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Abstract The paper deals with the problem of estimating the reliability of a single and multicom-
ponent stress-strength based on a three-parameter Dagum distribution. The maximum likelihood
estimators and the Bayes estimators of R = P (Y < X) when X and Y are two independent random
variables follow Dagum distribution and their asymptotic distributions are obtained. Also, the
reliability of a multicomponent stress-strength model is estimated using the maximum likelihood.
Consequently, the asymptotic confidence intervals of the reliability of a single and multicompo-
nent stress-strength model are constructed. Gibbs and Metropolis sampling were used to provide
sample-based estimates of the reliability and its associated credible intervals. Finally, Monte Carlo
simulations are carried out for illustrative purposes.
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1 Introduction
Dagum distribution was introduced by Dagum [1] for modeling personal income data as an alternative to
the Pareto and log-normal models. This distribution has been extensively used in various fields such as,
income and wealth data, meterological data, reliability and survival analysis. The Dagum distribution
is also known as the inverse Burr XII distribution, especially in the actuarial literature. An important
characteristic of Dagum distribution is that its hazard function can be monotonically decreasing, an
upside-down bathtub, or bathtub and then upside-down bathtub shaped, for details see Domma [2]. This
behavior of the distribution has led several authors to study the model in different fields. In fact, recently,
the Dagum distribution has been studied from a reliability point of view and used to analyze survival
data (see Domma et al., [3], and Domma and Condino [4]). Kleiber and Kotz [5] and Kleiber [6] provided
an exhaustive review on the origin of the Dagum model and its applications. Domma et al. [3] estimated
the parameters of Dagum distribution with censored samples. Shahzad and Asghar [7] used TL-moments
to estimate the parameter of this distribution. Oluyede and Ye [8] presented the class of weighted Dagum
and related distributions. Domma and Condino [4] proposed the five parameter beta-Dagum distribution.

A continuous random variable T is said to have a three-parameter Dagum distribution, abbreviated
as T ∼ Dagum(α, β, δ), if its density probability function (pdf) is given as

f (t;α, β, δ) = βαδt−δ−1 (1 + αt−δ
)−β−1

, t > 0, (1.1)

where α > 0 is the scale parameter and its two shape parameters β and δ are both positive. The
corresponding distribution function is given by

F (t;α, β, δ) =
(
1 + αt−δ

)−β
, t > 0, β, α, δ > 0. (1.2)

In this paper we focus our attention on estimating the reliability of a single component stress-strength,
R = P (Y < X) where X and Y are two independent random variables following Dagum distribution
with different shape parameter β and have the same scale parameter α and shape parameter δ. Here R is
the probability that the strength X of a component during a given period of time exceeds the stress Y .
We also focus on estimating the reliability of multicomponent stress-strength Rs,k, where s and k are two
intgers and s ≤ k. The problem of estimating R and Rs,k has attracted the attention of many authors, a
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good overview on estimating R can be found in the monograph of Kotz et al. [9]. See also, Pandey and
Uddin [10] and Srinivasa and Kantam [11] for details on estimation of Rs,k. It is worth mentioning that
the problem here seems to be clearly an application of well known mathematical methods. However, there
were some challenges in finding the estimatiors.

The rest of the paper is organized as follows. In Section 2, we obtain the maximum likelihood estimatior
(MLE) of R and the asymptotic distribution of R̂. The MLE and Bayes estimators of R when α is known
is considered. Also, simulation studies have been presented for illustrative purposes. In section 3, the
MLEs are obtained and employed to get the asymptotic distribution and confidence intervals for Rs,k.
Finally, the conclusion and comments are provided in Section 4.

2 Estimation of R with Different β and Common δ and α

In this section, we investigate the properties of R when the shape parameters β are different, the scale
parameter α and the shape parameter δ are constants. The other cases, i.e. the parameters α and δ are
not constants and the general case where all parameters are different, can be studied in a similar way to
the case presented in this paper.

2.1 Maximum Likelihood Estimator of R
Let X ∼ Dagum(β1, α, δ) and Y ∼ Dagum(β2, α, δ), where X and Y are two independent random
variables. All three parameters, β, α and δ are unknown to us. Then it can be shown that

R = P (Y < X) =
∫ ∫
0<y<x

f(x, y)dxdy = β1

β1 + β2
. (2.1)

To compute the MLE of R, suppose that X1, X2, · · · , Xn is a random sample from Dagum(β1, α, δ) and
Y1, Y2, · · · , Ym is another random sample from Dagum(β2, α, δ). Then the log-likelihood function of the
observed sample is

lnL(β1, β2, α, δ) = n ln(β1) + (n+m) ln(α) + (n+m) ln(δ)

−(δ + 1)

 n∑
i=1

ln(xi) +
m∑
j=1

ln(yj)


−(β1 + 1)s1(x, α, δ) +m ln(β2)− (β2 + 1)s2(y, α, δ),

where

s1(x, α, δ) =
n∑
i=1

ln(1 + αx−δi ), (2.2)

and

s2(y, α, δ) =
m∑
j=1

ln(1 + αy−δj ). (2.3)

The MLEs of β, α and δ say β̂, α̂ and δ̂, respectively, can be obtained as the solutions of the following
equations

∂L
∂β1

= n
β1
− s1(x, α, δ) = 0.

∂L
∂β2

= m
β2
− s2(y, α, δ) = 0.

∂L
∂α = n+m

α − (β1 + 1)
∑n
i=1

x−δ
i

(1+αx−δ
i

) − (β2 + 1)
∑m
j=1

y−δ
j

(1+αy−δ
j

) = 0.
∂L
∂δ = n+m

δ −
∑n
i=1 ln(xi)−

∑m
j=1 ln(yj)− (β1 + 1)

∑n
i=1

αx−δ
i

ln(xi)
(1+αx−δ

i
)

−(β2 + 1)
∑m
j=1

y−δ
j

ln(yj)
(1+αy−δ

j
) = 0.


