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Abstract. Neuroimaging genetics has gained more and more attention on account of detecting the 
linkage between the brain imaging phenotypes (i.e., regional volumetric measures) and the genetic 
variants (i.e., Single Nucleotide Polymorphism (SNP) in Alzheimer’s disease (AD)). To overcome the 
problem of sparse multi-view canonical correlation (SMCCA) ‘unfair combination of pairwise 
convariance’, introducing adaptive weights when combining pairwise covariances, a novel formulation 
of SMCCA, named adaptive SMCCA. In this paper, we integrate multi-modal genomic data from 
postmortem AD brain and proposed a hyper-graph based sparse multi-view canonical correlation 
analysis (HGSMCCA) method to extract the most correlated multi-modal biomarkers. Specifically, we 
utilized the adaptive sparse multi-view canonical correlation analysis (AdsSMCCA) framework, 
consider the benefit of hyper-graph-based regularization term into consideration that will contribute to 
the selection of more discriminative biomarkers. We propose a hyper-graph optimization strategy based 
on the adaptive SMCCA model, and we apply it to neuroimaging genetics data. All these results 
demonstrate the capability of HGSMCCA in identifying diagnostically genotype-phenotype patterns. 

Keywords: neuroimaging genetics, hyper-graph, Alzheimer’s disease, sparse multi-view canonical 
correlation analysis. 

1   Introduction 

Alzheimer’s disease (AD) is the most common form of dementia in the elderly that is characterized by the 
progressive loss of neurons and their connections. Because of the dramatic increase in the prevalence of AD, 
the identification of effective biomarkers for the early diagnosis and treatment of AD in individuals at high 
risk to develop the disease is crucial [1]. Neuroimaging techniques including Magnetic Resonance Imaging 
(MRI) and Positron Emission Tomography (PET) have been widely used to investigate the 
neurophysiological characteristics of AD [2]. Neuroimaging genetics is a hot research field for identifying 
associations between imaging results and genetic variables. Genetic variation affects phenotypes such as 
brain function and structure. Investigating the relationship between imaging and genetic variables 
provides a new perspective for a better understanding of mechanisms in the brain [3]. 

Structured sparse canonical correlation analysis (SCCA) models have been widely used to identify 
neuroimaging genetic associations. These models either use group lasso or graph-guided fused lasso to 
conduct feature selection and feature grouping simultaneously [4]. Nevertheless, existing SCCA algorithms 
use the soft threshold strategy for solving the lasso regularization terms, which assumes the independent 
structure of data features. Meanwhile, this method only contrite on finding the best linear transformations 
for imaging and genetic features, respectively.   

Recently, several studies combined multiple data types for the AD disease mechanism study. For 
instance, Bihmeyer et al [5][6] integrated microarray and RNA-seq data to identify important genes in the 
pathophysiology of AD. Jiang et al [7][8] systematically analyzed AD-related mRNA and miRNA 
expression profiles to identify active transcription factor and miRNA regulatory pathways in AD. 
Humphries et al [9][10] proposed an integrative method that combined the transcriptome and DNA 
methylation data to identify gene networks specific to late-onset Alzheimer's disease. All the above 
methods can disclosure the hidden mechanism of AD that cannot be fulfilled using a single type of data. 
But they ignore diagnostic biomarkers identification for disease status and progression stages [11-13]. 
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To analyze multi-modal data sets, feature selection is the key step in biomarker identification. For 
instance, Jie et al [14] proposed a multi-modal feature selection method that used a multi-task learning 
framework to preserve the intrinsic relatedness among multiple modalities of data. Zu et al [15] constructed 
a label aligned multi-task learning framework that can uncover inherent structures among multi-modal 
data. Besides, Lei [16] proposed a canonical correlation analysis (CCA) based method to fuse multi-modal 
data for the diagnosis of AD/MCI patients. However, such a pairwise relationship does not reflect the 
complex connections of different subjects in real applications. Intuitively, the higher-order relationships 
among subjects can provide useful information to improve the machine learning performance of AD/MCI 
diagnosis tasks [17]. 

