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Abstract Network data have become very popular with the growth of technologies and social
applications such as Twitter and Facebook. However, few visualization tools have been created for
exploring large-scale networks. We propose a simple and quick procedure to explore a network in
this study. The algorithm changes the edge representation based on the complement of a simple
graph and the partition method of vertex coloring. Furthermore, the colors provide additional
information on top of the partitions. Our proposed method is demonstrated in some famous networks.
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1 Introduction

Graph theory has been verified as a useful approach to explain complex networks. For example, Erdős and
Rényi [1] first provided Poisson random model to explain the relation in a network. Watts and Strogatz
[2] used a small-world model to describe the dynamic network system. Barabási and Albert [3] provided
a scale-free model to explain the expanded connectivity of networks. There have been huge amount of
studies and applications since these models were proposed.

It is difficult to glimpse structures of large-size networks due to their network complexities. Although
many useful R-, Python- and C-based softwares such as Cytoscape [4], Gephi [5], and igraph [6] were
developed to visualize and analyze network data, many network features were still hindered inside
their complicated structures. Few studies proposed simple and efficient methods to visualize networks.
Fruchterman and Reingold [7] provided some useful methods to embed proper vertex locations and to
make visualization easier. However, once a network is big, the analysis becomes a time-consuming task
and the network features are still difficult to clearly visualize.

Among complicated network patterns, recent researches have focused on exploring network patterns by
graph partition and network communities. Graph partition is an important issue in network recognition.
The main issue of graph partition is how to divide a graph into subgraphs so that the number of
edges connecting different subgraphs is minimized. For example, Karypis and Kumar [8] provided a
multilevel partition algorithm by considering the coarsening and uncoarsening procedures. Arora et al. [9]
developed a O(

√
logn)-approximation algorithm that can quickly partition a graph into two parts by a

l22-representation approach. Similar but not exactly equivalent to a graph partition problem that finds
the minimum number of cut, a community detection problem focuses on finding subgraphs so that each
subgraph is densely connected. Given the reachability of community and the geodesic distance among
community members, Wasserman and Faust [10] defined two important quantities: (1) the n−clique is
a maximal subgraph in which the largest geodesic distance between any two nodes is no greater than
n, and (2) the n−club restricts the geodesic distance within the subgraph to be no greater than n.
These n−cliques and n−clubs are possible communities under a weaker definition. Furthermore, the
modularity-based method [11] considered a modularity measure to evaluate the similarity of groups.
A spectral optimization method is used to classify network communities. Bickel and Chen [12] further
investigated the theoretical properties of the modularity measure. Bayesian models, which were developed
by Handcock et al. [13] and Heard et al. [14], deduced network properties and assigned cluster labels to
vertices by posterior samples. Readers who are interested in other community detection approaches and
definitions can refer to Wasserman and Faust [10] and Tang and Liu [15].
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Although these models and methodologies are helpful in realizing the network patterns, they are
commonly limited by their computational efficiencies. In specific, these methodologies might not be helpful
and informative if one needs to quickly characterize a complex network within a limited amount of time.
For the visualization purpose, an initial step to understand a network is still by raw visual recognitions.
In addition, it is common among traditional approaches that they use geodesic distances between pairs of
vertices in a network. If we want to quickly glimpse structures of a network according to the interactive
distances among vertices, it is essential to develop a simple representation to summarize a network.

In general, we want to construct an algorithm to achieve the following goals:

– In terms of computing efficiency, the algorithm can quickly visualize and explore a network.
– In terms of graph partition, the algorithm can label vertices in a network.
– In terms of cluster pattern visualization, same labels are assigned to close vertices.
– In terms of extended information, the proposed approach can provide additional information on top

of network partition.

In order to achieve the above goals, we propose a popular but old-school approach, graph coloring, to
visualize and to explore networks in a simple way. Graph coloring is one of the most useful tools developed
in graph theory. It originally arose from the four-colors problem and has been widely used in other fields
such as time tabling and scheduling, register allocation, printed circulated board testing, and so on [16].
In operation research, many researches used this approach to deal with scheduling problems and to make
decisions [17, 18]. In compiler optimization, graph coloring is an important tool that used for solving
the register allocation problem [19, 20]. The original purpose of graph coloring is to find the minimum
chromatic number for labeling a graph. This leads to the partition of a graph into small groups when each
group has good properties such as n−cliques or n−clubs (for recognizing partition and cluster patterns).

