 50Hz, 2450Hz, 100-750W (IEC-705), (Scheme 1). During the course of this reaction KF/Al_2O_3 catalyses condensation of 4-hydroxyphyenyl attached in the 3rd position of ¹N-acetyl pyrazolines and the E-methyl-2-[2-(bromomethyl)-phenyl]-3-methoxyacrylate by elimination of HBr. The yield of the ${}^{1}N$ -acetyl pyrazolines in this reaction is more than 95%. The ${}^{1}N$ -acetyl pyrazolines containing electron donating substituent (OCH₃) gave higher yield than electron-withdrawing (halogens, NO_2) substituents. Further we have investigated this condensation with equimolar quantities of the 3-(4hydroxyphenyl)-5-phenyl-4,5-dihydro-¹*H*-pyrazole-1-yl) ethanone (entry 1) and E-methyl-2-[2-(bromomethyl)-phenyl]-3-methoxyacrylate under the above same condition. In this reaction the obtained yield was 92%. The effect of quantity on this reaction was studied by varying the catalyst quantity from 0.1 g to 1 g. As the catalyst quantity increased from 0.1 g to 0.4 g, the percentage of yield increased from 85 to 92%. Further increasing the catalyst amount beyond 0.4 g, there is no significant increasing in the percentage of the product. The effect of catalyst loading is shown in Figure 1. The optimum quantity of catalyst loading was found to be 0.4 g. The analytical results and mass spectral data are summarized in Table 1.

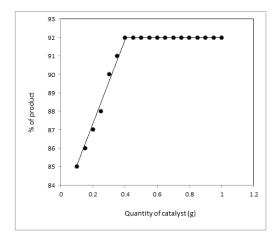


Figure 1. The effect of catalyst loading.

The reusability of this catalyst was studied for the condensation of 3-(4-hydroxyphenyl)-5-phenyl-4,5dihydro-¹*H*-pyrazole-1-yl) ethanone (entry 1), *E*-methyl-2-[2-(bromomethyl)-phenyl]-3-methoxyacrylate was presented in Table 2. From Table 2, the first two runs gave 92% product. The third, fourth and fifth runs of reactions gave the yields 91.5% and 90%, of the targeted ¹*N*-acetyl pyrazolines. Here the authors observed the appreciable loss in its effect of catalytic activity up to the fifth run. The effect of solvents on the yield was also studied with methanol, ethanol, dichloromethane and tetrahydrofuran with the same quantity of catalyst (entry 1) in 6h reflux condition. The effect of solvents on the yield of the targeted ¹*N*-acetyl pyrazolines(entry 1) was presented in Table 3. From the table it can be seen that the highest yield of ¹*N*-acetyl pyrazolines (entry 1) was obtained from the condensation of 3-(4hydroxyphenyl)-5-phenyl-4,5-dihydro¹*H*-pyrazole-1-yl) ethanone (entry 1) and *E*-methyl-2-[2-(bromomethyl)-phenyl]-3-methoxyacrylate udner microwave irradiation.

 $428[M^{2+}]$

 $438[M^{+}]$

 $438[M^{+}]$

 $422[M^{+}]$

 $453[M^{+}]$

 $453[M^+]$

 $453[M^{+}]$

(84-87)

(75-77)

(77-80)

107-108

117-118

129 - 130

89-90 (85-88)

77-78

80-81

95

95

93

90

90

90

No.	Х	M. F.	M.W	Yield (%)	М.р. (°С)	$egin{array}{c} { m Mass} \ { m (m/z)} \end{array}$
1	C_6H_5	$C_{23}H_{24}N_2O_5$	484	90	125-126	$408[M^{+}]$
2	4-Br	$C_{23}H_{23}BrN_2O_5$	563	90	79-80	$487[M^{+}],$
					(78-80)	$489[M^{2+}]$
3	4-Cl	$C_{23}H_{23}ClN_2O_5$	518	90	87-88	$443[M^{+}],$
					(86-89)	$445[M^{2+}]$
4	$4\text{-}\mathrm{OCH}_2\mathrm{CH}_3$	$C_{31}H_{32}N_2O_6$	529	91	68-69	$453[M^+]$
					(67-69)	
5	$4\text{-}\mathrm{CH}_2\mathrm{CH}_3$	$C_{31}H_{32}N_2O_5$	513	93	81-81	$513[M^+]$
					(79-80)	
6	2-F	$\mathrm{C}_{23}\mathrm{H}_{23}\mathrm{FN}_{2}\mathrm{O}_{5}$	503	90	153 - 154	$426[M^{+}],$
					(151 - 153)	$428[M^{2+}]$
7	3-F	$\mathrm{C}_{23}\mathrm{H}_{23}\mathrm{FN}_{2}\mathrm{O}_{5}$	503	90	136 - 137	$426[M^{+}],$
					(135 - 137)	$428[M^{2+}]$
8	4-F	$\mathrm{C}_{23}\mathrm{H}_{23}\mathrm{FN}_{2}\mathrm{O}_{5}$	503	90	87-88	$426[M^{+}],$

 $C_{24}H_{26}N_2O_6$

C24H26N2O6

 $C_{24}H_{26}N_2O_5$

C23H23N3O7

C23H23N3O7

C23H23N3O7

Table 1. The physical constants, analytical and mass fragments (m/z) data of 3-(4- β -methoxyacrylate)-5-(substitutedphenyl)-(4,5-dihydro-1H-pyrazole-1-yl) ethanones[27].

Table 2. Reusability of KF/Al_2O_3 catalyst for condensation of 3-(4-hydroxyphenyl)-5-phenyl-(4,5-dihydro-¹*H*-pyrazole-1-yl) ethanone and *E*-methyl-2-[2-(bromomethyl)-phenyl]-3-methoxyacrylate(entry 1).

515

515

499

530

530

530

Run	1	2	3	4	5
$\operatorname{Yield}(\%)$	92	92	91.5	91.5	90

Table 3. The effect of solvents in conventional heating and without solvent in microwave irradiation on the yield of 1-acetyl pyrazoline (entry 1).

	Solv	ents		Microwave irradiation
MeOH	EtOH	DCM	THF	
77	79	75	81	92

*MeOH: Methanol; EtOH: Ethanol; DCM: Dichloromethane; THF: Tetrahydrofuron

3.1 Spectral Correlations

 $3-OCH_3$

 $4-OCH_3$

 $4-CH_3$

 $2-NO_2$

 $3-NO_{2}$

4-NO₂

9

10

11

12

13

14

In the present spectral investigation, the spectral correlation of 3-(4- β -methoxyacrylate)-5-(substitutedphenyl)-(4,5-dihydro-¹*H*-pyrazole-1-yl) ethanones has been studied by assessment of the substituent effects[12-14, 22, 24, 26, 28, 29] on the absorption group frequencies of single substituted systems. The infrared spectral ν C=N and C=O (cm⁻¹) frequencies, NMR chemical shifts (δ , ppm) of CH_{3(keto)}, H₄, H₄, H₅, CH₂, H_{β}, OCH₃, CH_{3(ester)}protons, C=O, CH_{3(keto)}, C=N, CH₂, C_{α}, C_{β}, OCH₃, C=O_(ester), and CH_{3(ester)} carbons of 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹*H*-pyrazole-1-yl)

142

ethanones have been assigned and correlated with Hammett substituent constants and Swain-Lupton's [30] parameters using single and multi-regression analysis.