(2.4)
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We obtain

β̂1 = n

ŝ1(x, α, δ) . (2.5)

β̂2 = m

ŝ2(y, α, δ) . (2.6)

The estimators α̂ and δ̂ can be obtained as the solutions of the nonlinear equations given in (2.4). The
“plug-in estimation” of R, say R̂, is readily computed as

R̂ = β̂1ML

β̂1MR + β̂2ML

. (2.7)

2.2 Asymptotic Distribution of R̂
In this section, the asymptotic distribution of θ̂ = (β̂1, β̂2, α̂, δ̂) and the asymptotic distribution of R̂
are obtained. The Fisher information matrix of θ, denoted by J(θ) = E(I, θ), is giving below, where
I = [Ii,j ]i,j=1,2,3,4 is the observed information matrix i.e.,

I(θ) = −


∂2L
∂α2

∂2L
∂α∂β1

∂2L
∂α∂β2

∂2L
∂α∂δ

∂2L
∂β1∂α

∂2L
∂β2

1

∂2L
∂β1∂β2

∂2L
∂β1∂δ

∂2L
∂β2∂α

∂2L
∂β2∂β1

∂2L
∂β2

2

∂2L
∂β1∂δ

∂2L
∂δ∂α

∂2L
∂δ∂β1

∂2L
∂δ∂β2

∂2L
∂δ2

 =


I11 I12 I13 I14
I21 I22 I23 I24
I31 I32 I33 I34
I41 I42 I43 I44

 ,

and the elements of I(θ) are as follows

I11 = n+m

α2 + (β1 + 1)
n∑
i=1

(x−δi )2

(1 + αx−δi )
+ (β2 + 1)

m∑
j=1

(y−δj )2

(1 + αy−δj )
.

I12 = I21 = −
n∑
i=1

X−δi
(1 + αx−δi )

, I13 = I31 = −
m∑
j=1

y−δj

(1 + αy−δj )
.

I14 = I41 = (β1 + 1)
[
n∑
i=1

x−δi ln xi
(1 + αx−δi )

−
n∑
i=1

(
x−δi

)2
α ln xi

(1 + αx−δi )2

]

+ (β2 + 1)

 m∑
j=1

y−δj ln yj
(1 + αy−δj )

−
m∑
j=1

(
y−δj

)2
α ln yj

(1 + αy−δj )2

 .
I22 = − n

β2
1
, I23 = I32 = 0, I24 = I42 =

n∑
i=1

αx−δi ln xi
(1 + αx−δi )

I33 = m

β2
2
.

I34 = I43 = −n+m

δ2 +
m∑
j=1

αy−δj ln yj
(1 + αy−δj )

− (β1 + 1)nαx−δ ln(x)2

(1 + αx−δ) + (β1 + 1)nα2(x−δ)2 ln(x)2

(1 + αx−δ)2

− (β2 + 1)mαy−δ ln(y)2

(1 + αy−δ) + (β2 + 1)mα2(y−δ)2 ln(y)2

(1 + αy−δ)2 .

I44 = −n+m

α2 − (β1 + 1)
[
n∑
i=1

αx−δi ln(xi)2

(1 + αx−δi )
−

n∑
i=1

α2(x−δi )2 ln(xi)2

(1 + αx−δi )2

]

+ (β2 + 1)

 m∑
j=1

αy−δj ln(yj)2

(1 + αy−δj )
−

m∑
j=1

α2(y−δj )2 ln(yj)2

(1 + αy−δj )2

 .
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The following integrals can be helpful when finding the elements of the Fisher information matrix. Note
that ψ(.) is the digamma function, defined as ψ(x) = d/d(x) ln(Γ (x)).∫ 0

∞
ln(t)(1 + t)−β−1 dt = −ψ(β) + γ

β
,

∫ 0

∞
t ln(t)(1 + t)−β−2 dt = −Ψ(β) + γ − 1

α(β + 1) ,∫ 0

∞
t ln2(t)(1 + t)−β−3 dt = −

ψ(β)′ψ2(β) + γ2 + π2

6
(β + 1)(β + 2) + 2[β(γ − 1) + 1]ψ(β)− [γ(β − 1) + 1]

β(β + 1)(β + 2) ,∫ 0

∞
t2 ln(t)(1 + t)−β−3 dt = −2ψ(β)− 2γ + 3

β(β2 + 3β + 2) ,∫ 0

∞
t2 ln2(t)(1 + t)−β−3 dt = −6ψ2(β) + 12ψ(β)γ + 6γ2 + π2 − 18ψ(β)− 18γ + 6ψ(1, β) + 6

β(3β2 + 9β + 6) .

The elements of the Fisher information matrix are obtained by taking the expectations of the observed
matrix. Doing so will result in the following:

J11 = n+m

α2 − nβ1(β1 + 1)
α2 B(3, β1)− mβ2(β2 + 1)

α2 B(3, β2).

J12 = nβ1

α
B(2, β1), J13 = J31 = mβ2

α
B(2, β2),

where B(., .) is the beta function.

J14 = J41 = −nβ1(β1 + 1)
δα

[(
B(2, β1) ln(α) + ψ(β1) + γ − 1

α(β1 + 1)

)
−
(
B(3, β1) ln(α) + 2ψ(β1)− 2γ + 3

β1(β2
1 + 3β1 + 2)

)]
− mβ2(β2 + 1)

δα

[(
B(2, β2) ln(α) + ψ(β2) + γ − 1

α(β2 + 1)

)
−
(
B(3, β2) ln(α) + 2ψ(β2)− 2γ + 3

β2(β2
2 + 3β2 + 2)

)]
.

Again, the functions B(., .) and ψ(.) are the beta function and the digamma function.

J22 = n

β2
1
, J23 = J32 = 0, J24 = J42 = −nβ1

δ

[
B(2, β1) ln(α) + ψ(β1) + γ − 1

β1(β1 + 1)

]
.

