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Abstract A two-way multivariate analysis of variance (MANOVA) aims to compare the effects
of several levels of two factors in a factorial experiment with two-way layout. It is widely used in
experimental sciences, e.g., biology, psychology, physics, among others. When the cell covariance
matrices are the same, it can be solved using the well-known Wilks likelihood ratio, Lawley-Hotelling
trace, Bartlett-Nanda-Pillai trace and Roy’s largest root tests ([1]). However, when the homogeneous
assumption is violated, these tests may become seriously biased. To overcome this problem, several
authors have proposed and studied different approximation solutions. In this paper, we propose and
study a Modified Bartlett (MB) test using a Wald-type statistic and the modified Bartlett correction
([2]) for heteroscedastic two-way MANOVA problems. The MB test can be easily implemented using
the usual y2-distribution with known degrees of freedom. We show that it admits several invariant
properties. Simulation studies show that the MB test generally outperforms the classical Lawley-
Hotelling trace (LHT) test and a modified LHT test of [3] under various parameter configurations
in terms of size controlling and power. A real data example illustrates our method and the effect of
heteroscedasticity.

Keywords: Heteroscedastic two-way MANOVA, Tests of linear hypotheses, Modified Bartlett
correction, Wald-type statistic.

1 Introduction

A two-way multivariate analysis of variance (MANOVA) aims to compare the effects of several levels of
two factors in a factorial experiment with two-way layout. It is a multivariate version of two-way ANOVA
model and is widely used in experimental sciences, e.g., biology, psychology, physics, among others;
examples may be found in [4], [5], and [6], among others. When the cell covariance matrices are known to
be the same, this problem can be solved using the Wilks likelihood ratio (WLR), Lawley-Hotelling trace
(LHT), Bartlett-Nanda-Pillai (BNP) and Roy’s largest root tests as discussed in [1]. However, when the
homogeneous assumption is violated, these tests may become seriously biased, which means their sizes
may be severely inflated or deflated. For example, in our simulations which are presented in Section 3, we
set the nominal size & = 5%, the empirical size of the LHT test for testing interaction effect could be
as large as 75% or as small as 0%. This is a serious problem. In real data analysis, Box’s M test ([7])
is usually used to check whether the cell covariance matrices are equal and when the null hypothesis is
rejected, those tests mentioned above are not suitable for the main effect testing or interaction effect
testing. In this case, a test for heteroscedastic two-way MANOVA is needed.

To our knowledge, this problem for heteroscedastic two-way MANOVA has not been well addressed
in the literature. Recently, [3] tried to solve this problem via modifying the WLR, LHT and BNP tests.
Their main ideas focus on modifying the degrees of freedom of the random matrices involved in the test
statistics so that the heteroscedasticity of the cell covariance matrices is taken into account and the
WLR, LHT and BNP tests can still be used but with the degrees of freedom estimated from the data via
matching the first two moments. Although their approaches are simple to understand, these approaches
admit the following three main drawbacks: (1) one needs to estimate the degrees of freedom of both the
random matrices involved in the test statistics; (2) the estimated degrees of freedom, as given in Section 3
of [3], are complicated, case-sensitive, and not affine invariant; and (3) the null distributions of the WLR,
LHT and BNP tests with known degrees of freedom are not immediately available; further approximations
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based on x? or normal asymptotic expansions are needed, as shown in Sections 3.1 and 3.2 of [3]. To
overcome these drawbacks, using Wishart-approximation, [8] proposed an approximate Hotelling T test,
and [9] improved [3]’s modified MANOVA tests. [10,11] studied an approximate degrees of freedom F-test
for heteroscedastic two-way ANOVA and one-way MANOVA respectively.

The most related topic to the heteroscedastic two-way MANOVA is the heteroscedastic one-way
MANOVA which tests the effect of a factor, having k levels, in an experimental design. When k = 2,
this problem is often referred to as the multivariate Behrens-Fisher (BF) problem and it has been well
addressed in the literature by various authors including [12], [13], [14], [15], [16], [17], [18], and [19],
among others. [18]’s test is based on a Wald-type statistic’s asymptotic distribution and the modified
Bartlett correction of [2]. [2] proposed several monotone transformations that can be applied to a wide
class of approximately chi-squared distributed statistics, aiming to improve the chi-squared approximation
accuracy. According to [18)’s simulation studies, the MB test based on [2]’s method works well for the
two-sample multivariate Behrens-Fisher problem. We feel this idea also works for heteroscedastic two-way
MANOVA models, so we propose and study the MB test in this paper. Following [18], we use a Wald-type
statistic (see for example, [20]) and adopt the modified Bartlett correction. Our MB test admits several
nice properties: (1) it has a simple form and its P-value is easy to compute using a chi-square distribution
with known degrees of freedom; (2) it is shown to be affine-invariant; (3) all the related tests under the
two-way MANOVA, such as the main effect, interaction effect, post hoc, and contrast tests among others,
can be unified under a common framework — a general linear hypothesis test. The MB test is shown to
be invariant under different choices of the matrices used to define the same hypothesis; and (4) it works
well. Simulation results reported in Section 3 show that the MB test generally outperforms the LHT test
in terms of size controlling and [3]’s LHT),, test in terms of size and power under heteroscedastic cases.
The simulations also show that the MB test does not lose much power in homogenous cases compared to
the LHT test, indicating the MB test also works well when the cell covariance matrices are the same. We
would also like to mention that it is straight forward to extend the ideas and methodologies for two-way
heteroscedastic MANOVA to three and higher-way heteroscedastic MANOVA where more factors are
considered as done in [8].