Although Graph coloring is a promising approach to feature a network, it suffers some difficulties
when applying to network visualization. One of the most difficulties is the meaning of labels of graph
coloring. The most important and fundamental property of the graph coloring is “two adjacent vertices
must label different colors”. The opposite side of this property is “two vertices with the SAME color must
be NOT adjacent”. Suppose a studied graph is denoted as G. The graph coloring technique on G can
shed the light on the dependence of cliques, i.e., the clique members must have different colors. On the
other hand, we consider to color the complement of a graph, G, where two vertices of G are connected if
and only if they are not connected in G. Based on the above “opposite” property, two vertices with the
SAME color must be NOT adjacent on the colored G. Interestingly, this means that the vertices with the
same colors are adjacent on the original graph G. Thus, the colors of G can be the partition labels. Based
on this idea, we can apply the graph coloring technique to partition a network. In this study, we propose
the greedy vertex coloring approach for coloring a graph. The greedy vertex coloring approach has been
verified to run O(n+m) time [21], and this running time is efficient and acceptable in the case of a large
scale network. Thus, the graph coloring is a good approach to achieve our goals.

The remaining part of this paper is organized as follows. First, we introduce some preliminary concepts
of graph theory and the basic algorithm for coloring in section 2. In section 3, we consider the complements
of different edge representations for partitions by graph coloring, and then we use the Karate network
[22] to demonstrate our proposed method with an emphasize on aspects such as labeling the complement
results, the representation of partitions, and statistics of labels and edges. Section 4 shows the feasibility
and efficiency of our proposed approach using other famous networks. The last section provides the
discussion and the final conclusion of the paper.

2 Preliminary Definitions and Graph Coloring

In this study, we focus on the undirected network and vertex coloring only. Since an undirected network
is simpler to visualize than a directed network, we can directly see the patterns via graph coloring.

2.1 Preliminary Definitions

A simple graph is an ordered pair G = (V,E), where V = {v1, . . . , vn} is a set of vertices and E =
{e1, . . . , em} is a set of edges in which each edge is denoted as (vi, vj). In practice, each edge is denoted as
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(vi, vj), where the vertices vi and vj are known as the endpoints of the corresponding edge. Additionally,
they are said to be adjacent to each other, and are also called neighbors to each other. The adjacency
matrix of G is an n by n square matrix with entries aij = 1 if vi and vj are adjacent and aij = 0 otherwise.
The degree of a vertex v is the number of neighbors of v. A u-v path is a sequence of distinct vertices
{u = v0, v1, . . . , vp−1, vp = v}, and any two consecutive vertices are joined by an edge. The shortest path
from u to v is the u-v path containing minimum number of edges among all paths from u to v, and the
distance between two vertices is the number of edges in the shortest path from u to v, denoted as dG(u, v).
A graph is connected if it has at least one u-v path whenever u, v ∈ V .

A colored graph is a graph in which each vertex is assigned to a color. In this study, we use the proper
vertex coloring, namely two vertices are assigned distinct colors if they are adjacent. The chromatic
number of a graph G, denoted as χ(G), is the least number of distinct colors for properly coloring G. The
complement or inverse of a simple graph G, denoted as G, s a graph with the same vertex set of G and
any two distinct vertices of G are adjacent under the circumstance that they are not adjacent in G.

2.2 Greedy Coloring

Graph coloring is an approach in graph theory for labeling a graph. This approach uses “colors” to
assign labels to a graph subject to certain constraints. This study only considers the vertex coloring as
a way of coloring the vertices of a graph so that no two adjacent vertices share the same color. There
are many different algorithms to color a graph [23, 24, 25]. Some considered to evenly assign the colors
while others considered to sequentially assign the smallest unlabeled colors that are not assigned to the
current neighbors. We called the later methods as greedy coloring. Since graph coloring is a NP-complete
problem, most of these algorithm cannot guarantee to provide the least number of colors for graph
coloring. However, the greedy algorithms can provide a quick procedure to assign colors. We refer the
readers to Kosowski and Manuszewski [21] for the details of the properties of graph coloring and some
other coloring techniques.