3.1.1 IR spectral study

The ν CO and C=N stretching frequencies (cm⁻¹) of 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹*H*-pyrazole-1-yl) ethanones of the present study are presented in Table 4. These data have been correlated with Hammett substituent constants [12-14, 22, 24, 26, 28, 29]. The results of statistical analyses were shown in Table 5. In this correlation, the structure parameter Hammett equation employed is as shown in the following equation (1)

$$v = \rho \sigma + v_0 \tag{1}$$

where ν is the carbonyl frequencies of substituted system and ν_0 is the corresponding σ quantity of unsubstituted system, σ is a Hammett substituent constant, which is characteristics of the substituent and ρ is a reaction constant which depends upon the nature of the reaction.

Table 4. The infrared and NMR spectral data of $3-(4-\beta-methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹H-pyrazole-1-yl) ethanones.$

No.	х	IR, (ν	$, cm^{-1})$	¹ H NM	R (ð, p	opm)							
		C=0	C=N	${ m CH}_3 \ ({ m keto})$	\mathbf{H}_4	$\mathrm{H}_{4'}$	${ m H}_5$	CH_2	${f H}_{m eta} \ ({ m vinyl})$	OCH_3	${ m CH}_3 \ ({ m ester})$	Ar-H	х
1	Н	1654	1588	2.463	3.107	3.723	5.631	5.132	7.631	3.437	3.813	6.256- 7.324	
2	4-Br	1658	1592	2.381	3.217	3.691	5.593	5.214	7.537	3.394	3.794	6.345 - 7.567	
3	4-Cl	1659	1590	2.411	3.178	3.654	5.453	5.174	7.673	3.531	3.781	6.223- 7.082	
4	4-OEt	1648	1564	2.367	3.215	3.741	5.717	5.072	7.610	3.432	3.870	6.120- 7.032	3.722, 2.525
5	4-Et	1647	1586	2.417	3.213	3.661	5.677	5.213	7.543	3.471	3.861	6.653- 7.675	$2.546, \\1.378$
6	2-F	1651	1574	2.483	3.089	3.713	5.879	5.176	7.601	3.347	3.837	6.976- 7.053	
7	3-F	1657	1583	2.408	3.247	3.717	5.656	5.097	7.173	3.417	3.841	6.873- 7.213	
8	4 - F	1660	1586	2.439	3.187	3.813	5.465	5.032	7.217	3.677	3.873	6.654 - 7.921	
9	3-OMe	1650	1576	2.474	3.210	3.564	5.652	5.176	7.017	3.431	3.805	6.241- 7.134	3.456
10	4-OMe	1648	1579	2.379	3.117	3.693	5.632	5.071	7.581	3.767	3.708	6.235- 7.334	3.245
11	4-Me	1652	1584	2.497	3.126	3.647	5.523	5.021	7.589	3.817	3.716	6.043- 7.762	2.563
12	2-NO_2	1664	1596	2.507	3.193	3.667	5.895	5.173	7.593	3.831	3.875	6.823- 7.892	
13	$3-NO_2$	1666	1595	2.556	3.207	3.679	5.621	5.783	7.617	3.617	3.871	6.842- 7.889	
14	4-NO_2	1669	1597	2.571	3.431	3.701	5.639	5.810	7.621	3.704	3.883	6.345- 7.238	

No.	Х	13 C NN	I R (δ,]	ppm)								
		C=O	CH_3	C=N	CH_2	Cα	Cβ	OCH_3	CO	CH_3	Ar-C	Х
		(keto)							(ester)	(ester)		
1	Н	168.63	23.65	157.37	71.36	105.73	147.71	52.71	172.71	54.70	124.45-	
											146.88	
2	4-Br	168.71	23.64	157.56	77.41	105.87	147.84	52.93	171.89	53.45	119.44-	
-											145.98	
3	4-Cl	168.81	24.01	157.63	71.87	106.07	148.71	53.45	171.19	54.21	123.54-	
		100.00								F 4 00	146.98	~
4	4-OEt	168.08	24.17	157.82	71.86	105.89	148.66	54.83	1714.3	54.66	118.89-	65.44,
_		100.00	04.00	155 10		100 - 4	1 40 0	F 4 0.0	1 - 1 00	~ / / 1	145.93	15.66
5	4-Et	168.06	24.32	157.48	71.24	106.74	148.07	54.86	171.08	54.41	124.36-	33.24,
0	0 F	100 15	04.00	150.04	71.04	107.00	140.00	F 4 0 G	171 70	54.04	145.28	15.03
6	2-F	169.17	24.93	158.04	71.94	107.06	148.98	54.96	171.70	54.94	117.02-	
-	9 F	100.07	04.00	150.07	79.00	107 91	140.04	F 4 67	171 04	F 4 C 9	137-98	
7	3-F	169.27	24.88	158.07	72.00	107.31	148.84	54.67	171.84	54.63	121.36- 147.25	
8	4-F	169.34	24.67	158.27	72.06	107.15	148.67	54.47	171.36	54.24	147.23 122.52-	
8	4-1	109.04	24.07	100.27	12.00	107.15	140.07	04.47	171.50	04.24	122.32 - 146.35	
9	3-OMe	167.07	23.54	157.21	71.24	107.02	148.01	53.07	171.10	54.09	140.55 123.68-	65.98
0	0 OMIC	101.01	20.01	101.21	11.21	101.02	110.01	00.01	111.10	01.00	146.25	00.00
10	4-OMe	167.12	23.84	157.24	71.32	106.84	147.94	53.17	171.15	54.17	125.69-	66.35
											147.30	
11	4-Me	167.94	23.97	157.57	71.77	107.09	148.14	52.93	171.24	54.96	124.05-	25.31
											147.36	
12	$2-NO_2$	168.94	24.89	158.74	72.84	107.15	148.99	54.46	171.64	54.89	125.36-	
	2										147.25	
13	$3-NO_2$	168.97	24.94	158.88	72.86	107.41	148.97	54.88	171.97	54.90	124.05-	
	-										143.68	
14	$4-NO_2$	169.01	24.97	158.92	72.90	107.49	148.96	54.98	171.98	54.92	123.06-	
											147.25	

 Table 4. continued

Table 5. Results of statistical analysis of infrared stretches $\nu(cm^{-1})$, NMR chemical shifts (δ , ppm) of protons and carbons of 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹H-pyrazole-1-yl) ethanones with Hammett σ , σ^+ , $\sigma_I \sigma_R$ constants and F and R parameters.

Functionality	Constants	r	Ι	ρ	s	n	Correlated derivatives
	IR data	Vs Har	nmett su	bstituen	t cons	tants	s, F and R parameters
vC=O	σ	0.932	1653.21	16.601	3.40	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,
							3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-
							NO_2
	σ^+	0.906	1654.96	8.824	5.64	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,
							3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-
							NO_2
	$\sigma_{\rm I}$	0.907	1647.96	21.483	4.80	11	4-Br, 4-Cl, 4-OEt, 2-F, 3-F, 4-F, 3 -OCH ₃ ,4-
							OCH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	$\sigma_{\rm R}$	0.905	1659.69	17.651	5.58	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,
							3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-
							NO_2
	F	0.907	1648.77	19.127	5.07	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,
							3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-