J33 = m

β2
2
, J34 = J43 = −mβ2

δ

[
B(2, β2) ln(α) + ψ(β2) + γ − 1

β1(β2 + 1)

]
.

and the element J44 is defined as follows

J44 = n+m

α2 + nβ1(β1 + 1)
δ2

[(
B(3, β1) ln2(α) + 2 ln(α)ψ(β1) + γ − 1

β1(β1 + 1)

+ 6ψ(β1)2 + 12ψ(β1)γ + 6γ2 + π2 − 12ψ(β1)− 12γ + 6ψ(1, β1)
6β1(β1 + 1)

)
− 1
α

(
ln2(α)− 2B(3, β1) + 2 2ψ(β1)− 2γ + 3

β1(β2
1 + 3β1 + 2)

− 6ψ2(β1) + 12ψ(β1)γ + 6γ2 + π2 − 18ψ(β1)− 18γ + 6ψ(1, β1) + 6
β1(3β2

1 + 9β1 + 6)

)]

− mβ2(β2 + 1)
δ2

[(
B(3, β2) ln2(α) + 2 ln(α)ψ(β2) + γ − 1

β2(β2 + 1)

+ 6ψ(β2)2 + 12ψ(β2)γ + 6γ2 + π2 − 12ψ(β2)− 12γ + 6ψ(1, β2)
6 β2(β2 + 1)

)
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− 1
α

(
ln2(α)− 2B(3, β2) + 2 2ψ(β2)− 2γ + 3

β2(β2
2 + 3β2 + 2)

− 6ψ2(β2) + 12ψ(β2)γ + 6γ2 + π2 − 18ψ(β2)− 18γ + 6ψ(1, β2) + 6
β2(3β2

2 + 9β2 + 6)

)]
.

It is worth mentioning that the Dagum family of distributions satisfies all the regularity conditions,
for example see Nadarajah and Kotz [12]. Now, it turns out that we can formulate the limiting joint
distribution of estimators.

Theorem 1 As n→∞ and m→∞ and n
m → p, where p is positive real constant, then[√

m(β̂1 − β1),
√
n(β̂2 − β2),

√
m(α̂− α),

√
m(δ̂ − δ)

]
→ N4(0, A−1(β1, β2, α, δ)),

where the covariance matrix A is given as

A(β1, β2, α, δ) =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 .

Proof. We first give the elements of the covariance matrix A.

a11 = lim
n,m→∞

J11

m
= p+ 1

α2 − pβ1(β1 + 1)
α2 B(3, β1)− β2(β2 + 1)

α2 B(3, β2).

a12 = a21 = lim
n,m→∞

J12
√
p

n
=
√
pβ1

α
B(2, β1).

a13 = a31 = lim
n,m→∞

J13

m
= β2

α
B(2, β2).

a14 = a41 = lim
n,m→∞

J14

m
√
p
.

= −
√
pβ1(β1 + 1)

δα

[(
B(2, β1) ln(α) + ψ(β1) + γ − 1

α(β1 + 1)

)

−
(
B(3, β1) ln(α) + 2ψ(β1)− 2γ + 3

β1(β2
1 + 3β1 + 2)

)]

− β2(β2 + 1)
√
pαδ

[(
B(2, β2) ln(α) + ψ(β2) + γ − 1

α(β2 + 1)

)

−
(
B(3, β2) ln(α) + 2ψ(β2)− 2γ + 3

β2(β2
2 + 3β2 + 2)

)]
.

a22 = lim
n,m→∞

J22

n
= 1
β2

1
, a23 = a32 = 0.

a34 = a43 = lim
n,m→∞

J34

m
√
p

= − β2

δ
√
p

[
B(2, β2) ln(α) + ψ(β2) + γ − 1

β2(β2 + 1)

]
.

a24 = a42 = lim
n,m→∞

J24

n
= −B1

δ

[
B(2, β1) ln(α) + ψ(β1) + γ − 1

β1(β1 + 1)

]
.

and

a44 = lim
n,m→∞

J44

n
.

= 1
α2p

+ β1(β1 + 1)
δ2

[(
B(3, β1) ln2(α) + 2 ln(α)ψ(β1) + γ − 1

β1(β1 + 1)

)
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+
(

6ψ(β1)2 + 12ψ(β1)γ + 6γ2 + π2 − 12ψ(β1)− 12γ + 6ψ(1, β1)
6β1(β1 + 1)

−
(

1
α

)(
ln2(α)− 2B(3, β1) + 2 2ψ(β1)− 2γ + 3

β1(β2
1 + 3β1 + 2)

−6ψ2(β1) + 12ψ(β1)γ + 6γ2 + π2 − 18ψ(β1)− 18γ + 6ψ(1, β1) + 6
β1(3β2

1 + 9β1 + 6)

))]

−
(
β2(β2 + 1)

pδ2

)[(
B(3, β2) ln2(α) + 2 ln(α)ψ(β2) + γ − 1

β2(β2 + 1)

+6ψ2(β2) + 12ψ(β2)γ + 6γ2 + π2 − 12ψ(β2)− 12γ + 6ψ(1, β2)
6β2(β2 + 1)

)
−
(

1
α

)(
ln2(α)− 2B(3, β2) + 2

[
2ψ(β2)− 2γ + 3
β2(β2

2 + 3β2 + 2)

]
− (6ψ2(β2) + 12ψ(β2)γ + 6γ2 + π2 − 18ψ(β2)− 18γ + 6ψ(1, β2) + 6)

(β2(3β2
2 + 9β2 + 6))

)]
.

The proof follows immediately by invoking the asymptotic properties of MLEs and the multivariate
central limit theorem. 2

One of the main results here is Theorem 2, concerning the asymptotic properties of the parameter R.

Theorem 2 As n→∞, m→∞, n
m → p, where p is a positive number, then
√
n(R̂−R)→ N(0, BA),

where

BA = 1
UA(β1 + β2)4

[
β2

(
β2
(
a22a33a44 − a22a

2
43 − a33a

2
42
)

+β1 (a21a33a44 − a21a43 + a31a42a43 − a33a41a42)
)

−β1

(
− β2

(
a21a33a44 − a21a

2
43 + a31a

2
42a43 − a33a41a42

)
−β1

(
a11a33a44 − a11a

2
43 − a2

31a44 + 2a31a41a43 − a33a
2
41
))]

.

and

UA = a11a22a33a44 − a11a22a
2
43 − a11a33a

2
24 − a2

12a33a44 + a2
12a

2
43 − 2a12a13

a24a342a12a33a14a24 + a22a
2
13a44 + 2a22a13a14a34 − a22a33a

2
14 + a2

13a
2
24.