Given a graph G = (V,E), let us define the neighborhood of ν, denoted as NG(ν), as a neighbor
set of vertices adjacent to ν where ν can be a single vertex or a set of vertices. The greedy algorithm
is performed in the following procedures (Algorithm 1). According to the algorithm, each color can be
indexed by a positive integer, and each uncolored vertex is labeled as 0. In general, the greedy coloring
assigns the smallest proper integer to an uncolored vertex first. We use the criterion, “the minimum
degree”, in step 2 and 4 to be the criterion for selecting nodes in the coloring procedure. To provide a
unified and reproducible coloring result, “the smallest ID” criterion in step 4 is suggested when more
than one vertices have the same degree. Thus, the ID must be set before applying our approach. Based
on the minimum degree criterion, the vertices with lower degrees are labeled to the same color classes
(smaller integers). On the other hand, the vertices with higher degrees often contain more important
information. We can clearly view these vertices labeled as larger integers. It should be noted that this
algorithm is applied to a “connected” graph. For a disconnected graph, this algorithm can be applied to
each connected component separately. Please refer to Appendix to check the simple illustration of the
algorithm by a toy example.

2.3 Demonstration of Greedy Coloring

In order to simply understand the algorithm and the following discussions, we use the karate network
[22] to demonstrate the utility of graph coloring. The karate network is an undirected social network of
friendships with 34 members of a karate club and 77 edges at a US university in the 1970s. Fig. 1 shows
the network of karate club membership. The edges represent the interaction of the members both during
and after the lessons of the club. The labels next to the vertices are the node IDs, and those inside the
vertices are the degrees of vertices.

Since the graph coloring technique implies that two vertices are labeled in different colors if they are
adjacent, the frequency of labels provides some useful information of a network. If we treat colors as
numbers, then the largest number means the possible maximum size of the clique in a network. These
cliques are referred to the possible groups or communities of interest. Therefore, we can quickly check the
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Algorithm 1 Greedy Coloring
procedure GreedyColoring(G = (V,E))

step 1 Initially set the colors of vertices as 0, i.e., c(vi)← 0 ∀vi ∈ V .
step 2 Select the vertex with the minimum degree, called v1.
step 3 Assign c(v1)← 1 and set ν = {v1} to obtain NG(ν).

for j = 2 to n do
step 4 Select the vertex with the minimum degree among the neighbor list NG(ν), called vj . (when

there are more than one vertices that have the same degree, “the smallest ID” criterion is suggested.)
step 5 Select the minimum color that is not assigned to NG(vj), i.e.,

c(vj) = min{k ∈ N|k 6= c(w) ∀w ∈ NG(vj)}.

step 6 Set ν =
⋃j

i=1 vi

end for
step 7 return c . The vector of colors

end procedure
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Figure 1: Karate club network

neighbors of these vertices with the maximum number to view the possible community structure of a
network. Based on the frequency of labels, we can quickly depict a rough sketch of a network.

Fig. 2 shows the results of graph coloring for the karate network and the frequency of the labels. There
is only one vertex denoted as label 5, which means that the possible maximum clique size is 5. To check if
the true maximum cliques are with size 5 in this network, we found 2 cliques with size 5 and both of them
contain the vertex “v3” labeled as 5 (the vertices encircled by the black lines shown in Figure 3 (a) ).

3 Applications to the Complement of a Simple Graph

Before discussing the coloring results of the complements, there is a need to recall the most important
and fundamental property of the graph coloring – two adjacent vertices must label different colors. Like
we have mentioned in the introduction section, we can shed some lights by applying the graph coloring
technique. This technique cannot include all information of a network. However, some useful information
can be provided for quickly viewing a complex network.
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Figure 2: Graph coloring of karate network and its bar chart of labels

3.1 Complements of Path k Networks and Graph Partitions

We apply the properties of the complement of a graph G to visualize networks in this section. Based on
the graph coloring, two adjacent vertices labeled as different colors show that they are connected with
distance 1. Obviously, any two adjacent vertices in G are nonadjacent in G. This implies that these pairs
of vertices are away from distance 1. On the other hand, vertices with the same colors in G are adjacent
to each other in G. For this reason, graph coloring is also a useful tool for graph partition.

Prior discussing about the complement of a graph, we need to introduce some important theorems
that required in finding the bounds of chromatic number χ(G) of a graph and justify why we color
complements of graphs.