	R	0.906	1659.77	15.109	5.09	14	$ NO_2 \\ H, \ 4\text{-Br}, \ 4\text{-Cl}, \ 4\text{-OEt}, \ 4\text{-Et}, \ 2\text{-F}, \ 3\text{-F}, \ 4\text{-F}, \\ 3\text{-OCH}_3, \ 4\text{-OCH}_3, \ 4\text{-CH}_3, \ 2\text{-NO}_2, \ 3\text{-NO}_2, \ 4\text{-} \\ NO_2, \ 4\text{-} \\ NO_3 = 0 \\ NO_3 = 0 \\ NO_3 = 0 \\ NO_3 = 0 \\ NO_3 = 0 \\ NO_3 = 0 \\ NO_3 = 0 \\ NO_3 = 0 \\ NO_3 = 0 \\ NO_3 = 0 \\ NO_3 = 0 \\ NO_3 = 0 \\ $
νC=N	σ	0.907	1582.06	17.70	6.67	14	NO ₂ H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-
	σ^+	0.937	1583.74	7.079	9.10	11	NO ₂ H, 4-Br, 4-Cl, 4-Et, 3-F, 4-F, 4-OCH ₃ , 4- CH ₃ , 3-NO ₂ , 2-NO ₂ , 4-NO ₂
	σ_{I}	0.937	1579.78	14.059	9.00	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	$\sigma_{\rm R}$	0.997	1596.48	30.370	5.06	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	F	0.903	1580.23	11.904	9.13	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	R	0.907	1591.30	24.774	6.45	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	¹ H NMF	t data Vs I	Hammett	substit	uent c	onst	ants, F and R parameters
$\delta CH_3 keto$	σ	0.907	2.437	0.128	0.04		H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	σ^+	0.906	2.438	0.087	0.05	12	H, 4-Cl, 4-Et, 2-F,3-F, 4-F, 3-OCH ₃ , 4- OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	σ_{I}	0.803	2.422	0.078	0.06	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	$\sigma_{\rm R}$	0.906	2.489	0.165	0.04	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	F	0.832	2.429	0.060	0.06	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	R	0.906	2.492	0.151	0.05	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
δH_4	σ	0.848	3.178	0.105	0.07	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	σ^+	0.844	3.181	0.079	0.44	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	$\sigma_{\rm I}$	0.904	3.140	0.148	0.07	13	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂
	$\sigma_{\rm R}$	0.830	3.216	0.098	0.08	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	\mathbf{F}	0.804	3.139	0.139	0.07	13	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂
1	R	0.827	3.251	0.079	0.08	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,

							3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-
							NO ₂
$\delta H_{4^{\prime}}$	σ	0.811	0.369	0.017	0.05	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,
							3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-
							NO_2
	σ^+	0.792	0.366	0.059	0.05	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,
							3-OCH_3 , 4-OCH_3 , 4-CH_3 , 2-NO_2 , 3-NO_2 , 4-
							NO_2
	$\sigma_{\rm I}$	0.825	3.678	0.054	0.05	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,
							$3-OCH_3$, $4-OCH_3$, $4-CH_3$, $2-NO_2$, $3-NO_2$, $4-$
			2.001				NO ₂
	$\sigma_{\rm R}$	0.834	3.661	0.071	0.05	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-
	Б	0.010	2 600	0.022	0.05	14	OCH_3 , 4- OCH_3 , 4- CH_3 , 2- NO_2 , 3- NO_2 , 4- NO_2
	F	0.818	3.680	0.033	0.05	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,
							3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	R	0.801	3.571	0.049	0.05	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,
	10	0.001	0.011	0.015	0.00	11	3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-
							NO ₂
δH_5	σ	0.920	5.630	0.088	0.12	10	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 3-F, 4-F, 3-
5							OCH ₃ , 4-OCH ₃ , 4-CH ₃
	σ^+	0.904	5.624	0.114	0.14	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,
							3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-
							NO_2
	$\sigma_{\rm I}$	0.818	5.690	0.095	0.13	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,
							3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-
							NO ₂
	$\sigma_{\rm R}$	0.803	5.648	0.016	0.13	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,
							3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-
	F	0.807	E 620	0.025	0.19	14	NO_2
	Г	0.807	5.630	0.035	0.13	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-
							NO_2
	R	0.815	5.662	0.069	0.13	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,
		0.010		0.000	0.20		3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-
							NO ₂
δCH_2	σ	0.974	5.144	0.490	0.17	13	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,
-							3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 3-NO ₂ , 4-NO ₂
	σ^+	0.963	5.163	0.342	0.20	12	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,
							$\operatorname{3-OCH}_3, \operatorname{4-OCH}_3, \operatorname{4-CH}_3, \operatorname{2-NO}_2$
	$\sigma_{\rm I}$	0.848	5.043	0.487	0.22	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,
							$3-OCH_3$, $4-OCH_3$, $4-CH_3$, $2-NO_2$, $3-NO_2$, $4-$
							NO ₂
	$\sigma_{\rm R}$	0.963	5.355	0.612	0.19	12	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,
	Б	0.091	F 000	0.945	0.04	14	3-OCH ₃ , 4 -OCH ₃ , 4 -CH ₃ , 4 -NO ₂
	F	0.831	5.086	0.345	0.24	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,
							3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	R	0.964	5.770	0.532	0.19	12	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,
	10	0.004	0.110	0.002	0.15	14	3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 4-NO ₂
δH_{β}	σ	0.841	7.487	0.080	0.21	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,
ĥ			- /			-	3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-
							NO ₂
	σ^+	0.805	7.493	0.250	0.21	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,

							3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , NO ₂
	$\sigma_{\rm I}$	0.804	7.513	0.037	0.21	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4- 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , NO ₂
	$\sigma_{\rm R}$	0.849	70582	0.387	0.38	14	
	F	0.826	7.580	0.201	0.20	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4- 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , NO ₂
	R	0.906	7.617	0.461	0.16	11	H, 4-Br, 4-Cl, 4-OEt, 4-Et,2-F, 3-OCH ₃ , CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
δOCH_3	σ	0.925	3.543	0.13	0.19	12	H, 4-Br, 4-Cl, 4-OEt, 2-F, 3-F, 4-F, 3-OCH 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	σ^+	0.913	3.570	0.048	0.17	12	H, 4-Br, 4-Cl, 4-OEt, 2-F, 3-F, 4-F, 3-OCH 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	$\sigma_{\rm I}$	0.811	3.533	0.078	0.17	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , NO ₂
	$\sigma_{\rm R}$	0.843	3.621	0.278	0.15	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , NO ₂
	F	0.835	3.526	0.880	0.17	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4- 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , NO ₂
	R	0.831	3.611	0.191	0.16	14	
$\delta CH_{3 \ ester}$	σ	0.949	3.811	0.075	0.05	12	H, 4-Br, 4-Cl, 2-F,3-F, 4-F, 3-OCH ₃ , OCH ₃ , 4-CH ₃ ,2-NO ₂ ,3-NO ₂ , 4-NO ₂
	σ^+	0.963	3.809	0.078	0.04	12	H, 4-Br, 4-Cl, 2-F,3-F, 4-F,3-OCH ₃ OCH ₃ ,4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	σ_{I}	0.905	3.780	0.115	0.05	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , NO ₂
	$\sigma_{\rm R}$	0.816	3.838	0.036	0.05	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , NO ₂
	F	0.904	3.786	0.106	0.05	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , NO ₂
	R	0.827	3.836	0.053	0.05	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , NO ₂
	¹³ C NMF	R data Vs I	Hammet	t substit	uent c	onst	ants, F and R parameters
δC=Oketo	σ	0.954	168.33.	1.664	0.65	11	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-OCH ₃
	σ^+	0.946	168.37	1.743	0.68	11	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-OCH ₃
	$\sigma_{\rm I}$	0.963	167.81	1.890	0.60	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ ,
							NO_2

