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Abstract. Herein, we are reporting increased thermal properties and self-sustaining ability of 
polymer compositions with silica. The composite of poly (acrylamide-co-acrylic acid) [P(AM-co-AA)] 
with silica created intermolecular interactions. The formation  of a composite has  confirmed by 
FTIR spectroscopy, DSC, TGA, and FE-SEM analysis. The silica particles were homogeneously 
distributed in the P(AM-co-AA). The incorporation of silica particles gives rise to the enhancement 
of thermal stability due to the strong interactions between silica and poly (acrylamide-co-acrylic acid) 
polymer.  
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1   Introduction 

Polymer composites have been widely studied over a long period of time and over the past few decades, 
organic polymer–inorganic oxide filler composites have replaced a lot of the conventional polymers in 
application fields. They are generally organic polymer composites filled with inorganic fillers. Their 
properties combine the advantages of the inorganic filler material (i. e., rigidity, thermal stability) and 
of the organic polymer (i.e., flexibility, ductility, process ability) [1]. In addition to such 
functionalization, composition can successfully reinforce materials; a characteristic example is natural 
rubbers reinforced by carbon black and silica for practical utilizing as tire materials. 

Although the composites strategy is useful for the design of relatively hard functional materials, it is 
not simple to recognize soft composite materials because of the strong interactions at the interface that 
decrease the polymer chain mobility [2]. A successful way to improve mechanical properties of a polymer 
is to create their composites or blend with other polymers that have better mechanical properties for the 
intended applications [3]. Schmidt et al. synthesised conductive composites of polymer using the 
biologically active polysaccharide hyaluronic acid (HA) as the dopant in order to create biomaterials for 
tissue engineering and wound-healing applications [4]. 

Among inorganic oxide fillers, silica particles have received much attention due to their well-defined 
ordered structure, high surface area, cost-effective production, and the ease of surface modification [5]. 
In the polymer composition with silica particles, this can improve thermal properties and self-sustaining 
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ability under working environmental conditions. The modification of silica particles leads to better 
hydrophobic interactions with the polymer and unusual unique properties when compared with 
unmodified hydrophilic fillers [6, 7]. Porous silica materials with the large specific surface area, high pore 
volume and tunable pore size are of great interest for academia and industry due to their applications in 
adsorption, catalysis [8, 9], separation processes [10], drug, delivery systems [11, 12] and gas storage [13, 
14.] The possibility of using polymer-silica composites to tailor the textural properties of silica could 
potentially be of considerable value for new silica applications within the above mentioned fields of 
interest [15]. The performance of silica materials in many applications requires controlling their 
morphology and the pore structure. The properties of the composite material may be adjusted by 
varying the type of inorganic filler, filler size, filler content and blending methods [16]. In addition, the 
compatibility between the filler surface and the polymer matrix is also an important factor [17]. 

A three-dimensional cross linked system is formed from a hydrophilic polymer, referred to as a 
hydrogels, which swells and absorbs water causing the network to swell in solution [18]. Polymeric 
hydrogels are of great interest for biomaterials applications because of their biocompatibility [19]. These 
are amongst most attractive classes of “soft matters” with several established and many more possible 
applications. On the other hand, swelling is limited to rubber like behaviour due to presence of crosslink 
or strong physical interactions between polymeric chains [20]. 

The motivation of the current research was to use the silica to prepare silica/P(AM-co-AA) composite 
by free radical polymerization. This manuscript focuses on more recent trend in the development of 
silica/polymer composites: materials, synthesis and characterizations of polymer/silica composites. 

2   Experimental 

2.1 Chemicals and Instrumentations 

Acrylamide, tetraethoxysilane (TEOS), ammonia, and ethanol were obtained from Spetrochem Pvt. Ltd., 
Mumbai, India. Acrylic acid and potassium persulphate (KPS) were purchased from S.D. Fine Chem. 
Ltd, Mumbai, India.  