Theorem 1. If the maximum vertex degree of a graph G is ∆, then χ(G) ≤ ∆+ 1.

Theorem 1 provides a preliminary insight on how many colors we use and determines if these colors
are helpful in visualizing the network.

Theorem 2. Given the edge probability p, let b = 1/(1− p). For constant p and constant ε > 0, almost
every random graph G with p satisfies

(1/2− ε)n/ logb n ≤ χ(G) ≤ (1/2 + ε)n/ logb n.

Readers can refer to West et al. [26, Chapter 8] for the details of the proofs.
If a network comes from a random network assumption, the chromatic number is governed by the

edge probability p. If p is high, additional colors are needed for graph coloring. On the other hand, if p is
low, only a few colors are needed to complete the graph coloring. According to Theorems 1 and 2, if a
network is partitioned into few groups for the purpose of easier observation, we need to define a low edge
probability for obtaining a low χ(G).

However, the edge probability is usually invariant. Instead, we consider the kth power of G, which is
the simplest graph Gk with the vertex set V (G) and the edge set {(vi, vj)|dG(vi, vj) ≤ k}. Let M be the
adjacent matrix of G. The kth power of M refers to the number of walks of length k in G. It is expressed
as

Mk = M × . . .×M︸ ︷︷ ︸
k times

,
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and its entry Mk
ij refers to the number of walks of length k from vi to vj . Thus, the adjacent matrix of

graph Gk is defined as Σk and its entry is

[Σ]kij =
{

1 if
∑k

d=1[M ]dij > 0 ∀i 6= j
0 otherwise.

Based on the adjacent matrix of Gk, the Gk graph can be created quickly.
A high edge probability can be obtained based on this manner. This motivates us to use the complement

instead of the original graph. If a long distance k is selected, a highly connected network Gk is resulted.
On the contrary, the complement graph of Gk, defined as Gk, is a network with a low edge connection
and Gk leads to a simple observation. The complement Gk can be created by its adjacent matrix Λ, which
is obtained by switching the (0, 1) off-diagonal elements in the adjacent matrix of Gk, [Σ]k. The element
(i, j) of this adjacent matrix of Gk is expressed as

[Λ]kij =
{

1 if [Σ]kij=0, ∀i 6= j
0 otherwise.

Applying the greedy vertex coloring algorithm, two connected vertices in Gk represent that they are
assigned to different colors and their distance is longer than k. Oppositely, the distance of two vertices
with the same color is within k. This is just the definition of n−clique with n = k. Thus, the partitions
obtained by our algorithm are n−cliques.

Consider the karate network with distance 2 as an example. Fig. 3 (a) shows the G2 graph of karate
network and Fig. 3 (b) is its complement G2. We see little information when the network has a large
chromatic number. On the contrary, its complement is clear to see some possible partitions.
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Figure 3: Graph coloring of karate network with distance 2

Although the number of colors is reduced to 5 in G2, it is not clear enough to observe the network
structure due to the large number of edges. We simplify the network into small partitions, where each
one has its vertices with the same color. Only the number of vertices and the number of edges between
each pair of colors are recorded. Notice that more edges in the complement suggest that the connection
of two partitions is weaker, which is shown in the following table and figure.
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Table 1: Information of Partition Graph of G2

of karate network

G1 G2 |V (G1)| |V (G2)| |E(G1, G2)|

1 2 14 5 37
1 3 14 5 23
1 4 14 8 25
1 5 14 2 15
2 3 5 5 5
2 4 5 8 40
2 5 5 2 10
3 4 5 8 40
3 5 5 2 10
4 5 8 2 13

G1 and G2 are the sets of vertices in which all vertices have the same col-
ors/labels in the partition graph. |V (G1)| and |V (G2)| are numbers of ver-
tices in G1 and G2, respectively. |E(G1, G2)| represents the number of edges
between these two sets.
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10(10)
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E(2)

Figure 4: Partition plot of G2 of karate network
The number of edges in the complement graph is monotone decreasing as the distance increases, which

is an important property of the complement of a graph. Again, consider the karate network with distance
3 as an example. Fig. 5 (a) shows the G3 graph of karate network and Fig. 5 (b) is its complement. Fig. 5
is comparably more informative than Fig. 3. In this example, the complement graph G3 of the karate
network is a bipartite graph, in which the vertices are partitioned into two disjoint parts. That is, the
distance of any two adjacent vertices in G3 is at most 3, and the distance of any two adjacent vertices in
G3 is higher than 3. Clearly, it is easy to point out which vertices are distanced higher than 3.
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Figure 5: Graph coloring of karate network with distance 3