	$\sigma_{\rm R}$	0.823	168.65	1.674	0.75	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ ,
	F	0.963	167.80	1.769	0.59	12	NO ₂ H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 4-CH ₃ , 2-NO ₂ , 3-NO ₂ ,
	R	0.830	168.71	0.805	0.73	14	4-NO ₂ H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , - NO ₂
$\delta \mathrm{CH}_3\mathrm{keto}$	σ	0.957	24.17	0.840	0.46	14	HO ₂ H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , NO ₂
	σ^+	0.944	24.22	0.527	0.57	14	HO ₂ H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , NO ₂
	σ_{I}	0.967	23.76	1.467	0.42	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , NO ₂
	σ_{R}	0.813	24.39	0.387	0.56	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , NO ₂
	F	0.964	23.75	1.408	0.41	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , NO ₂
	R	0.824	24.43	0.478	0.55	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , NO ₂
δC=N	σ	0.980	157.70	1.263	0.36	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , NO ₂
	σ^+	0.966	157.76	0.843	0.46	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , NO ₂
	σ_{I}	0.907	157.22	0.184	0.38	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , NO ₂
	σ_{R}	0.848	158.14	1.006	0.54	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , NO ₂
	F	0.907	157.25	1.645	0.40	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4- 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , NO ₂
	R	0.849	158.18	1.025	0.53	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-B 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
δCH_2	σ	0.835	72.08	1.491	1.52	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-B 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	σ^+	0.838	72.09	1.320	1.50	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-B 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	$\sigma_{\rm I}$	0.840	71.39	1.496	1.49	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-B 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂

	$\sigma_{\rm R}$	0.826	72.67	1.581	1.57	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	F	0.832	71.58	1.875	1.54	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	R	0.823	72.67	1.336	1.58	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
δCα	σ	0.944	106.65	0.31	0.57	14	HO ₂ H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	σ^+	0.921	106.72	0.293	0.62	14	HO ₂ H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	σ_{I}	0.841	106.39	1.031	1.54	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	$\sigma_{\rm R}$	0.814	106.84	0.328	0.63	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	F	0.905	106.30	1.164	0.54	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	R	0.804	106.79	0.199	0.63	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
δC_β	σ	0.959	148.34	0.745	0.40	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	σ^+	0.955	148.36	0.810	0.41	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	σ_{I}	0.970	147.91	0.148	0.31	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	$\sigma_{ m R}$	0.808	148.49	0.154	0.50	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	F	0.907	148.93	1.257	0.33	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	R	0.817	148.53	0.294	0.49	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
$\mathrm{\delta OCH}_3$	σ	0.834	58.89	0.849	0.88	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	σ^+	0.838	53.89	0.875	0.87	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	$\sigma_{\rm I}$	0.905	53.22	1.880	0.80	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂

	$\sigma_{\rm R}$	0.802	54.01	0.574	0.94	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F,
							3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	F	0.905	53.33	1.424	0.81	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	R	0.809	54.10	0.302	0.94	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
$\delta CO \ ester$	σ	0.938	170.23	41.847	3.96	14	HO ₂ H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	σ^+	0.802	175.39	20.291	5.23	14	HO ₂ H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	$\sigma_{\rm I}$	0.901	170.54	17.158	4.13	13	$\label{eq:4-Br} \text{4-Br,4-Cl,4-OEt,4-Et,} \text{2-F,3-F,4-F,3-OCH}_3,$
	σ_{R}	0.840	174.19	63.011	3.93	14	4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂ H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	F	0.914	173.37	32.582	4.21	13	4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	R	0.825	178.17	36.854	4.59	14	HO ₂ H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
$\delta CH_3 ester$	σ	0.829	54.45	0.337	0.43	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	σ^+	0.824	54.47	0.234	0.44	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	$\sigma_{\rm I}$	0.806	54.47	0.110	0.45	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	$\sigma_{\rm R}$	0.831	54.62	0.511	0.43	14	H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	F	0.803	54.48	0.060	0.45	14	HO ₂ H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂
	R	0.804	54.67	0.632	0.41	14	NO ₂ H, 4-Br, 4-Cl, 4-OEt, 4-Et, 2-F, 3-F, 4-F, 3-OCH ₃ , 4-OCH ₃ , 4-CH ₃ , 2-NO ₂ , 3-NO ₂ , 4-NO ₂

*r = correlation co-efficient; ρ = slope; I = intercept; s = standard deviation; n = number of substituents

The ν C=O stretching frequencies (cm⁻¹) with Hammett σ , σ^+ , σ_R constants, F and R parameters gave satisfactory correlations. The Hammett σ_I constant produced satisfactory correlations individually excluding H, 4-Et and 4-CH₃ substituents (σ : r=0.932, σ^+ : r=0.906, σ_I : r=0.907, σ_R : r=0.905, F: r=0.907, R: r=906). The results of statistical analyses were presented in Table 5. All correlations gave positive ρ value. This means that the normal substituent effects operate in all systems.

The correlation of ν C=N stretching frequencies (cm⁻¹) with Hammett σ and σ_R constants was satisfactory. The Hammett σ^+ , σ_I , constants, F and R parameters have shown satisfactory correlation excluding H, 4-OEt, 2-F, 3-OMe and 4-Me substituents (σ : r=0.907, σ^+ : r=0.931, σ_I : r=0.937, σ_R :

r=0.997, F: r=0.903, R: r=0.907). If these substituents were included in the correlations, they will reduce the correlations considerably. All correlations gave positive ρ value. This means that the normal substituent effects operate in all systems.

To study the application of multi-regression analysis of these data with σ_{I} and σ_{R} constants or Swain-Lupton's [30] F and R parameters gave satisfactory correlations. The correlation equations for CO and CN are given in equations (2)-(5).

$$\nu C = O(cm^{-1}) = 1652.01(\pm 1.519) + 19.222(\pm 2.994)\sigma_I + 15.022(\pm 2.855)\sigma_R$$

$$(R = 0.993, n = 14, P > 95\%)$$
(2)

$$\nu C = O(cm^{-1}) = 1652.08 (\pm 1.281) + 19.480 (\pm 2.414) F + 15.512 (\pm 2.302) R$$

$$(R = -0.005, m = 14, R > 0.05\%)$$
(3)

$$(R = 0.995, n = 14, P > 95\%)$$

$$\nu C = N(cm^{-1}) = 1587.61(\pm 2.612) + 9.689(\pm 4.258)\sigma_{I} + 29.044(\pm 4.909)\sigma_{R}$$
(1)

$$(R = 0.989, n = 14, P > 95\%)$$
(4)

$$\nu C = N(cm^{-1}) = 1586.37(\pm 3.102) + 12.474(\pm 5.844) F + 25.032(\pm 5.572)R$$

$$(R = 0.982, n = 14, P > 95\%)$$
(5)

3.2 ¹H NMR Spectral Study

The ¹H NMR spectra of synthesized 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹Hpyrazole-1-yl) ethanones have been recorded in deuteriochloroform solution employing tetramethylsilane (TMS) as internal standard. The signals of the pyrazoline ring protons have been assigned. They have been calculated as AB or AA' systems respectively. The chemical shifts (ppm) of H₄ are at higher fields than those of H_{4'} and H₅ in this series of ¹N-acetyl pyrazolines. This is due to the deshielding of H_{4'} and H₅ which are in different chemical as well as magnetic environment. These H₄ protons gave an AB pattern and the H_{4'} proton doublets of doublet in most cases were well separated from the signals H₅ and the aromatic protons. The assigned chemical shifts (ppm) of CH_{3(keto)}, H₄, H_{4'}, H₅, CH₂, H_{β}, OCH₃ and CH_{3(ester)} protons are presented in Table 4.

In nuclear magnetic resonance spectra, the ¹H or the ¹³C chemical shifts (δ) depend on the electronic environment of the nuclei concerned. The assigned vinyl proton chemical shifts (ppm) have been correlated with reactivity parameters using Hammett equation in the form of

$$\log \delta = \log \delta_0 + \rho \sigma \tag{6}$$

where δ_0 is the chemical shift of unsubstituted ketones.