Proof. Applying the delta method (see Casella and Roger, [13]) and using Theorem 1, we can write the
asymptotic distribution of R̂ where R̂ = g(β̂1, β̂2, α̂, δ̂) and g(β1, β2, α, δ) = β1/(β1 + β2) as the following:

√
n(R̂−R)→ N(0, BA),

where

BA = btAA
−1bA,

bA =


∂R
∂β1
∂R
∂β2
∂R
∂α
∂R
∂δ

 = 1
(β1 + β2)2


β2
β1
0
0

 ,
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and

A−1 = 1
UA


v11 v12 v13 v14
v21 v22 v23 v24
v31 v32 v33 v34
v41 v42 v43 v44

 .

The elements of the A−1 are obtained as follows

v11 = a22a33a44 − a22a
2
43 − a33a

2
42.

v12 = v21 = −a21a33a44 − a21a
2
43 + a31a42a43 − a33a41a12.

v13 = v31 = −a21a42a43 + a22a31a44 − a22a41a43 − a31a
2
42.

v14 = v41 = a21a33a42 + a22a31a43 − a22a33a41.

v22 = a11a33a44 − a11a
2
43 − a2

31a44 + 2a31a41a43 − a33a
2
41.

v23 = v32 = a11a42a43 + a21a31a44 − a21a41a43 − a31a41a42.

v24 = v42 = −a11a33a42 + a21a31a43 − a21a33a41 − a2
31a42.

v33 = a11a22a44 − a11a
2
42 − a2

21a44 + 2a21a41a42 − a22a
2
41.

v34 = v43 = −(a11a22a43 − a2
21a43 + a21a31a42 − a22a31a41).

v44 = a11a22a33 − a2
21a33 − a22a

2
31.

Therefore,

BA = btAA
−1bA = 1

UA(β1 + β2)4

[
β2

(
β2

(
a22a33a44 − a22a

2
43 − a33a

2
42

)

+β1

(
a21a33a44 − a21a

2
43 + a31a42a43 − a33a41a42

))]

−β1

[
− β2

(
a21a33a44 − a21a

2
43 + a31a42a43 − a33a41a42

)

−β1

(
a11a33a44 − a11a

2
43 − a2

31a44 + 2a31a41a43 − a33a
2
41

)]
.

The proof is now completed. 2

It should be noted that Theorem 2 can be used to construct the asymptotic confidence intervals for
R. However, the variance BA is not known and it has to be estimated. The estimator of BA, say B̂A, is
obtained by replacing β1, β2, α and δ involved in BA by their corresponding MLEs. The 100(1− γ)%
confidence intervals for R are given by(

R̂− Z1−γ/2

√
B̂A√
n
, R̂+ Z1−γ/2

√
B̂A√
n

)
, (2.8)

where Zγ is the γ% percentile of N(0, 1).

As mentioned in Asgharzadeh et al. [14], instead of approximating
(
R̂−R

)
/

√
var(R̂) as standard

normal variable, it is possible to consider some other normalizing transformation, say g(R), of R and
assume that (

g(R̂)− g(R)
)
/

√
var[g(R̂)] ∼ N(0, 1),

Now we use delta method to approximate the variance of g(R), see for example Held and Bove [15]. It is
written as follows

var
[
g(R̂)

]
= [g′(R)]2 var(R̂) = [g′(R)]2 BA/n.
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As before, the 100(1− γ)% confidence intervals for g(R) are given as

g(R̂)± Z1−γ/2

√
var

[
g(R̂)

]
.

If the function g(R) is strictly increasing then approximate 100(1− γ)% confidence intervals for R are
derived to be (

g−1
(
g(R̂)− Z1−γ/2

√
var(R̂)

)
, g−1

(
g(R̂) + Z1−γ/2

√
var(R̂)

))
.

Specifically, we follow Asgharzadeh et al. [14] and consider the following two transformations.

1. Logit transformation: g(R) = ln
(

R
1−R

)
with g′(R) = 1

R(1−R)

2. Arcsine transformation: g(R) = sin−1(
√
R) with g′(R) = 1

2
√
R(1−R)

More details about these transformations one can refer to Lawless [16] or Mukherjee and Maiti [17].

2.3 Bootstrap Confidence Intervals
For small sample sizes, confidence intervals carried out based on the asymptotic results are usually
expected not to perform well. Therefore, we propose to use confidence intervals based on two parametric
bootstrap methods. These methods are: (i) the percentile bootstrap method, shortened as Boot-p, based
on the idea of Hall [18]. (ii) the bootstrap-t method, shortened as Boot-t, based on the idea of Hall [18].
The algorithms for estimating the confidence intervals of R using both methods are summarized below.

(i) Boot-p method
1. Use the samples {x1, · · · , xn} and {y1, · · · , ym} and equations (2.4), (2.5) and (2.6) to compute

the estimates β̂1ML, β̂2ML, α̂ML and δ̂ML.
2. Use the estimates β̂1ML, α̂ML and δ̂ML to generate a bootstrap sample {x1

∗, · · · , xn∗} and
similarly use β̂2ML, α̂ML and δ̂ML to generate a bootstrap sample {y1

∗, · · · , yn∗}. Based on
{x1
∗
, · · · , xn∗} and {y1

∗
, · · · , yn∗} compute the bootstrap estimate of R, say R∗, using R̂∗ =

β̂1ML
β̂1ML+β̂2ML

.
3. Repeat Step 2, NBOOT times.
4. Let g1(x) = P (R̂∗ ≤ x) be the cdf of R̂∗ and define R̂Bp(x) = g−1

1 (x) for a given x. Then the
approximate 100(1− γ)% confidence intervals for R are given by(

R̂Bp

(γ
2

)
, R̂Bp

(
1− γ

2

))
.

(ii) Boot-t method
1. Use the samples {x1, · · · , xn} and {y1, · · · , ym} and equations (2.4), (2.5) and (2.6) to compute
β̂1ML, β̂2ML, α̂ML and δ̂ML.