To bridge this gap, our goal is to apply sparse multi-view CCA (SMCCA) machine learning algorithms 
on multi-modal AD data to identify biomarkers for highly accurate individual classification of AD patients 
from normal age-matched people [18]. In this paper, we constructed a hypergraph in each modality and 
introduced a hyper-graph-based Laplacian regularization term to capture the high-order relationships 
among different subjects. We adopt a hyper-graph optimization strategy based on the adaptive SMCCA 
model [19]. To evaluate the effectiveness of the proposed method, we perform the classification on the 
dataset derived from ADNI. We show that our method outperforms competing SCCA models on both 
synthetic and real data. In particular, our method identifies stronger canonical correlations and better 
canonical loading patterns, demonstrating its promising capability in revealing biologically meaningful 
neuroimaging genetics associations. 

2   Methodology 

In this paper, we denote scalars as italic letters. The Euclidean norm of a vector u is denoted as ||u||. 
𝑋𝑋𝐺𝐺 ∈ 𝑅𝑅𝑁𝑁×𝑝𝑝,𝑋𝑋𝐷𝐷 ∈ 𝑅𝑅𝑁𝑁×𝑞𝑞 ,𝑋𝑋𝑀𝑀 ∈ 𝑅𝑅𝑁𝑁×𝑟𝑟  denote the SNP data, MRI, and PET data, where N denotes the 
number of samples, p, q, r corresponding to the dimensionalities for each modality of data. Then, the 
objective function of the adaptive SMCCA model can be formulated as follows: 

 (𝑢𝑢1,𝑢𝑢2,⋯ ,𝑢𝑢𝑚𝑚) = arg𝑚𝑚𝑚𝑚𝑚𝑚
𝑢𝑢1,𝑢𝑢2,⋯,𝑢𝑢𝑚𝑚

∑  𝑖𝑖<𝑗𝑗 Λ𝑖𝑖𝑗𝑗𝑢𝑢𝑖𝑖𝑡𝑡𝑋𝑋𝑖𝑖𝑡𝑡𝑋𝑋𝑗𝑗𝑢𝑢𝑗𝑗   s.t.  𝑢𝑢𝑖𝑖𝑡𝑡𝑢𝑢𝑖𝑖 ≤ 1,𝑃𝑃𝑖𝑖(𝑢𝑢𝑖𝑖) ≤ 𝜆𝜆𝑖𝑖 ,∀𝑖𝑖 (1) 

where Λij is a weight term used to adaptively fit the varying scales of different pairwise covariances during 
each iteration step. 

 

Figure 1. The flowchart of the HGSMCCA method. 
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2.1   Overview of the HGSMCCA Workflow 

Figure 1. illustrates the flowchart of the proposed HGSMCCA method, which includes four steps: 1) for the 
multi-modal data, filter and preselect the features that are highly correlated to AD status; 2) construct the 
hyper-graph for each data modality that can capture the high-order correlation among different subjects; 3) 
based on the derived hypergraphs, a novel HGSMCCA algorithm is used to further select the informative 
features from the pre-selected features in step 1; and 4) the support vector machine (SVM) classifier is 
adopted for the diagnosis of AD (or MCI) patients from the normal control subjects. 

2.2   Hyper-graph Based Sparse Multi-view Canonical Correlation Analysis (HGSMCCA) 

In the AdaSMCCA model, we only consider the inter-correlations among multi-modal data but ignore the 
mutual dependency among different subjects, which may result in large deviations even for very similar 
data after projecting to the common representation Q (shown in Eq. (1)). Different from the traditional 
graph, a hyper-graph can connect more than two vertices by a hyperdge. Hence, we can model complex 
relationships (i.e., high-order relationships) among samples of our interest using hyper-graph. 