The assigned chemical shifts (ppm) of $CH_{3(keto)}$, H_4 , H_5 , CH_2 , H_β , OCH_3 and $CH_{3(ester)}$ protons of synthesised 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹*H*-pyrazole-1-yl)-ethanones have been correlated with various Hammett sigma constants, F and R parameters. The results of statistical analysis [12-14, 22, 24, 26, 28, 29] are presented in Table 5. The $CH_{3(keto)}$ proton chemical shifts (δ , ppm) with Hammett σ , σ_R constants and R parameters gave satisfactory correlations. The Hammett σ^+ constant was correlated satisfactorily with the methyl proton chemical shifts excluding 4-Br and 4-OEt substituents. The Hammett σ_I constant and F parameters showed poor correlations (σ : r=0.907, σ^+ : r=0.906, σ_I : r=0.803, σ_R : r=0.906, F: r=0.832, R: r=906). All correlations give positive ρ values and it implies that there is a normal substituent effect operates in all systems. The failure in correlation was the incapability of effect of substituents on the chemical shift and associated with the conjugative structure as shown in Figure 2.

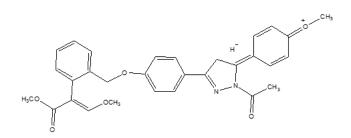


Figure 2. The resonance-conjugative structure.

The correlation of H_4 proton chemical shifts (δ , ppm) with Hammett substituent constants F and R parameters were shown in Table 5. The H_4 proton chemical shifts (δ , ppm) with Hammett σ_I constant and F parameters gave satisfactory correlation (σ : r=0.848, σ^+ : r=0.844, σ_I : r=0.904, σ_R : r=0.830, F: r=0.904, R: r=827). The remaining Hammett substituent and R parameter gave poor correlation with the H_4 proton chemical shifts. The Hammett substituent constants, F and R parameters failed in correlation with $H_{4'}$ proton chemical shifts (δ , ppm) of synthesized 1-acetyl pyrazoline derivatives (σ : r=0.811, σ^+ : r=0.792, σ_I : r=0.825, σ_R : r=0.834, F: r=0.818, R: r=0.801).

The H₅ proton chemical shifts (δ , ppm) with Hammett σ and σ^+ constants produced satisfactory correlation excluding 2-F and nitro substituents. The remaining Hammett substituent constants, F and R parameters were failed in correlation (σ : r=0.920, σ^+ : r=0.904, σ_I : r=0.818, σ_R : r=0.803, F: r=0.807, R: r=0.815).

The assigned chemical shifts (δ , ppm) of methylene (-CH₂-) proton singlets of synthesized 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹*H*-pyrazole-1-yl)-ethanones correlated satisfactorily with Hammett σ , σ^+ , σ_R constant and R parameters excluding 2- and 3-NO₂ substituents(σ : r=0.974, σ^+ : r=0.963, σ_{I} : r=0.848, σ_{R} : r=0.963, F: r=0.831, R: r=0.964). If these substituents will be included in the regression, they will reduce the correlations considerably. The remaining Hammett σ_{I} constant and F parameter failed in correlation.

The β -protons (H $_{\beta}$) singlet chemical shifts (δ , ppm) of synthesised 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹H-pyrazole-1-yl)-ethanones are correlated satisfactorily with R parameter excluding 3-F, 4-F and 4-OMe substituents(σ : r=0.814, σ^+ : r=0.805, σ_I : r=0.804, σ_R : r=0.849, F: r=0.826, R: r=0.906). The remaining Hammett substituent constants and F parameter failed in correlation.

The methoxy proton singlet chemical shifts (δ , ppm) of synthesised 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹*H*-pyrazole-1-yl)-ethanones correlated satisfactorily with Hammett σ and σ^+ constants. The remaining Hammett σ_I and σ_R constants, F and R parameters failed in correlation (σ : r=0.925, σ^+ : r=0.913, σ_I : r=0.811, σ_R : r=0.843, F: r=0.835, R: r=0.831). The methyl proton (CH₃, ester) singlet chemical shifts (δ , ppm) of synthesised 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹*H*-pyrazole-1-yl)-ethanones correlated satisfactorily with Hammett σ , σ^+ constants gave satisfactory correlations excluding 4-OEt and 4-Et substituents. The Hammett σ_I constant and F parameters showed satisfactory correlations. The Hammett σ_R constant and R parameter were failed in correlation (σ : r=0.949, σ^+ : r=0.963, σ_I : r=0.905, σ_R : r=0.816, F: r=0.904, R: r=0.827).

Some of the single regressions of the chemical shifts (ppm) of $CH_{3(keto)}$, H_4 , H_4' , H_5 , CH_2 , H_β , OCH_3 and $CH_{3(ester)}$ protons of synthesised 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹*H*pyrazole-1-yl)-ethanones gave poor correlations. All correlations gave positive ρ values. This means that the normal substituent effects operate in all regressions. The poor correlation was due to the absence or incapability of transmittance of effects of substituent to the proton chemical shifts (ppm) and it was associated with the resonance-conjugative structure as shown in Figure 2.

In view of the inability of some of the Hammett σ constants to produce satisfactory correlation individually for CH_{3(keto)}, H₄, H₄', H₅, CH₂, OCH₃ and CH_{3(ester)} proton chemical shifts, the authors think that it is worthwhile to seek multiple correlations involving either σ_{I} and σ_{R} constants or Swain-Lupton's[30] F and R parameters. The correlation equations for CH_{3(keto)}, H₄, H₄', H₅, CH₂, OCH₃ and CH_{3(ester)} proton chemical shifts (δ , ppm) are given in equations (7-22).

$$\delta CH_{3(keto)}^{(ppm)} = 2.487 (\pm 0.028) + 0.054 (\pm 0.005) \sigma_{I} + 0.157 (\pm 0.053) \sigma_{R}$$

$$(R = 0.974, \ n = 14, P > \ 95\%)$$

$$(7)$$

$$\delta CH_{3(keto)}^{(ppm)} = 2.466 (\pm 0.026) + 0.056 (\pm 0.002) F + 0.152 (\pm 0.048) R (R = 0.971, n = 14, P > 95\%)$$
(8)

$$\delta H_4^{(ppm)} = 3.161 (\pm 0.044) \pm 0.136 (\pm 0.087) \sigma_I + 0.079 (\pm 0.008) \sigma_R$$

$$(R = 0.951, \ n = 14, P > 95\%)$$
(9)

$$\delta H_{4'}^{(ppm)} = 3.159 (\pm 0.049) + 0.141 (\pm 0.079) F + 0.082 (\pm 0.005) R (R = 0.952, n = 14, P > 95\%)$$
(10)

$$\delta H_{4'}^{(ppm)} = 3.651(\pm 0.031) + 0.068(\pm 0.062)\sigma_I + 0.063(\pm 0.005)\sigma_I$$

$$(R = 0.939, \ n = 14, P > \ 90\%)$$
(11)

$$\delta H_{4'}^{(ppm)} = 3.652(\pm 0.030) + 0.077(\pm 0.005) F + 0.532(\pm 0.003)R$$

$$(R = 0.938, n = 14, P > 90\%)$$
(12)

$$\delta H_{5}^{(ppm)} = 5.561(\pm 0.077) + 0.911(\pm 0.152)\sigma_{I} + 0.342(\pm 0.029)\sigma_{R}$$

$$(R = 0.918, \ n = 14, P > \ 90\%)$$
(13)

$$\delta H_5^{(ppm)} = 5.648 (\pm 0.074) \pm 0.037 (\pm 0.014) F + 0.774 (\pm 0.012) R (R = 0.917, n = 14, P > 95\%)$$
(14)

$$\delta CH_2^{(ppm)} = 5.193(\pm 0.110) + 0.403(\pm 0.119)\sigma_I + 0.559(\pm 0.190)\sigma_R$$