By considering the distances from 1 to 4, we collect the information of all coloring labels of both
original graphs and their complements. These graphs are summarized as stacked bar plots (Fig. 6) in
which each segment represents the number of vertices in each color group. According to the changes of
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stacks with different distances, it is helpful to visualize the move of the partition patterns. Apparently, we
can see the changes according to the increasing distances and the numbers of vertices in the graphs and
their complements. These results correspond to Theorems 1 and 2. The edge probability gets higher when
the distance increases. Thus, strong connections lead to more colors for graph coloring in the original
graphs. On the contrary, only few colors are needed for coloring the complements with higher distances.
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Figure 6: Graph coloring results of karate network by bar charts with distances from 1 to 4, where each
segment represents the number of vertices in each color group.

3.2 Statistics of Labels

The labels of graph coloring imply much information, but this information is implicit unless these labels
undergo some transformations. We focus on the cluster pattern in this study. In practice, the clustering
coefficient [2] is an important quantity that measures the cluster relation of neighbors in networks. The
original clustering coefficient of a vertex vi is defined as

Ci = 2|{ejk : vj , vk ∈ NG(vi), ejk ∈ E(G)}|
|NG(vi)|(|NG(vi)| − 1) , (1)

where NG(vi) is the set of neighbors of vertex vi, and |NG(vi)| is the cardinality of NG(vi). This quantity
measures which nodes tend to cluster together by discussing the edges between their neighbors. Since our
approach also provides the information of clustering, we are interested in knowing whether the labels can
deliver this information by considering the relations of vertices instead of edges.

Although we cannot restrict the type of graph coloring, labeling different colors on two adjacent
vertices always holds. Therefore, the labels of neighbors of each vertex can be discussed. Since an edge
leads to two vertices with two different colors with respect to coloring the original graph, the different
colors are considered to represent a kind of relation between two vertices. We call the different colors of
vertices the “variation”. The small variation of labels indicates that the neighbors of vertex have similar
colors and also implies that the connection between neighbor is weak. Two vertices with different colors
do not guarantee their adjacencies. However, a latent mechanism might exist and label them in different
colors according to the greedy coloring algorithm. Thus, the variation of labels is just a comparative
quantity that tells the relations among vertices.

Journal of Advanced Statistics, Vol. 2, No. 2, June 2017 85

Copyright © 2017 Isaac Scientific Publishing JAS 



In order to compute the variation, we use the variation of categorical data provided in Light and
Margolin [27]. The variation of categorical data is expressed as

ρ = 1
2n
∑

i

∑
j

dij ,

where dij = d(Xi, Xj) is defined as

dij =
{

1 if Xi and Xj are labeled as different categories
0 if Xi and Xj are labeled as the same category.

We adjust this equation to network expression as

Vi = 1( |NG(vi)|
2

) ∑
j 6=k;

∀vj ,vk∈NG(vi)

djk, (2)

where djk is defined as

djk =
{

1 if vj and vk are labeled as different colors in the original graph G
0 if vj and vk are labeled as the same color in the original graph G.

On the other hand, when the coloring result of the graph complement is discussed, the same color
obviously represents that two vertices belong to the same group. We consider the similarity of the
neighbors by adjusting the variation measure. We define the similarity of labels as

Si = 1( |NG(vi)|
2

) ∑
j 6=k;

∀vj ,vk∈NG(vi)

sjk, (3)

and sjk has the contrary definition compared with djk, i.e.,

sjk =
{

1 if vj and vk are labeled as the same color in G1

0 if vj and vk are labeled as different colors in G1.

The NG(vi) is obtained under G instead of G1 although the coloring result is obtained under G1. Since the
clustering pattern of the original graph is our focus, we only discuss about how the different representations
of vertices affect the measures of clustering pattern.