The infrared spectra of the sample were recorded on a Shimadzu FTIR-8400 frequency range from 400 
to 4000cm-1 using KBr flakes. 
The morphology of the dried sample was examined using S-4800 (SEM) JEOL JSM 6360 & JEOL JSM 
5400 in voltage range of 0.5 to 30 kV instrument after coating the sample with gold film. 
Raw materials and polymer composite were analyzed by Differential Scanning Calorimetry (DSC) on 
Perkin elmer DSC 4000 10 ℃/min. in temperature from 0 to 300 ℃ in steam of nitrogen atmosphere. 
Thermal stability was determined by Thermal Gravimetric Analysis (TGA) on Perkin elmer TGA 4000 
10 ℃/min. 

2.2 Preparation of Silica Particles 

Silica particles were prepared by the stober process [21]. In 200 mL beaker tetraethoxysilance (TEOS) 
was dissolved in ethanol. In another 200 mL beaker mixture of ammonia, water and ethanol was 
prepared in 1:1:1 ratio. In this beaker, solution of TEOS was added slowly with constant stirring the 
mixture for 24 hrs. The obtained white precipitate was seapareted by centrifugation the high speed. The 
obtained silica particles were dried at room temperature. 

2.3 Preparation of Polymer Composites 

P(AM-co-AA) hydrogels were prepared by free radical polymerization of acrylamide and acrylic acid in 
water. Acrylamide (5 g) was dissolved in 20 mL of double distilled water in a 250 mL three neck round 
bottom flask equipped with a stirrer, condenser, and thermometer. Acrylic acid (2 mL) was added to the 
reaction mixture and stirred at room temperature for 10 min. Silica particles were added to reaction 
mixture, which was heated at 64℃ with stirring for 30 min. Potassium persulphate (0.2 g) was added as 
a radical initiator into reaction mass for polymerization at constant stirring. The resulting hydrogel was 
cooled at room temperature.  

60 Modern Organic Chemistry Research, Vol. 2, No. 2, May 2017 

MOCR Copyright © 2017 Isaac Scientific Publishing



 

Figure 1. Scheme of P(AM-co-AA)/ silica composite 

3   Results and Discussion 

3.1 FTIR Analysis of Polymer P(AM-co-AA) 

 

Figure 2. FTIR analysis of P(AM-co-AA) polymer 

The infrared spectra of P(AM-co-AA) is given in Fig. 2. The midrange band in the range of 3633-3451 
cm-1 are results due to –NH2 from acrylamide, the presence of water in hydrogel and the acidic –OH of 
polymer. The C-H stretching band is confirmed by presence of band at 2950 cm-1 due to asymmetric 
stretching vibrations of –CH2 groups in polymer. The amide carbonyl is observed at 1683 cm-1, The band 
found in between 800-400 cm-1 is due to bending occurring from NH and OH groups [22]. 

Modern Organic Chemistry Research, Vol. 2, No. 2, May 2017 61

Copyright © 2017 Isaac Scientific Publishing MOCR



 

Figure 3. FTIR analysis of P(AM-co-AA)/silica composites material 

The infrared spectra of silica composites are given in Fig. 3. The midrange bands in the range of 3633-
3451 cm-1 and decreases up to the 2973 cm-1 are due to intermolecular hydrogen bonding between 
polymer and silica. The silica particles are confirmed by presence of band at 2343 cm-1. The amide 
carbonyl is seen at 1746 cm-1. The bands found between 800-600 cm-1 are due to bending occurring from 
NH and OH groups [23]. 