$$(R = 0.956, \ n = 14, P > 95\%)$$
(15)

$$\delta C H_2^{(ppm)} = 5.220 (\pm 0.098) 40.358 (\pm 0.185) F + 0.580 (\pm 0.172) R (R = 0.975, n = 14, P > 95\%)$$
(16)

$$\delta H_{\beta}^{(ppm)} = 7.621(\pm 0.108) + 0.937(\pm 0.214)\sigma_{I} + 0.400(\pm 0.021)\sigma_{R}$$

$$(R = 0.951, \ n = 14, P > \ 95\%)$$

$$(17)$$

$$\delta H_{\beta}^{(ppm)} = 7.693 (\pm 0.088) + 0.191 (\pm 0.016) F + 0.453 (\pm 0.159) R$$

$$(R = 0.968, \ n = 14, P > 95\%)$$
(18)

$$\delta OCH_3^{(ppm)} = 3.606 (\pm 0.093) + 0.037 (\pm 0.184) \sigma_I + 0.272 (\pm 0.176) \sigma_R$$

$$(R = 0.943, \ n = 14, P > \ 90\%)$$
(19)

$$\delta OCH_3^{(ppm)} = 3.754 (\pm 0.093) + 0.993 (\pm 0.171) F + 0.193 (\pm 0.016) R (R = 0.935, n = 14, P > 90\%)$$
(20)

$$\delta CH_{3ester}^{(ppm)} = 3.786 (\pm 0.038) + 0.112 (\pm 0.060) \sigma_I + 0.021 (\pm 0.005) \sigma_R$$

$$(R = 0.951, \ n = 14, P > \ 95\%)$$

$$(21)$$

$$\delta CH_{3ester}^{(ppm)} = 3.794 (\pm 0.024) + 0.107 (\pm 0.053) F + 0.055 (\pm 0.010) R (R = 0.956, n = 14, P > 95\%)$$
(22)

3.3 ¹³C NMR Spectra

Organic chemists, spectral analysts, and physical organic chemists [12-14, 22, 24, 26, 28, 29] have made extensive study of ¹³C NMR spectra for a large number of ketones, styrenes, keto-epoxides and pyrazolines. In their investigation, they assessed the linear correlation of the chemical shifts (ppm) of vinyl, C=N and carbonyl carbons with Hammett σ constants, F and R parameters. In the present study, the chemical shifts (δ ,ppm) observed for the C=O, CH_{3(keto)}, C=N, CH₂, C_{α}, C_{β}, OCH₃, C=O_(ester), and CH_{3(ester)} carbons of 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹H-pyrazole-1-yl) ethanones are presented in Table 4. Attempts have been made to correlate the above assigned carbon chemical shifts (δ , ppm) with Hammett substituent constants, field and resonance parameters with the help of single and multi-regression analyses to study the reactivity through the effect of substituents.

The chemical shifts (δ , ppm) observed for the C=O, CH_{3(keto)}, C=N, C₄, C₅, CH₂, C_{α}, C_{β}, OCH₃, C=O_(ester), and CH_{3(ester)} carbons of 3-(4- β -methoxy acrylate)-5-(substituted phenyl)-(4,5-dihydro-¹H-pyrazole-1-yl) ethanones have been correlated with Hammett substituent constants and the results of statistical analysis are presented in Table 5. The C=O chemical shifts (δ , ppm) were satisfactorily correlated with Hammett σ , σ^+ , σ_I constants and F parameters excluding 3-OMe, 4-OMe and 3-NO₂ substituents. The remaining Hammett σ_R constant and R parameters failed in correlation (σ : r=0.954, σ^+ : r=0.966, σ_I : r=0.823, F: r=0.963, R: r=0.830). This is due to the reasons stated earlier and it is associated with the resonance-conjugated structure as shown in Figure 2.

The chemical shifts (δ ,ppm) observed for the CH_{3(keto)} carbons satisfactorily correlated with σ , σ^+ , σ_I constants and F parameters(σ : r=0.957, σ^+ : r=0.944, σ_I : r=0.967, σ_R : r=0.813, F: r=0.964, R: r=0.824). The remaining Hammett σ_R constant and R parameter failed in correlation.

The assigned C=N carbon chemical shifts (δ , ppm) have shown satisfactory correlation with σ , σ^+ , σ_I constants and F parameters. The Hammett σ_R constants and R parameters were failed in correlation (σ : r=0.980, σ^+ : r=0.966, σ_I : r=0.907, σ_R : r=0.818, F: r=0.907, R: r=0.849).

The chemical shifts (δ , ppm) observed for the CH₂ carbon of the synthesized 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹*H*-pyrazole-1-yl) ethanones have been poorly correlated with Hammett substituent constants, F and R parameters(σ : r=0.835, σ ⁺: r=0.838, σ _I: r=0.840, σ _R: r=0.826, F: r=0.832, R: r=0.823).

The assigned α carbon chemical shifts (δ , ppm) of the synthesized 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹*H*-pyrazole-1-yl) ethanones correlated with Hammett σ , σ^+ and F parameters satisfactorily (σ : r=0.944, σ^+ : r=0.921, σ_I : r=0.841, σ_R : r=0.814, F: r=0.905, R: r=0.804). The Hammett σ_I , σ_R constants and R parameter were failed in correlation. The correlation of assigned β carbon chemical shifts (δ , ppm) of the synthesized 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4, 5dihydro-¹*H*-pyrazole-1-yl) ethanones with Hammett σ , σ^+ , σ_I constants and F parameters found to be satisfactory. The Hammett σ_R constant and R parameters failed in correlation (σ : r=0.989, σ^+ : r=0.955, σ_I : r=0.970, σ_R : r=0.808, F: r=0.907, R: r=0.817). The equal degree of transmittance of the effect of substituents was observed in C α and C β carbons.

The OCH₃ carbon chemical shifts (δ , ppm) of the synthesized 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹*H*-pyrazole-1-yl) ethanones gave satisfactory correlations with Hammett σ_{I} constant and F parameter (σ : r=0.834, σ^+ : r=0.838, σ_{I} : r=0.905, σ_{R} : r=0.802, F: r=0.905, R: r=0.809). The remaining Hammett substituent constants and R parameters were failed in correlation.

The correlation of CO(ester) carbon chemical shifts (δ , ppm) of the synthesized 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹*H*-pyrazole-1-yl) ethanones with Hammett σ , $\sigma_{\rm I}$ constants and F parameters are satisfactory excluding H substituent(σ : r=0.938, σ^+ : r=0.802, $\sigma_{\rm I}$: r=0.901, $\sigma_{\rm R}$: r=0.840, F: r=0.914, R: r=0.825). The Hammett σ^+ , $\sigma_{\rm R}$ constants and R parameters failed in correlation.

The assigned $CH_{3(ester)}$ carbon chemical shifts (δ , ppm) of the synthesized 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹*H*-pyrazole-1-yl) ethanones have been satisfactorily correlated with Hammett σ , σ^+ and σ_R substituent constants and R parameter. The inductive and field effects of the substituents fail in predicting the regression coefficients (σ : r=0.903, σ^+ : r=0.904, σ_I : r=0.822, σ_R : r=0.905, F: r=0.811, R: r=0.906).

Some of the single correlations of the chemical shifts (δ, ppm) C=O, CH_{3(keto)}, C=N, C₄, C₅, CH₂, C_{α}, C_{β}, OCH₃, C=O_(ester), and CH_{3(ester)} carbons of 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹H-pyrazole-1-yl) ethanones were failed with Hammett substituent constants, F and R

MOCR

parameters. The failure in the correlation was due to the reason stated earlier and it is associated with the resonance - conjugative structure as shown in Figure 2. All correlations gave positive ρ values. This means that the normal substituent effect operates in all systems.