Mathematically, a hyper-graph can be represented by G (V, E, a), where V = {v1, v2...vn}, E = {e1, 
e2....eNe} denotes the set of vertices and hyper-edges respectively [20], and a ∈ RNE is the weights for the 
hyper-edges. Each hyper-graph ei (i=1, 2, ...NE) is assigned a weight a (ei). In hyper-graphs, a hyper-edge 
can connect more than two vertices, through which high-order relationships can be modeled explicitly. We 
use the incidence matrix, i.e., H ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁𝐸𝐸 to represent the relationships between hyper-edges and vertices, 
an entry H (vi, ej) is set to 1 if the hyperedge ej contains vertex vj, and 0 otherwise. Based on this definition 
of H, the degree of each vertex and hyper-edge are denoted as: 

 𝒅𝒅(𝒗𝒗𝒊𝒊) = ∑  𝒆𝒆𝒋𝒋∈𝑬𝑬 𝒂𝒂�𝒆𝒆𝒋𝒋�𝑯𝑯�𝒗𝒗𝒊𝒊, 𝒆𝒆𝒋𝒋� (2) 

 𝜺𝜺�𝒆𝒆𝒋𝒋� = ∑  𝒗𝒗𝒊𝒊∈𝑽𝑽 𝑯𝑯�𝒗𝒗𝒊𝒊, 𝒆𝒆𝒋𝒋� (3) 

Suppose Dv and DE represent the diagonal matrices containing the vertex degrees and the hyperedge 
degrees, respectively. Denote 𝐴𝐴 ∈ 𝑅𝑅𝑁𝑁𝐸𝐸×𝑁𝑁𝐸𝐸 as the diagonal matrix of hyper-edge weights with the diagonal 
element 𝐴𝐴𝑖𝑖,𝑖𝑖 = 𝑚𝑚(𝑒𝑒𝑖𝑖). In order to capture the high-order correlation among different subjects, we follow the 
method in [42] to define the hyper-graph Laplacian matrix LH as following: 

 𝐿𝐿𝐻𝐻 = 𝐼𝐼 − ∅ (4) 

where 𝐼𝐼 is the identity matrix and ∅ = 𝐷𝐷𝑉𝑉
−12𝐻𝐻𝐴𝐴𝐷𝐷𝐸𝐸−1𝐻𝐻𝑇𝑇𝐷𝐷𝑉𝑉

−12. As can be seen from Eq. (2) and Eq. (3), the 
most important step for hyper-graph learning is to construct the hyper-graph from the input data. Here, 
we adopt the K nearest neighbor (KNN) strategy to generate the hyper-graph [19-21]. 

Based on the hyper-graph Laplacian matrix (shown in Eq. (4)), we define the objective function of the 
hyper-graph based sparse multi-view canonical correlation analysis method as 

𝑚𝑚𝑖𝑖𝑚𝑚
𝑤𝑤𝑖𝑖,𝑄𝑄

 
1
𝑁𝑁

�  
𝑖𝑖∈{𝐺𝐺,𝐷𝐷,𝑀𝑀}

𝑋𝑋𝑖𝑖𝑤𝑤𝑖𝑖 − 𝑌𝑌22 + 𝛼𝛼 �  
𝑖𝑖∈{𝐺𝐺,𝐷𝐷,𝑀𝑀}

𝑋𝑋𝑖𝑖𝑤𝑤𝑖𝑖 − 𝑄𝑄22 + 𝛽𝛽 �  
𝑖𝑖∈{𝐺𝐺,𝐷𝐷,𝑀𝑀}

𝑤𝑤𝑖𝑖𝑇𝑇𝑋𝑋𝑖𝑖𝑇𝑇 

 𝐿𝐿𝑖𝑖𝐻𝐻𝑋𝑋𝑖𝑖𝑤𝑤𝑖𝑖 + ∑  𝑖𝑖∈{𝐺𝐺,𝐷𝐷,𝑀𝑀} 𝑟𝑟𝑖𝑖𝑤𝑤𝑖𝑖1 (5) 