2. Use β̂1ML, α̂ML and δ̂ML to generate a bootstrap sample {x1
∗, · · · , xn∗} and similarly use β̂2ML,

α̂ML and δ̂ML to generate a bootstrap sample {y1
∗, · · · , yn∗}. Based on {x1

∗, · · · , xn∗} and
{y1
∗, · · · , yn∗} compute the bootstrap estimate of R, say R∗, using R̂∗ = β̂1ML

β̂1ML+β̂2ML
and the

statistic
T ∗ =

√
n(R̂∗ − R̂)√
var(R̂∗)

.

3. Repeat Step 2, NBOOT times.
4. Let g2(x) = P (T ∗ ≤ x) be the cdf of T ∗ and define R̂Bt(x) = R̂+ g−1

2 (x)
√

var(R̂)
n for a given x.

Then the approximate 100(1− γ)% confidence intervals for R are given by(
R̂Bt

(γ
2

)
, R̂Bt

(
1− γ

2

))
.
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2.4 Bayes Estimation of R
In this subsection, we discuss the estimation of the parameter R using Bayes method and assuming that
the shape parameters β1, β2, δ and the scale parameter α are random variables and unknown to us. It is
assumed that β1, β2, δ and α have density functions Gamma(a1, b1), Gamma(a2, b2), Gamma(a3, b3) and
Gamma(a4, b4) respectively. Moreover, it is assumed that β1, β2, δ and α are independent. Based on the
above assumptions, we obtain the likelihood function of the observed data as follows

L(data|β1, β2, α, δ) = βn1 α
n+mδn+m

n∑
i=1

x
−(δ+1)
i s1(x, α, δ)

m∑
j=1

y
−(δ+1)
j s2(y, α, δ), (2.9)

where s1(x, α, δ) and s2(y, α, δ) are defined as before in equations (2.2) and (2.3). The joint density of
data β1, β2, α and δ can be obtained as

L(data, β1, β2, α, δ) = L(data;β1, β2, α, δ)π1(β1)π2(β2)π3(α)π4(δ), (2.10)

where π1(β1), π2(β2), π3(α) and π4(δ) are gamma prior densities for β1, β2, α and δ respectively. Therefore,
the joint posterior density of β1, β2, α and δ given the data is

L(data|β1, β2, α, δ) = L(data, β1, β2, α, δ)∫ 0
∞
∫ 0
∞
∫ 0
∞
∫ 0
∞ L(data, β1, β2, α, δ)dδdαdβ2dβ1

. (2.11)

Equation (2.11) cannot be written in closed form, thus we apply the Gibbs sampling technique to compute
the Bayes estimate of R along with the corresponding credible intervals. The posterior pdfs of β1, β2, α
and δ can be obtained readily as follows.

β1|β2, δ, α, data ∼ Gamma(n+ a1, b1 + s1(x, α, δ)),
β2|β1, δ, α, data ∼ Gamma(m+ a2, b2 + s2(y, α, δ)),

f(α|β1, β2, δ, data) ∝ αn+m+a3−1exp

[
− α

b3 +
n∑
i=1

(xi) +
n∑
j=1

(yj)


−(β1 + 1)s1(x, α, δ)− (β2 + 1)s2(y, α, δ)

]
,

and

f(δ|β1, β2, α, data) ∝ δn+m+a4−1exp

[
− δb4 − (β1 + 1)s1(x, α, δ)− (β2 + 1)s2(y, α, δ)

]
.

Clearly, the above forms of the posterior density do not lead to explicit Bayes estimates of the model
parameters. For this reason, we prefer to use the Metropolis-Hasting method with normal proposal
distribution. The algorithm of Gibbs sampling is summarized below:

1. Start with an initial guess
(
β

(0)
1 , β

(0)
2 , α(0), δ(0)

)
.

2. Set t = 1.
3. Generate β(t)

1 from Gamma (n+ a1, b1 + s1(x, α(t−1), δ(t−1))).
4. Generate β(t)

2 from Gamma (n+ a2, b2 + s2(y, α(t−1), δ(t−1))).
5. Use the Metropolis-Hasting method to generate α(t) from f(α(t−1)|β1, β2, δ, data) with theN(α(t−1), 0.5)

proposal distribution.
6. Use the Metropolis-Hasting method to generate δ(t) from f(δ(t−1)|β1, β2, α, data) with theN(δ(t−1), 0.5)

proposal distribution.
7. Compute R(t) from equation (2.1).
8. Set t = t+ 1.
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9. Repeat Steps 3-8, T times.

Now the approximate posterior mean and variance of R, respectively, are calculated as

Ê(R|data) = 1
T

T∑
t=1

R(t), (2.12)

and

ˆvar (R|data) = 1
T

T∑
t=1

(
R(t) − Ê(R|data)

)2
. (2.13)

Using the result in Chen and Shao [19], we construct the 100(1− γ)% highest posterior density (HPD)
credible intervals as (

R[ γ2 T ], R[(1− γ2 )T ]
)
,

where R[ γ2 T ] and R[(1− γ2 )T ] are the γ
2T -th smallest integer and the (1 − γ

2 )T -th smallest integer of
{Rt, t = 1, 2, ..., T}, respectively.

It is worthy to point out that the Metropolis algorithm adopts only symmetric proposal distributions.
Therefore the normal distribution is appropriate. It is checked here that the normal proposal distribution
with variance σ2 = 0.5 is best for the rapid convergence of the Metropolis algorithm.

2.5 Numerical Simulations

The comparisons between the the MLEs and Bayes estimators of R cannot be done theoretically. Thus,
we present some simulations to compare the performance of the obtained results. We compare the MLEs
and Bayes estimators in terms of their biases and mean squared errors (MSE). We also compare different
confidence intervals, namely; the confidence intervals obtained by using asymptotic distribution of the
MLEs, bootstrap confidence intervals and the HPD credible intervals in terms of the average confidence
lengths.