Compared with the variation of labels, which is a conflicting measure to define the relation of neighbors,
the similarity is very conservative. Recall that variation considers the vertices with different colors as
1, but such vertices possibly have no edges. The similarity considers the vertices with the same colors
as 1. However, the vertices with different color possibly have edges. These differences lead to the value
of clustering coefficient locating between similarity and variation, i.e., Si ≤ Ci ≤ Vi. From this aspect,
we can not only visualize networks by graph coloring, but also compute the information of the coloring
labels. Since the graph coloring can produce flexible outputs, more measures besides the variation and
similarity can be created if other coloring procedures are applied.

The karate network is applied to compute these statistics, including similarity, variation, and clustering
coefficient. G1 of karate network is provided in Fig. 7. Since the original karate network contains few
edges, its complement shows an opposite pattern that needs to use many labels for coloring. We expect
to get low similarities because there are few members in each label.

We present different patterns of similarity, variation, and clustering coefficient in Fig. 8. Most peripheral
vertices have high values and center vertices have lower values respectively in clustering coefficient and
variation. On the other hand, most vertices of the left part of the network are 0 in similarity, which
implies that the left part seems to have no cluster pattern in this conservative criterion, but the middle
vertices have some relations with the other vertices.
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Figure 7: G1 of karate network with graph coloring and the coloring result represented in the G1 layout
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Figure 8: Statistics of Labels of karate network
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3.3 Statistics of Edges

We consider the number of edges as an additional usage of the complement of a graph. In each complement
Gk, the edges represent the distance between pairs of vertices that is larger than k. Based on these graphs,
the number of edges is collected to verify the random model assumption.

If the distances of the shortest paths are of interest, Blondel et al. [28] provided the density function
of the distance of path by assuming the hidden variables follow the Poisson random graphs. If a network
is a Poisson random graph with homogeneous connection probability p, the probability of the shortest
path between any pair of vertices greater than distance k is expressed as

S(k) = Prob(D > k) = exp[− (np)k

n
], (4)

where n is the number of vertices.
Each edge in Gk represents that two vertices are distanced higher than k. Thus, the density of the

shortest paths can be estimated by the empirical density, i.e.,

Ŝ(k) = 2|E(Gk)|
|V (G)|(|V (G)| − 1) . (5)

Similar to the Q-Q plot provided for goodness of fit for normal assumption, the scatter plot is drawn
with Ŝ(k) vs. S(k). If the scatter plot tends to fall on a straight (45-degree) line, a network is likely to be
a Poisson random graph.

Consider karate network as an example. We have to create all graphs with different distances and then
generate their complements. Based on the above equations, the theoretical densities and the empirical
densities of the shortest paths are obtained. The results are given in Table 2 and Figure 9. The similarity
between the estimated and theoretical values suggests that this network is possibly a Poisson random
graph. Although we cannot provide a statistical testing for the goodness of fit for the results, we can
glimpse the possibility of randomness from the provided information.

Table 2: Information of Density Estimation

Distance k Ŝ(k) S(k)
1.00 0.86 0.87
2.00 0.39 0.53
3.00 0.14 0.05
4.00 0.01 0.00
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Figure 9: Density of Karate network

4 Partitions of Other Networks

In this section, we provide other classical examples of networks by applying our proposed method to
the partition purpose. That is, coloring the complements of graphs with different distances. In order to
provide a unified output, a different framework from Fig. 4 for the karate network is applied to visualize
the graph partitions. Since we are interested in the relationship between all partitions, the partition graph
is represented by a circular embedding. Thus, we can check all the relations among different partitions. In
addition, the sizes of vertices and widths of edges are set to be equal but the labels of vertices represent
the number of each group and the types of edges show the strength of connection.
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There are four types of edges representing the group connections according to the inter-grouping
probability. Suppose a complement of a graph is colored into several groups in which each vertex has the
same color. Given a pair of groups Gs and Gt, the inter-grouping probability is defined as

pst = |E(Gs, Gt)|
|V (Gs)||V (Gt)|

, (6)

where |V (Gs)| and |V (Gt)| are the number of vertices in Gs and Gt respectively, and where |E(Gs, Gt)|
is the number of edges between these two groups. Note that the solid dark line (—) represents a strong
distance between two groups and its probability belongs to the interval (0.75-1); whereas the dash dark
line (– –) represents a less strong distance between two groups and its probability belongs to the interval
(0.5 -0.75); and the solid gray line (—) represents a weak distance between two groups and its probability
belongs to the interval (0.25-0.5); and finally the dash gray line (– –) represents a very weak distance
between two groups and its probability belongs to the interval (0.0-0.25). Here, a strong distance means
that the two groups cannot be reached easily one from another.