The first term corresponds to the linear discriminant function for each data modality, and Y = [y1, 
y2, ...yN]T is the label vector for the N subjects, and yi = 1 or -1 indicates the disease case or control normal 
[22]. Li

H in the third term represents the hyper-graph Laplacian matrix for modality i. In comparison to the 
adaptive SMCCA model, our proposed HGSMCCA model not only incorporates correlations among 
multi-modal data, but also preserves the high-order structure information in each modality by adding 
hyper-graph regularization terms, which can generate more discriminant features for the diagnosis of AD 
disease. 
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2.3   Optimization 

The objective function in Eq. (5) is not jointly convex with respect to wi and Q. However, it is convex with 
respect to wi when Q is fixed, and also convex with respect to Q given a fixed wi. In this study, we adopt an 
alternating optimization algorithm to solve the problem in (5). Specifically, we first fix wi, i ∈ {G, D, M}, 
then the optimization problem for Q is: 

 𝑚𝑚𝑖𝑖𝑚𝑚
𝑄𝑄
 ∑  𝑖𝑖∈{𝐺𝐺,𝐷𝐷,𝑀𝑀} ∥∥𝑋𝑋𝑖𝑖𝑤𝑤𝑖𝑖 − 𝑄𝑄22∥∥ (6) 

which has a closed form solution: 

 𝑄𝑄 = 1
3
∑  𝑖𝑖∈{𝐺𝐺,𝐷𝐷,𝑀𝑀} 𝑋𝑋𝑖𝑖𝑤𝑤𝑖𝑖 (7) 

On the other hand, if other variables are fixed, the optimization problem for each wi can be formulated as: 

 𝑚𝑚𝑖𝑖𝑚𝑚
𝑤𝑤𝑖𝑖

  1
𝑁𝑁
∥∥𝑋𝑋𝑖𝑖𝑤𝑤𝑖𝑖 − 𝑌𝑌∥∥2

2 + 𝛼𝛼∥∥𝑋𝑋𝑖𝑖𝑤𝑤𝑖𝑖 − 𝑄𝑄∥∥2
2 + 𝛽𝛽𝑤𝑤𝑖𝑖𝑇𝑇𝑋𝑋𝑖𝑖𝑇𝑇𝐿𝐿𝑖𝑖𝐻𝐻𝑋𝑋𝑖𝑖𝑤𝑤𝑖𝑖 + 𝑟𝑟𝑖𝑖∥∥𝑤𝑤𝑖𝑖∥∥1 (8) 

Since the L1-norm is non-differentiable at zero, a smooth approximation is estimated for L1 term by 
including an extremely small value. Then, we can approximate 𝑟𝑟𝑖𝑖∥∥𝑤𝑤𝑖𝑖∥∥1 by 

 ∥∥𝑤𝑤𝑖𝑖∥∥1 ≈ ∑  𝑑𝑑𝑖𝑖
𝑗𝑗=1

��𝑤𝑤𝑖𝑖
𝑗𝑗�
2

+ 𝜖𝜖
2

 (9) 

Here, Di is a diagonal matrix with the j-th element denoted as 1
2

��𝑤𝑤𝑖𝑖
1�
2
+𝜖𝜖

. Then, by taking the derivative 

of Eq. (8) with respect to wi and let it be zero, we can obtain: 

 2
𝑁𝑁

(𝑋𝑋𝑖𝑖)𝑇𝑇(𝑋𝑋𝑖𝑖𝑤𝑤𝑖𝑖 − 𝑌𝑌) + 2𝛼𝛼(𝑋𝑋𝑖𝑖)𝑇𝑇(𝑋𝑋𝑖𝑖𝑤𝑤𝑖𝑖 − 𝑄𝑄) + 2𝛽𝛽𝑋𝑋𝑖𝑖𝑇𝑇𝐿𝐿𝑖𝑖𝐻𝐻𝑋𝑋𝑖𝑖𝑤𝑤𝑖𝑖 + 𝑟𝑟𝑖𝑖𝐷𝐷𝑖𝑖𝑤𝑤𝑖𝑖 = 0 (10) 