The Bayes estimates are computed under the squared error loss function. To assess the performance
of the methods used in estimation, we use different parameter values, different hyper-parameters and
different sample sizes. Further, we assume two priors to obtain the Bayes estimators and HPD credible
intervals. These priors are typical and given as: Prior 1: aj = 0.0001, bj = 0.0001, where j = 1, 2, 3, 4, and
Prior 2: aj = 1, bj = 3, where j = 1, 2, 3, 4. In Table 1, we present the average biases and MSEs of the
MLEs and Bayes estimators based on 1000 replications. The results are given under different sample sizes.
The average confidence/credible lengths and the corresponding coverage percentages are given in Table 2.
It should be noted that for the two bootstrap methods, we compute the confidence intervals based on
1000 bootstrap iterations. The Bayes estimates and the corresponding credible intervals are based on
T = 1000 samples. Also, the confidence level, γ used in finding the confidence intervals or the credible
intervals is 0.95.

It is observed that the MLE compares very well with the Bayes estimators in terms of biases and
MSEs, see Table 1. Also, it is observed that the Bayes estimators based on Prior 2 perform better than
those obtained based on Prior 1. Table 2 shows that, the confidence intervals based on the asymptotic
distributions of the MLEs work well when n and m are getting larger, the Boot-p confidence intervals
perform better than the Boot-t confidence intervals, the bootstrap method provide the smallest average
lengths, the HPD credible intervals are wider than the other confidence intervals.
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Table 1. Biases and MSEs of MLE and Bayes estimators of R for different values of parameters

BS BS
(n,m) Method MLE prior1 prior2 MLE prior1 prior2

β1 = 1.5, β2 = 2, α = δ = 1 β1 = 2, β2 = 1.5, α = δ = 1
(15,15) MSE 0.0106 0.0161 0.0161 0.0108 0.0176 0.0173

Bias -0.0054 0.5012 0.5011 -0.0030 0.5489 0.5410
(15,25) MSE 0.0089 0.0160 0.0156 0.0087 0.0175 0.0170

Bias -0.0023 0.4980 0.4877 -0.0009 0.5462 0.5305
(15,50) MSE 0.0083 0.0158 0.0152 0.0081 0.0173 0.0166

Bias -0.0017 0.4934 0.4768 -0.0002 0.5411 0.5213
(25,15) MSE 0.0091 0.0158 0.0162 0.0091 0.0173 0.0174

Bias -0.0156 0.4932 0.5048 -0.0133 0.5417 0.5452
(25,25) MSE 0.0071 0.0157 0.0157 0.0070 0.0172 0.0170

Bias -0.0143 0.4908 0.4914 -0.0095 0.5383 0.5337
(25,50) MSE 0.0065 0.0157 0.0154 0.0063 0.0172 0.0168

Bias -0.0076 0.4926 0.4846 -0.0051 0.5394 0.5285
(50,15) MSE -0.0081 0.0161 0.0166 0.0082 0.0176 0.0179

Bias -0.0046 0.5029 0.5214 -0.0020 0.5516 0.5619
(50,25) MSE 0.0067 0.0160 0.0162 0.0066 0.0174 0.0175

Bias -0.0015 0.5013 0.5096 0.0001 0.5484 0.5516
(50,50) MSE 0.0056 0.0159 0.0159 0.0055 0.0174 0.0173

Bias 0.0012 0.5002 0.5000 0.0026 0.5478 0.5448

Table 2. Average confidence credible length and the coverage percentage

MLEs Boot BS
(n,m) Untransformed Logit Arcsin boot-p boot-t prior1 prior2

β1 = 1.5, β2 = 2, α = δ = 1
(15,15) Len 0.6355 0.5421 0.4353 0.2291 0.2487 0.3482 0.3340

CP 0.9930 0.9830 0.9610 0.8570 0.8700 0.9780 0.9920
(15,25) Len 0.6052 0.5279 0.3779 0.1951 0.1966 0.3140 0.3045

CP 0.9990 0.9960 0.9660 0.9470 0.9480 0.9840 0.9920
(15,50) Len 0.6329 0.5516 0.3594 0.1839 0.1843 0.2847 0.2881

CP 0.9990 0.9990 0.9780 0.9250 0.9260 0.9820 0.9920
(25,15) Len 0.5097 0.4543 0.3194 0.2121 0.2159 0.3160 0.3071

CP 0.9940 0.9790 0.9250 0.5550 0.5630 0.9940 0.9940
(25,25) Len 0.4923 0.4454 0.2705 0.1774 0.1806 0.2752 0.2658

CP 0.9960 0.9940 0.9280 0.7560 0.7610 0.9900 0.9920
(25,50) Len 0.4627 0.4258 0.2225 0.1444 0.1465 0.2401 0.2380

CP 0.9990 0.9990 0.9190 0.5730 0.5790 0.9780 0.9900
(50,15) Len 0.3624 0.3354 0.2074 0.1923 0.1990 0.2893 0.2924

CP 0.9590 0.9500 0.7960 0.7810 0.7890 0.9860 0.9820
(50,25) Len 0.3626 0.3400 0.1744 0.1601 0.1649 0.2426 0.2387

CP 0.9880 0.9840 0.8070 0.6330 0.6450 0.9860 0.9820
(50,50) Len 0.3481 0.3300 0.1376 0.1255 0.1257 0.2007 0.1940

CP 0.9990 0.9990 0.8110 0.9180 0.9190 0.9860 0.9860
β1 = 2, β2 = 1.5, α = δ = 1

(15,15) Len 0.6673 0.5629 0.4549 0.2405 0.2494 0.3476 0.3338
CP 0.9960 0.9890 0.9710 0.7630 0.7720 0.9780 0.9860

(15,25) Len 0.5528 0.4864 0.3451 0.2301 0.2305 0.3163 0.3074
CP 0.9970 0.9890 0.9360 0.9650 0.9660 0.9900 0.9920

(15,50) Len 0.4006 0.3689 0.2292 0.2125 0.2130 0.2888 0.2929
CP 0.9850 0.9680 0.8430 0.9520 0.9530 0.9800 0.9780

(25,15) Len 0.5920 0.5186 0.3702 0.1909 0.1920 0.3142 0.3045
CP 0.9980 0.9970 0.9610 0.5100 0.5130 0.9900 0.9980