In each case, the bar chart of different distances is performed with the modularity measure [11] at top,
which is defined as

Q = 1
2|E(G)|

∑
(eij −

kikj

2|E(G)| )δ(vi, vj), (7)

where ki and kj are the degrees of vi and vj , eij is 1 if vi and vj are adjacent, and 0 otherwise; and
δ(vi, vj) is 1 if vi and vj are labeled as the same color, and 0 otherwise. In order to provide a clear
partition, we select the partition with maximum modularity except distance 1. Although the partitions
have a high modularity with distance 1 in some cases, we do not choose them because too many labels
are not helpful for clear visualization. Our result shows an uncertainty on the goodness of the suggested
group size, but we suggest this method as an initial stage to view the structure of network if the distance
between vertices is the main concern.

4.1 Dolphin Network

The dolphin network compiled by Lusseau et al. [29] and Lusseau [30] is an undirected social network of
frequent associations between dolphins in a community living off Doubtful Sound, New Zealand. This
network contains 62 vertices (dolphins) and 159 edges, which means that dolphin pairs were observed
to have statistically significant frequent association. The partition results are shown in Fig. 10. One
particular feature of this network is that the maximum distance (diameter) between dolphin pairs is 7.
Since this network only contains 62 vertices, the diameter of this network is high and implicit, which
means that the connections between dolphins are low. When the distance 4 (Q = 0.3628) is chosen, we
obtain the maximum modularity and 4 partitions. The maximum group size is 24 only and this network
is mainly partitioned into 2 major groups (A and B in Fig. 10 (b)) that have small distances (gray solid
line).

4.2 Les Misérables Network

Les Misérables Network compiled by Knuth et al. [31] contains the weighted network of co-appearances
of characters in Victor Hugo’s novel “Les Misérables”. 77 vertices (characters), and 254 edges are shown
to represent the co-appearance of two characters in one or more scenes. The partition result is shown in
Fig. 11. The modularity from the bar chart shows a big drop from distance 1 (Q = 0.3039) to distance 2
(Q = 0.1764) , so is the number of groups. When the distance 2 is selected, this network is partitioned
into 11 groups, and all groups have strong distances (black solid line). This result matches our knowledge
of this famous novel. That is, the characters belonged to different scenes and eras.

4.3 Football Network

The football network compiled by Girvan and Newman [32] contains the network of American football
games between Division I colleges during regular season in Fall 2000. There are 115 vertices (teams)
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Figure 10: Visualization of dolphin network by the coloring of complements of graphs. (a) The stacked
bar chart where each segment represents the number of vertices in each color group. (b) The partition
with distance 4.
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Figure 11: Visualization of Les Misérables network by the coloring of complements of graphs. (a) The
stacked bar chart where each segment represents the number of vertices in each color group. (b) The
partition with distance 2.

that belong to 12 different conferences, and 616 edges show that some teams have one or more games
during this regular season. The partition result is shown in Fig. 12. Unlike the bar chart in Fig. 11, the
modularity decreases slightly from distance 1 (Q = 0.3189) to distance 2 (Q = 0.2467), and the number
of groups slightly drops at the same time. This implies that the structures between the Les Misérables
network and the football network are different, but our plots cannot show the details of the differences.
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When the distance 2 is selected, this network is partitioned into 15 groups, and most groups have similar
group sizes around 10 except some groups with few members. In fact, this network is comprised by 12
college football leagues, which is close to our finding.
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Figure 12: Visualization of football network by the coloring of complements of graphs. (a) The stacked
bar chart where each segment represents the number of vertices in each color group. (b) The partition
with distance 2.

4.4 Political Book Network

The political book network contains the network of book sale about US politics published around the time
of the 2004 presidential election and sold by the online bookseller. This network contains 105 vertices
(books), and 441 edges are shown to represent that two books are bought at the same time at least
once. The network was compiled by V. Krebs but is unpublished, yet can be found on Krebs’ website
http://www.orgnet.com/. The partition result is shown in Fig. 13. A great improvement is found in both
modularity and group size with distance 3 (Q = 0.3178). Only 7 groups are recorded and are mainly
composed by three groups (A, B, and C) which are similar to the number of original categories of these
books (liberal, conservative, and neutral).