Then, we can derive 

 𝑤𝑤𝑖𝑖 = ��𝛼𝛼 + 1
𝑁𝑁
� 𝑋𝑋𝑖𝑖𝑇𝑇𝑋𝑋𝑖𝑖 + 𝛽𝛽𝑋𝑋𝑖𝑖𝑇𝑇𝐿𝐿𝑖𝑖𝐻𝐻𝑋𝑋𝑖𝑖 + 𝑟𝑟𝑖𝑖

2
𝐷𝐷𝑖𝑖�

−1
�𝛼𝛼𝑋𝑋𝑖𝑖𝑇𝑇𝑄𝑄 + 1

𝑁𝑁
𝑋𝑋𝑖𝑖𝑇𝑇𝑌𝑌� (11) 

In our experiments, the iterative number is set as 10. 

3   Results 

3.1   Subjects and Neuroimage Preprocessing 

Table 1. Demographic and clinical information for the participants in this study 

Subjects CN MCI AD 
Num 121 213 87 
Gender (M/F, %) 52/48 55/45 53/47 
Age (mean±std) 77.2±5.3 73.8±7.3 74±7.5 

CN = Cognitive Normal, MCI = Mild Cognitive Impairment, AD = Alzheimer’s disease 
 
In this study, we select 421 subjects from the ADNI cohort (www.adni-info.org) with complete MRI and 
PET data at baseline scan, including 121 CN (Control Normal), 213 MCI (Mild Cognitive Impairment), 
and 87 AD (Alzheimer’s Disease). In our experiments, we used ROI-based features from both MRI and 
PET images (i.e., M=2 in our study). Then, we further processed the MR images using a standard pipeline 
including the following steps: (1) intensity inhomogeneity correction, (2) brain extraction, (3) cerebellum 
removal, (4) tissues segmentation, and (5) template registration. After that, the processed MR images were 
divided into 116 pre-defined ROIs, and the gray matter volumes in these ROIs were computed as MRI 
features. For PET data, we aligned the PET images to their corresponding MR images by using affine 
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registration and calculated the average intensity value of each ROI as PET features. Thus, we have 116 
ROI-based features from both the MRI and PET data, respectively [23-25]. 

For the genotyping data, we included 85 SNP markers within the APOE gene, including the APOE e4 
SNP rs429358 (i.e. the best-know AD genetic risk factor). We aim to evaluate the associations between the 
amyloid data and the APOE SNP data using the proposed method. 

3.2   Identification of Top Selected Neuroimaging Genetic Markers 

In our experiment, a 5-fold cross-validation strategy was adopted to evaluate the effectiveness of our 
proposed method. As for parameters of regularization, we determined their values by nested 5-fold 
cross-validation on the training set. It was to fine the parameters (𝜆𝜆1=1, 𝜆𝜆2=1 and β= 0.1 in Eq.(5)). 

Table 2 presents the top ten brain imaging ROIs identified by the averaged canonical weights. In this 
table, the first column exhibits the name of the SNP data, the second column showed the name of the brain 
region. 

Table 2. Top ten brain ROIs and genetics selected by integrated canonical weights 

SNP Brain Region 
rs11668327 
rs34095326 
rs283815 
rs118170342 
rs112019714 
rs3925681 
rs75687619 
rs79398853 
rs115881343 
rs76366838 

Occipital_Sup_Right 
Parietal_Sup_Left 
Insula_Right 
Cingulum_Ant_Right 
Precuneus_Left 
Cerebelum_7b_Left 
ParaHippocampal_Left 
Cerebelum_8_Left 
Parietal_Sup_Right 
Temporal_Inf_Right 

 
Based on the top ten selected SNPs and brain ROIs, Figure 2 shows the heat map of pairwise correlations 
of every brain ROI-SNP pair. Interestingly, we notice that rs283815 has a strong correlation with the 
Cerebellum region, it may provide important information for AD therapy. 