3.2 Thermal Stability of Polymeric Compounds 

(a) 
(b) 

Figure 4. Thermal gravimetric analysis of (a) P(AM-co-AA) polymer (b) P(AM-co-AA) silica composites material 

Thermal stability of P(AM-co-AA) and polymer silica composite were studied by thermogravimetric 
analysis (TGA) and thermograms are depicted in Fig. 4. The theromogram of (a) P(AM-co-AA) 
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exhibited the first step weight loss as a consequence of moisture present. The second step observed in 
the range of 200 to 350 ℃ may be due to the release of ammonia by imidazation or CH4 in the polymer 
with weight loss 48.3 %. The third step mass loss seen in between 350 to 490 ℃ is concerned with the 
carboxylate group present in polymer chain with mass loss 29.11 %. The polymer backbone degradation 
of P(AM-co-AA) occurred in fourth step which is in the range of 490 to 600 ℃ [22]. Figure (b) of 
polymer silica composites shows three stages of degradation, the first degradation starts from 20 to 
320 ℃ due to moisture, approximately 27.632 % weight loss. The second degradation occurs between 
320 to 490 ℃ due to the breaking of polymer chain with 37.071 % weight loss. The final degradation 
starts from 490 to 720 ℃ due to degradation and char of composites and a 30.261 % weight loss. It 
means the formation of the polymer composite has changes from 620 to 750 ℃ relative to the thermal 
properties of polymer [24]. 

3.3 Differential Scanning Calorimetric Analysis 

 

Figure 5. Differential scanning calorimeter of P(AM-co-AA)[RP] and P(AM-co-AA)/ silica composites (PSI) 

The DSC curves for P(AM-co-AA), and P(AM-co-AA)/silica composite are represented in Fig. 5 
under the temperature range of -50 ℃ to 350 ℃ in a steam of nitrogen on thermal analysis. From Fig. 5 
we concluded that the P(AM-co-AA) shows the glass transition temperature at 75 ℃ and the curve of 
P(AM-co-AA) showing a characteristic endothermic peak at 220 ℃ is corresponding to its decomposition 
while in case of the silica composite the glass transition temperature is at 70 ℃ and a broad peak is 
converted into a sharp endothermic peak at 230 ℃. This thermal property is due to intermolecular 
interactions and supports the formation of polymer composite [25]. 

3.4 Surface Characterization 

One of the most important properties that must be considered when studying a hydrogel is its 
microstructure morphology. Fig. 6(a) shows the silica particles having the spherical shape and is in 
aggregation form. Figure (b) shows the secondary electron images of P(AM-co-AA) in the water-
saturated state. This observation verified that the synthesized polymer structure of P(AM-co-AA) has a 
porous structure with effective pore sizes in the 150- 250 nm range. It is proposed that these pores are 
region of water permeation and interactions sites between external stimuli and the hydrophilic groups of 
the hydrogel. These pores are produced from water evaporation at the time of hydrogel synthesis. The 
morphology of the composite was studied by scanning electron microscopy in Fig. 6(c). From this image 
it can be seen that composites have smooth surfaces and the micrographs show the porous nature with a 
very small amount of silica particle composited in its pore and surface of the sample[26]. 
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Figure 6. Morphology of a) Silica particles b) P(AM-co-AA) polymer c) P(AM-co-AA) silica composites 

3.5 Elemental Analysis 

        

(a)                                                    (b) 

Figure 7. EDAX analysis of polymeric compounds 

From the EDXS analysis in Fig. 7(a), it is clear that the synthesized polymer is non-conducting and 
contains the carbon, oxygen and nitrogen as the major elements in the composition proving that the 
synthesized polymer is P(AM-co-AA) while EDXS analysis in Fig. 7(b), indicates carbon, oxygen, 
nitrogen and silica as the composite material in the synthesized polymer composite [24,25,26,27].  

4   Conclusion 

Herein we demonstrate the synthesis of a composite polymer where the polymer chains are not directly 
bonded but rather mechanically interlocked to the silica surfaces. The silica particles were 
homogeneously distributed in the P(AM-co-AA). For obtaining the optimum properties for the 
composites, requires an excellent homogeneous dispersion of the fillers i.e silica, as the tendency of the 
silica particles to agglomerate can seriously affect the achievable properties. Therefore, to provide a 
strong interfacial interaction between the inorganic particles and the polymer matrix, silica fillers must 
have suitably modified surfaces. 
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