(25,25) Len 0.5169 0.4653 0.2839 0.1863 0.1868 0.2756 0.2658
CP 0.9980 0.9950 0.9300 0.8640 0.8650 0.9880 0.9900

(25,50) Len 0.3960 0.3694 0.1905 0.1748 0.1752 0.2435 0.2389
CP 0.9970 0.9940 0.8500 0.7810 0.7820 0.9880 0.9860

(50,15) Len 0.4595 0.4213 0.2637 0.1335 0.1346 0.2860 0.2887
CP 0.9960 0.9940 0.9040 0.8340 0.8360 0.9880 0.9960

(50,25) Len 0.4335 0.4023 0.2087 0.1353 0.1356 0.2407 0.2387
CP 0.9990 0.9970 0.8970 0.6420 0.6430 0.9860 0.9920

(50,50) Len 0.3655 0.3460 0.1446 0.1317 0.1320 0.2014 0.1941
CP 0.9990 0.9990 0.8210 0.9180 0.9190 0.9760 0.9800
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3 Multicomponent Stress-Strength Model
In this section, we study the multicomponent stress-strength reliability for Dagum distribution when
both stress and strength variates follow the same population. We also obtain the asymptotic confidence
intervals for the multicomponent stress-strength reliability using MLE. We run a simulation study to
compare the estimators.

Let the random samples Y,X1, X2, · · · , Xk be independent, G(y) be the continuous distribution
function of Y and F (x) be the common continuous distribution function of X1, X2, · · · , Xk. The reliability
in a multicomponent stress-strength model developed by Bhattacharyya and Johnson [20] is

Rs,k = P (at least s of the (x1, x2, · · · , xk) exceedY ) .

=
k∑
i=s

(
k

i

)∫ ∞
−∞

[1−G(y)]i[G(y)]k−idF (y). (3.1)

3.1 Maximum Likelihood Estimator of Rs,k

Let X ∼ Dagum(β1, α, δ) and Y ∼ Dagum(β2, α, δ), where X and Y are two independent random
variables with unknown shape parameters β1 and β2 and common scale parameters δ and shape parameter
α. The reliability in multicomponent stress-strength for Dagum distribution using (1.1) results in:

Rs,k =
k∑
i=s

(
k

i

)∫ ∞
−∞

[1− (αy−δ)−β1 ]i[(1 + αt−δ)−β1 ]k−iβ2αδt
−δ−1(1 + αt−δ)−β2−1dt.

= v
k∑
i=s

(
k

i

)∫ ∞
−∞

(1− t)itk−i+v−1dt.

= v

k∑
i=s

(
k

i

)
B(k + v − i, i+ 1). (3.2)

where t = (1 + αy−δ)−β1 , v = β2/β1 and B(·, ·) is the incomplete beta function. After some simplification
equation (3.2) is reduced to

Rs,k = v

k∑
i=s

k!
(k − i)!

 k∏
j=i

(k + v − j)

−1

. (3.3)

The MLE of Rs,k becomes

R̂s,k = v̂
k∑
i=s

k!
(k − i)!

 k∏
j=i

(k + v̂ − j)

−1

, where v̂ = β̂1

β̂2
. (3.4)

To obtain the asymptotic confidence intervals for Rs,k, we proceed as follows: The asymptotic variances
(AV) of the β̂1 and β̂2 are given by

AV (β̂1) =
[
E

(
∂2L

∂β1

)]−1

= β2
1
n
, and AV (β̂2) =

[
E

(
∂2L

∂β2

)]−1

= β2
2
m
.

The asymptotic variance of an estimate of Rs,k is given by (For details see Rao [21]):

AV (R̂s,k) = AV (β̂1)
(
∂Rs,k
∂β1

)2
+AV (β̂2)

(
∂Rs,k
∂β2

)2
. (3.5)

Thus from equation (3.5), the asymptotic variance of R̂s,k can be obtained. To avoid the difficulty of
derivation of Rs,k, we obtain R̂s,k and their derivatives for (s, k) = (1, 3) and (2, 4) separately. They are
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given as

R̂1,3 = 3
(v̂ + 3) , R̂2,4 = 12

(v̂ + 4)(v̂ + 3) ,

∂R̂1,3

∂β1
= 1
β1

[
3v̂

(v̂ + 3)2

]
,

∂R̂1,3

∂β2
= − 1

β1

[
3

(v̂ + 3)2

]
,

∂R̂2,4

∂β1
= 1
β1

[
12v̂[2v̂ + 7]

(v̂ + 4)(v̂ + 3)2

]
, and ∂R̂2,4

∂β2
= − 1

β1

[
12[2v̂ + 7]

(v̂ + 4)(v̂ + 3)2

]
.

Therefore,

AV (R̂1,3) = 9v̂2

(v̂ + 3)4

(
1
n

+ 1
m

)
,

and

AV (R̂2,4) = 144v̂2[2v̂ + 7]2

[(v̂ + 4)(v̂ + 3)]4

(
1
n

+ 1
m

)
.

As n→∞ and m→∞, we have (Rs,k − R̂s,k)/AV (R̂s,k)→ N(0, 1) for s, k = 1, 2, · · · . The asymptotic
95% confidence interval (CI) of system reliability Rs,k is

R̂s,k ∓ 1.96
√
AV (R̂s,k).

Thus, the asymptotic 95% confidence intervals for R1,3 and R2,4 are, respectively, given by

R̂1,3 ∓ 1.96 3v̂
(v̂ + 3)2

√
1
n

+ 1
m
,

and

R̂2,4 ∓ 1.96 12v̂[2v̂ + 7]
[(v̂ + 4)(v̂ + 3)]2

√
1
n

+ 1
m
.