In view of the inability of some of the σ constants to produce individually satisfactory correlation for C=O, CH_{3(keto)}, C=N, CH₂, C_{α}, C_{β}, OCH₃, C=O_(ester), and CH_{3(ester)} carbons, the authors think that, it is worthwhile to seek multiple correlation involving either σ_{I} , σ_{R} or F and R parameters[30]. The formulated multi-correlation equations are given in (23-40).

$$\delta CO_{keto}^{(ppm)} = 167.92(\pm 0.349) + 1.815(\pm 0.689)\sigma_I + 0.425(\pm 0.065)\sigma_R$$

$$(R = 0.964, n = 14, P > 95\%)$$
(23)

$$\delta CO_{keto}^{(ppm)} = 168.00 (\pm 0.317) + 1.788 (\pm 0.558) F + 1.842 (\pm 0.554) R (R = 0.971, n = 14, P > 95\%)$$
(24)

$$\delta CH_{_{3keto}}^{(ppm)} = 23.81(\pm 0.247) + 1.463(\pm 0.487)\sigma_{I} + 0.186(\pm 0.046)\sigma_{R}$$

$$(R = 0.968, \ n = 14, P > \ 95\%)$$

$$(25)$$

$$\delta C H_{_{3keto}}^{(ppm)} = 23.87 (\pm 0.224) + 1.419 (\pm 0.417) F + 1.505 (\pm 0.398) R$$

$$(R = 0.973, n = 14, P > 95\%)$$
(26)

$$\delta CN^{(ppm)} = 157.45 (\pm 0.185) + 1.725 (\pm 0.366) \sigma_I + 0.825 (\pm 0.349) \sigma_R$$

$$(R = 0.986, n = 14, P > 95\%)$$
(27)

$$\delta CN^{(ppm)} = 157.52 (\pm 0.146) \div 1.670 (\pm 0.278) F + 1.084 (\pm 0.0.024) R (R = 0.990, n = 14, P > 95\%)$$
(28)

$$\delta CH_2^{(ppm)} = 71.73 (\pm 0.864) + 2.341 (\pm 1.703) \sigma_I + 1.261 (\pm 0.623) \sigma$$

$$(R = 0.945, \ n = 14, P > 90\%)$$
(29)

$$\delta CH_2^{(ppm)} = 71.92(\pm 0.855) + 1.906(\pm 1.611) F + 1.373(\pm 0.152)R$$

$$(R = 0.940, n = 14, P > 90\%)$$
(30)

$$\delta C_{\alpha}^{(ppm)} = 106.44 (\pm 0.344) + 0.989 (\pm 0.063) \sigma_{I} + 1.932 (\pm 0.644) \sigma_{R}$$

$$(R = 0.942, \ n = 14, P > \ 90\%)$$
(31)

$$\delta C_{\alpha}^{(ppm)} = 106.33 (\pm 0.032) + 1.167 (\pm 0.562) F + 0.131 (\pm 0.050) R (R = 0.951, n = 14, P > 95\%)$$
(32)

$$\delta C_{\beta}^{(ppm)} = 147.89(\pm 0.189) + 1.496(\pm 0.372)\sigma_{I} + 0.514(\pm 0.301)\sigma_{R}$$

$$(R = 0.977, \ n = 14, P > \ 95\%)$$
(33)

$$\delta C_{\beta}^{(ppm)} = 148.01(\pm 1.333) + 0.321(\pm 0.033)F + 3.352(\pm 0.033)R$$

$$(R = 0.976, \ n = 14, P > 95\%)$$
(34)

$$\delta OCH_3^{(ppm)} = 53.23(\pm 0.447) + 1.939(\pm 0.939)\sigma_I + 1.329(\pm 0.813)\sigma_R$$

$$(R = 0.952, \ n = 14, P > 95\%)$$

$$(35)$$

$$\delta OCH_3^{(ppm)} = 53.42 (\pm 0.462) + 1.728 (\pm 0.782) F + 0.336 (\pm 0.081) R (R = 0.951, n = 14, P > 95\%)$$
(36)

$$\delta CO_{ester}^{(ppm)} = 178.44 (\pm 23.211) + 78.135 (\pm 8.257) \sigma_I + 61.935 (\pm 4.373) \sigma_R$$

$$(R = 0.940, n = 14, P > 90\%)$$
(37)

$$\delta CO_{3ester}^{(ppm)} = 178.24 (\pm 23.417) + 22.781 (\pm 4.417) F + 37.073 (\pm 4.271) R$$

$$(R = 0.929, \ n = 14, P > \ 90\%)$$
(38)

$$\delta OCH_3 ester^{(ppm)} = 54.60 (\pm 0.527) + 0.325 (\pm 0.052) \sigma_I + 0.952 (\pm 0.0524) \sigma_R$$

$$(R = 0.930, \ n = 14, P > \ 90\%)$$
(39)

$$\delta OCH_3 ester^{(ppm)} = 54.64 (\pm 0.238) + 0.075 (\pm 0.004) F + 0.638 (\pm 0.002) R$$

$$(R = 0.941, n = 14, P > 90\%)$$

$$(40)$$

4 Conclusions

Totally fourteen ¹*N*-acetyl pyrazolines, 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹*H*-pyrazole-1-yl) ethanones have been synthesised by microwave assisted KF/Al₂O₃ catalyzed solvent-free condensation of 3-(4-hydroxyphenyl)-5-(substituted phenyl)-(4,5-dihydro-¹*H*-pyrazole-1-yl)-ethanones and *E*-methyl-2-[2-(bromo methyl)-phenyl]-3-methoxyacrylate. The yield of the synthesized 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹*H*-pyrazole-1-yl) ethanones is more than 90%. The correlation study of infrared spectral ν C=N and C=O (cm⁻¹) frequencies, NMR chemical shifts (δ , ppm) of CH_{3(keto)}, H₄, H₄', H₅, CH₂, H_{β}, OCH₃, CH_{3(ester)}protons, C=O, CH_{3(keto)}, C=N, CH₂, C_{α}, C_{β}, OCH₃, C=O_(ester), and CH_{3(ester)} carbons of 3-(4- β -methoxyacrylate)-5-(substituted phenyl)-(4,5-dihydro-¹*H*-pyrazole-1-yl) ethanones have been assigned and correlated with Hammett substituent constants and Swain-Lupton's parameters using single and multi-regression analysis. The results of statistical analyses show satisfactory correlation co-efficient in both single and multi-regressions.