 

Figure 2. Heat map of brain ROI-SNP associations of top selected markers. 
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4   Discussion 

4.1   Results on Synthetic Data 

We generate data sets with different properties in this simulation study to access the performance of our 
model in Figure 3. 

 

Figure 3. Canonical weights estimated on synthetic data. The first row is the ground truth, and each remaining row 
corresponds to an SCCA method: (1) unAdaSMCCA, (2) AdaSMCCA, and (3) HGSMCCA. For each method, the 
estimated weights of u are shown on the left panel, v are shown in the middle, and those of w are shown on the right. 
In each subfigure, the vertical axis represents the indices of each u (left panel), v (middle panel), or w (right panel). 

This demonstrates that HGSMCCA can find the combination of the optimal weight that best reflects 
the original data importance. The difference of performance is more significant at lower noise levels 
compared to higher noise levels [26]. 

4.2   Classification Performance Comparisons among Different Methods 

In this section, we compared the diagnosis power of the proposed HGSMCCA with the following 
algorithms on both AD vs CN and MCI vs CN tasks. 1) unAdaSMCCA: weighted SMCCA model of 
coefficients are fixed. 2) AdaSMCCA: adaptive adjust the weight coefficients on pairwise covariances. 3) 
HGSMCCA: Hyper-graphed regularization on the adaptive SMCCA model. For the proposed and all the 
comparing methods, the SVM classifier with RBF kernel is adopted for the classification task on the 
selected features [27-29]. The results for different methods are shown in Fig. 4. 
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Figure 4. The results of AD vs CN and MCI vs CN tasks with three different feature selection methods. 

For MCI vs CN classification, our model achieves 68.9% in terms of testing classification outperformance 
than adaptive SMCCA (AdaSMCCA) model. 

Besides, the performance on each dataset is assessed with the correlation coefficient (CC) between actual 
and predicted response value, which is widely used in measuring performances of regression and association 
analysis [30]. The results of CC among the 5-fold training and testing data are shown in Table 2. 

Table 3. Performance comparison of real data. Averaged training and testing correlation coefficients by 50 times 
5-fold cross-validation 

Method Training Results Testing Results 
unAdaSMCCA 0.45±0.02 0.35±0.08 
AdaSMCCA 0.44±0.02 0.42±0.07 
HGSMCCA 0.47±0.02 0.48±0.07 

 
As shown in Eq. (5), our HGSMCCA model uses the least square loss to calculate the empirical risk in 

the training dataset. It is obvious that the objective function (Eq. (5)) of the HGSMCCA is bi-convex 
concerning wi and Q. Hence, we use an alternative optimization algorithm to solve the convergence 
problem, which can theoretically guarantee its convergence to the optimal solution. 

5   Conclusion 

In this paper, the HGSMCCA framework was successfully applied for neuroimaging genetic study on a 
candidate gene set for the diagnosis of Alzheimer’s disease. This model is within generalized sparse 
canonical correlation analysis, but we extended it by introducing a hyper-graph-based regularization term 
to capture the high-order correlation among different subjects. Different from the existing multi-modal 
learning algorithms, HGSMCCA can incorporate the distribution knowledge of multi-modal data to find 
more discriminant features with biological meanings. The experimental results demonstrate that it 
produced much cleaner patterns than competing methods. By discovering a strong association between the 
APOE SNP data and the amyloid accumulation data in an AD study, for instance, we observe that 
rs283825 gene loci are bound up with Cerebellum by our experimental result, demonstrating that itself as 
a promising structured SCCA method in identifying meaningful bi-multivariate associations in brain 
imaging genetics studies. The classification results on ADNI datasets demonstrated that HGSMCCA can 
achieve significantly better classification performance for the diagnosis of AD and MCI than the currently 
available methods that also handle multi-modal genomic data. In the future, we will explore potentially 
more accurate loss function to further improve the AD classification performance. 
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