3.2 Simulation Study
We generate 3000 random samples of size 10, 15, 20, 25, 30 each from stress and strength populations
for (β1, β2) = (3.0, 1.5), (2.5, 1.5), (2.0, 1.5), (1.5, 1.5), (1.5, 2.0), (1.5, 2.5) and (1.5,3.0) as proposed by
Bhattacharyya and Johnson [20]. The MLEs of β, α and δ, say β̂, α̂ and δ̂ are estimated by solutions
of the nonlinear equation. These ML estimators of β1 and β2 are then substituted in v to get the
multicomponent reliability for (s, k) = (1, 3), (2, 4). The average bias and average MSE of the reliability
estimates over the 3000 replications are given in Table 3. Average confidence length of the simulated
95% confidence intervals of, Rs,k are given in Table 3. The true values of reliability in multicomponent
stress-strength with the given combinations for (s, k) = (1, 3) are 0.857, 0.833, 0.800, 0.750, 0.692, 0.643,
0.600 and for (s, k) = (2, 4) are 0.762, 0.725, 0.674, 0.600, 0.519, 0.454, 0.400. Thus the true value of
reliability in multicomponent stress-strength decreases as β2 increases for a fixed β1 whereas reliability in
multicomponent stress-strength increases as β1 increases for a fixed β2 in both cases of (s, k). Therefore,
the true value of reliability decreases as v increases and vice versa. The average bias and average MSE
decrease as sample size increases for both situations of (s, k). Also, it is noted that the bias is negative
and relatively small in all the combinations of the parameters in both situations of (s, k) which leads
MLE to underestimate the parameters, and thus the Rs,k. This generally proves the consistency property
of the MLE of Rs,k. Whereas, among the parameters the absolute bias and MSE decrease as β1 increases
for a fixed β2 in both cases of (s, k). The absolute bias and MSE increase as β2 increases for a fixed β1 in
both cases of (s, k). It is also clear that as the sample size increases the length of CI decreases in all cases.
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Table 3. In each cell the first row represents the average bias, the second row represents the average MSE and the
third row represents the average confidence length of the simulated 95% confidence intervals of Rs,k using MLE

(β1, β2)
(s, k) (n,m) (3.0,1.5) (2.5,1.5) (2.0,1.5) (1.5,1.5) (1.5,2.0) (1.5,2.5) (1.5,3.0)

(10,10) -0.0100 -0.0106 -0.0119 -0.0143 -0.0171 -0.0177 -0.0176
0.0043 0.0053 0.0069 0.0094 0.0124 0.0147 0.0167
0.2197 0.2466 0.2809 0.3247 0.3633 0.3856 0.3976

(15,15) -0.0039 -0.0045 -0.0056 -0.0080 -0.0108 -0.0121 -0.0122
0.0027 0.0033 0.0044 0.0060 0.0080 0.0094 0.0106
0.1754 0.1983 0.2276 0.2655 0.2994 0.3200 0.3318

(1,3) (20,20) -0.0011 -0.0015 -0.0025 -0.0045 -0.0071 -0.0091 -0.0097
0.0019 0.0024 0.0031 0.0043 0.0057 0.0069 0.0079
0.1504 0.1705 0.1964 0.2299 0.2604 0.2792 0.2901

(25,25) -0.0003 -0.0009 -0.0018 -0.0037 -0.0061 -0.0081 -0.0092
0.0015 0.0018 0.0024 0.0033 0.0044 0.0053 0.0061
0.1344 0.1526 0.1760 0.2063 0.2339 0.2512 0.2614

(30,30) -0.0007 -0.0011 -0.0021 -0.0042 -0.0066 -0.0086 -0.0097
0.0013 0.0016 0.0020 0.0028 0.0037 0.0044 0.0050
0.1232 0.1398 0.1612 0.1891 0.2145 0.2304 0.2398

(10,10) -0.0131 -0.0129 -0.0133 -0.0139 -0.0141 -0.0114 -0.0081
0.0101 0.0117 0.0143 0.0173 0.0196 0.0205 0.0208
0.3376 0.3713 0.4098 0.4506 0.4742 0.4765 0.4675

(15,15) -0.0044 -0.0048 -0.0055 -0.0073 -0.0088 -0.0083 -0.0064
0.0065 0.0076 0.0093 0.0115 0.0132 0.0139 0.0140
0.2728 0.3022 0.3363 0.3735 0.3962 0.4004 0.3945

(2,4) (20,20) -0.0006 -0.0009 -0.0018 -0.0036 -0.0055 -0.0064 -0.0056
0.0047 0.0055 0.0068 0.0085 0.0099 0.0106 0.0107
0.2353 0.2614 0.2921 0.3258 0.3470 0.3516 0.3468

(25,25) -0.0004 -0.0002 -0.0012 -0.0031 -0.0051 -0.0064 -0.0065
0.0036 0.0048 0.0053 0.0066 0.0077 0.0082 0.0084
0.2108 0.2345 0.2626 0.2934 0.3130 0.3175 0.3132

(30,30) -0.0003 -0.0008 -0.0019 -0.0042 -0.0063 -0.0077 -0.0079
0.0031 0.0037 0.0045 0.0055 0.0064 0.0069 0.0070
0.1933 0.2150 0.2407 0.2692 0.2872 0.2914 0.2876

4 Concluding Remarks
In this paper, we have considered the problem of estimation of a single and multicomponent stress-strength
reliability for a three-parameter Dagum distribution when both stress and strength variates follow the
same distribution. The maximum likelihood and Bayes estimators of the stress-strength parameter,
R have been derived. We have compared the MLEs and Bayes estimators in terms of their biases and
mean squared errors. It may be noted, from Table 1 that the maximum likelihood estimates have the
smallest mean squared errors as compared with their corresponding Bayes estimates. We observed the
Bayesian method is sensitive to the choice of the priors. Generally the Bayes estimators based on Prior 2
perform better than the Bayes estimators based on Prior 1. For all sample sizes (n,m), the bootstrap
methods provide the smallest average lengths. It is observed that boot-p confidence intervals perform
better than those obtained by the boot-t methods. Further, the coverage probability is quite close to the
given value in all sets of parameters. For the multicomponent stress-strength reliability, we have estimated
the asymptotic confidence intervals. The simulation result in Table 3 indicates that the averages of bias
and MSE decrease as sample size increases. Also, the absolute bias and MSE decrease (increase) as β1
increases (β2 increases) in both situations of (s, k).
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