References

- P. Descacq, A. Nuhrich, M. Capdepuy and G. Devaux, "Arylpyrazolines nitro furaniques: synthèse et propriétés antibactériennes," European Journal of Medicinal Chemistry, vol. 25, pp.285-290, 1990.
- S. Cihat, T. Ayla, S. Selma and Y. Nuran, "Synthesis of some 1-acetyl-3,5-diaryl-2-pyrazoline derivatives and their antimicrobial activities," Journal of the Indian Chemical Society, vo.67, pp.571-575, 1990.
- N. M. Abunada, H. M. Hassaneen, N. G. Kandile and O. A. Miqdad, "Synthesis and biological activities of some new pyrazoline and pyrrole[3,4-c]pyrazole-4,6-dione derivatives: Reaction of nitrileimines with some dipolaraphiles," Molecules, vol.13, pp.1011-1024, 2008.
- 4. O. Ruhlimaoglu, Z. Ozdemir, and U. Calis, "Synthesis of and pharmacological studies on the antidepressant and anticonvulsant activities of some 1, 3, 4-trisubstituted pyrazolines," Arzneim. Forsch.(Drug Research), vol.55, pp.431-436, 2005.
- S. Kumar, S. Bawa, S. Drabu, R. Kumar, and H. Gupta, "Biological Activities of Pyrazoline Derivatives -A Recent Development," Recent Patents on Anti-Infective Drug Discovery, vol.4, pp. 154-163, 2009.
- S. Sahu, M. Banerjee, A. Samantra, and C. Behera, "Synthesis, analgesic, anti-inflammatory and antimicrobial activities of some novel pyrazoline derivatives," Tropical Journal of Pharmaceutical Research, vol. 7, pp.961-968, 2008.
- 7. S. A. F. Rostom, "Synthesis and in vitro antitumor evaluation of some indeno[1,2-c]pyrazol(in)es substituted with sulfonamide, sulfonylurea(-thiourea) pharmacophores, and some derived thiazole ring systems," Bioorganic and Medicinal Chemistry, vol.14, pp. 6475-6485, 2006.
- 8. A. Solankee, S. Solankee and G. Patel, "Synthesis and antibacterial evaluation of some novel isoxazole and pyrazoline derivatives," Rasayan of Journal, Chemistry, vol. 3, pp. 581-585, 2008.
- A. Mathew, T. L. Mary Sheeja, T. Arun Kumar and K. Radha, "Design, Synthesis and Biological evaluation of Pyrazole analogues of Natural Piperine," Hygeia Journal of Drugs and Medicine, vol. 3, pp. 48-56, 2011.

- F. Chimenti, B. Bizzarri, F. Manna, A. Bolasco, D. Secci, P. Chimenti, A. Granese, D. Rivanera, D. Lilli, M. M. Scaltritoc, and M. I. Brenciagliab, "Synthesis and in vitro selective anti-Helicobacter pyloriactivity of pyrazoline derivatives," Bioorganic & Medicinal Chemistry Letters, vol. 15, pp. 603–607, 2005.
- N. Mishra and D. Sasmal, "Development of selective and reversible pyrazoline based MAO-B inhibitors: Virtual screening, synthesis and biological evaluation," Bioorganic and Medicinal Chemistry Letters, vol. 21, pp. 1969-1973, 2011.
- G. Thirunarayanan and K. G. Sekar, "Preheated fly-ash catalyzed cyclization of chalcones: Synthesis of some substituted pyrazole-1-carbothioamides and spectral correlations in 3-(3,4-dichlorophenyl)-5-(substituted phenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamides," International Letters in Chemistry, Physics and Astronomy, vol. 10, pp.18-34, 2013.
- G. Thirunarayanan and K. G. Sekar, "Synthesis of some substituted pyrazole-1-carbothioamides and spectral correlations in 3-(3,4-dibromophenyl)-5-(substituted phenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamides," Q-Science Connect. 2013. http://dx.doi.org/0.5339/connect.2013.18.
- K. G. Sekar, and Thirunarayanan, "Solvent-free Synthesis and Spectral Studies of Some 9-Anthryl-1H-Pyrazolines," International Journal of Scientific Research in Knowledge, vol. 1, pp. 299-307, 2013.
- S. Sasikala, K. Thirumurthy, P. Mayavel and G. Thirunarayanan, "Eco-friendly synthesis and antimicrobial activities of some 1-phenyl-3-(5-bromothiophen-2-yl)-5-(substituted phenyl)-2-pyrazolines," Organic & Medicinal Chemistry Letters, 2012, doi:10.1186/2191-2858-2-20.
- M. Kidwai and P. Mothrsa, "Neat reaction technology: A green tool," Indian Journal of Chemistry, vol. 45B, pp. 2330-2336, 2006.
- P. C. Lv, H. C. Li, J. Sun, Y. Zhou, and H. L. Zhu, "Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents," Bioorganic & Medicinal Chemistry, vol. 18, pp. 4606-4614, 2010.
- A. Lévai, "Synthesis of chlorinated 3, 5-diaryl-2-pyrazolines by the reaction of chlorochalcones with hydrazines," Arkivoc, vol. 9, pp. 344-352, 2005.
- R. Fazaeli, H. Aliyan, M. Bordbar, and W. Mohammadi, "H3PW12O40: Highly Efficient Catalysts for the Synthesis of Novel 1, 3, 5-Triaryl-2-Pyrazoline Derivatives," The Open Catalysis Journal, vol.3, pp. 79-82, 2010.
- 20. S. P. Sakthinathan, G. Vanangamudi and G. Thirunarayanan, "Synthesis, spectral studies and antimicrobial activities of some 2-naphthyl pyrazoline derivatives," Spectrochimica Acta, part A, vol. 95, pp. 693-700, 2012.
- 21. R. Pal, T. Sarkar, and S. Khasnobis, "Amberlyst-15 in organic synthesis," Arkivoc, vol. 1, pp. 570-609, 2012.
- 22. G. Thirunarayanan, P. Mayavel, K. Thirumurthy, S. Dineshkumar, R. Sasikala, P. Nisha and A. Nithyaranjani, "Eco-friendly synthesis and spectral correlations in some 1-phenyl-3-(5-bromothiophen-2-yl)-5-(substituted phenyl)-2-pyrazolines," European Chemical Bulletin, vol. 2(9), pp. 598-605, 2013.
- L. Pizzuti, L. A. Piovesan, A. F. Flores, F. H. Quina and C. M. P. Pereira, "Environmentally friendly sonocatalysis promoted preparation of 1-thiocarbomyl-3, 5- diaryl-4,5-dihydro-1H-pyrazoles," Ultrasonics Sonochemistry, vol. 16, pp. 728-731, 2009.
- 24. K. Sathiyamoorthi, V. Mala, S. P. Sakthinathan, D. Kamalakkannan, R. Suresh, G. Vanangamudi and G. Thirunarayanan, "Solvent-free synthesis, spectral correlations and antimicrobial activities of some aryl E 2-propen-1-ones," Spectrochimica Acta, Part A, vol.112A, pp.245-256, 2013.
- J. Shorter, "Correlation analysis in organic Chemistry: An introduction to linear free energy relationships," Clarendon Press, London, 1973.
- 26. G. Thirunarayanan, G. Vanangamudi, V. Sathiyendiran and K. Ravi, "Solvent free synthesis, spectral studies and antioxidant activities of some 6-substitued ω-bromo-2-naphthyl ketones and their esters," Indian Journal of Chemistry, vol. 50B(4), pp.593-604, 2011.
- P. L. Zhao, F. Wang, M. Z. Zhang, Z. M. Liu, W. Huang and G. F.Yang, "Synthesis, Fungicidal, and Insecticidal Activities of β-Methoxyacrylate-Containing N-Acetyl Pyrazoline Derivatives," Journal of Agricultural and Food Chemistry, vol. 56, pp.10767-10777, 2008.
- R. Senbagam, R. Vijayakumar, M. Rajarajan, S. Balaji, V. Manikandan, G. Vanangamudi and G. Thirunarayanan, "Synthesis, assessment of substituent effect and antimicrobial activities of (4E)-4-(benzylideneamino)-1, 2-dihydro-2, 3-dimethyl -1-phenylpyrazol-5-one compounds," Karbala International Journal of Modern Science, vol. 2, pp. 56-62, 2016.

- 29. G. Thirunarayanan and K. G. Sekar, "Solvent-free one pot cyclization and acetylation of chalcones: Synthesis of some 1-acetylpyrazolkes and spectral correlations of 1-(3-(3,4-dimethylphenyl)-5-substituted phenyl)-4, 5,dihydro-1H-pyrazole-1-yl)ethanones," Journal of Saudi Chemical Society, vol. 20, pp. 661-672, 2016.
- 30. C. G. Swain and E. C. Lupton, Jr. "Field and resonance components. in substituent effects," Journal of the American Chemical Society, vol.90, pp.4328–4337, 1968.