4.5 Facebook Network

The Facebook network complied by Leskovec and Mcauley [33] is obtained from 10 ego-networks, consisting
of 193 circles and 4,039 users. This network comprises 4,039 vertices (people), and 88,234 edges are shown
to illustrate that two friends of an ego are also friends to each other. The partition result is shown in
Fig. 14. This example demonstrates the utility of our proposed method. Despite the fact that this is not
a big network, one cannot look at its whole structure quickly. By applying our method, this network is
quickly partitioned into 11 groups with distance 2 and got a high modularity 0.684. In fact, this network
is compiled by combining 10 ego-networks. Our result is very close to the real one. Note that the first
group in the bar chart does not show one black color only. Instead, too many labels result in out of
capacity for gray colors. Besides, it only takes around 2 minutes to execute the coloring of complements
of graphs with all 7 different distances in our personal computer (Intel Core i7-4770 CPU 3.40GHz).
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Figure 13: Visualization of book network by the coloring of complements of graphs. (a) The stacked bar
chart where each segment represents the number of vertices in each color group. (b) The partition with
distance 3.
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Figure 14: Visualization of Facebook network by the coloring of complements of graphs. (a) The stacked
bar chart where each segment represents the number of vertices in each color group. (b) The partition
with distance 2.

5 Discussion and Conclusion

It is difficult to quickly glimpse a large-scale network by a limited plot region within a short limit of time.
In this study, we summarize a large network into few partitions by the greedy vertex coloring approach,
which is an efficient algorithm and has been verified to run O(n+m) time according to their interactive
distances. The basic notion of graph coloring is to force two connected vertices to be assigned to different
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colors/labels. By considering the complement, two connected vertices become unconnected and close
vertices have high probabilities to be assigned to the same colors in this regime. We can treat different
colors as different groups to glimpse the structure of a network. In general, a network can be partitioned
into n-cliques by the graph coloring approach. Thus, we can recognize graph partition and cluster patterns
in a simple way. Based on the labels of vertices after coloring, we get further information by summarizing
these labels. Some famous networks are demonstrated to show the abilities of our provided method. If the
distances between pairs of vertices are the main concern, our method is a useful tool to summarize a
large network.

Although we leave an open question whether the partition reaches the chromatic number via the
greedy coloring procedure, the partitions have provided useful clues to future researches. For example, if
finding the best communities is of interest, one can start from the suggested partitions obtained by our
algorithm and create some add or delete algorithms to modify the groups. Even though other coloring
methods can provide better coloring results, most of them take more time on coloring a graph. Using
time-consuming algorithms contradicts our initial purpose of computing efficiency. Therefore, we look
forward to constructing and searching for better methods to execute graph coloring.

On the other hand, during the demonstration to the best partitions, the modularity is suggested as
the selection criterion. However, this criterion cannot provide the information of the number of groups. If
we think parsimony partitions are a good representation, a modified modularity is needed to take this
information into account. A modified criterion is considered in our future work. Furthermore, if we care
about other information rather than community, other criteria are also needed.

Note that the methods and statistics provided in this study contain no statistical inferences. However,
it does not imply that no statistical inference can be constructed directly. For example, the number
of edge in different complements of graphs can be used to test the goodness of fit of random model.
The number of edge between two different groups can also be a test statistic to verify if two groups are
significantly split. It takes more effort to improve this method in the future.
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Appendix: Toy Example of Greedy Coloring Algorithm

Here is a toy example to illustrate the greedy coloring approach and its procedures based on Algorithm
1. We construct a synthetic network with 6 vertices and 11 edges. Fig. 15 (a) shows the degrees of this
network. In our algorithm, we start the coloring at the vertex having the smallest degree, and then
sequentially color the graph from this vertex. Fig. 15 (b) shows the order for coloring vertices based on our
provided algorithm. We select the node with the smallest vertex ID if there are more than one adjacent
vertices that have the same smallest degree, so V2 is the first node to be assigned a label. According to
the order, this network can be successively colored and the coloring result is shown in Fig. 15 (c). Besides,
nodes {V1, V2, V5, V6} form a clique. Thus, the chromatic number of this graph is 4 and our algorithm
reaches the chromatic number in this example.
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Figure 15: Graph coloring for the synthetic network where the labels inside the vertices are the node
degrees.
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