It is worthwhile to mention that heteroscedastic ANOVA and MANOVA problems have been paid much
attention in the past decades due to their interesting and challenging nature. There are two major kinds
of methods: simulation-based approaches and approximation-based approaches. The references mentioned
earlier among others are generally approximation-based approaches. In the literature, simulation-based
approaches are also popular due to their simplicity and recent advance of computation powers. For
example, to deal with heteroscedasticity, [21] proposed a simulation-based approximate test. [22] proposed
another simulation-based test using the concept of generalized P-values, resulting in a so-called generalized
F-test. The generalized P-values method is further studied by [23] and [24]. [25] compared the performance
of a parametric bootstrap test with the generalized F-test of [22]. [26] proposed a bootstrap method and
[27] studied a permutation test for general ANOVA problems. A drawback of simulation-based approaches
is that they are often time-consuming especially when the sample sizes are large.

The rest of the paper is organized as follows. The methodologies for the MB test are presented in
Section 2. Simulation results are presented in Section 3. An example using a data set from a smoking
cessation trial is presented in Section 4. Finally, some technical proofs of the main results are given in the
Appendix.

2 Methodologies

2.1 Main and Interaction Effects in Two-way MANOVA Models

Consider a two-way experiment with two factors A and B having a and b levels, respectively, with a total
of ab factorial combinations or cells. Suppose at the (i, j)-th cell, we have a p-dimensional random sample:
Yijko k= 1,2, ,n;;, satistying the following model:

Yijr = Mij + €ijr, €ijr ~ Np(0,X55), k=1,--- nyj, (1)

where p;; : px 1 and Xy; : p X p are the cell mean vector and cell covariance matrix of the random
sample at the (7, j)-th cell. All these ab samples are assumed to be independent with each other. In this
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subsection, we aim to represent the main and interaction effects as linear combinations of the cell means
which are estimable in the two-way MANOVA model (2) as described below.

In two-way MANOVA, the cell mean vectors p,;; are usually decomposed into the form p;; =
Mot o+ B+, t=12,---,a;5=1,2,--- b, where p is the grand mean vector, a; and 3; are
the i-th and j-th main effects of factors A and B, respectively, and v;; is the (4, j)-th interaction effect
between factors A and B so that (1) can be further written as the following well-known two-way MANOVA
model:

Yijr = Mo + i + B+, + €iji, €ijr ~ Np(0, Xij), @)
k=1,2,--- ,ng;1=1,2,--- ,a;5=1,2,--- ,b.

For this model, we are interested in the following three null hypotheses:

Hop ta1=as=--=a,=0,
Hyp :ﬂlzﬂQZ"':ﬂbZOa (3)
HOAB:'711:"':71}):"':7@1:"':’Yabzo'

The first two null hypotheses aim to test if the main effects of the two factors are statistically significant
while the last one aims to test if the interaction effect between the two factors is statistically significant.
The model (2) is not identifiable since the parameters g, a;, B, and =,; are not uniquely defined unless
some constraints are imposed. Given a sequence of positive weights w;;, i = 1,2,--- ,a;5 = 1,2,--- , b,
we impose the following constraints

a b
Zwi.ai = 0, Z’w‘j,@j = 0, (4)
i=1 j=1

b

Zwij7ij:0a Z.:laza"'va‘_17 (5)
j=1

a

Zwij’)’ijzoa j:1a27"'ab_17 (6)
=1

a b

Zzwij%j =0, (7)
i=1 j=1

where w;. = Z?Zl w;; and w.; = Z?Zl w;;. Notice that we here use only a + b + 1 constraints which
imply the a + b + 2 constraints suggested by [28] and adopted by [22]. This is because the constraint (5)
[resp. (6)], jointly with the constraint (7), implies that the constraint (6) [resp. (5)] holds for j = b [resp.
for i = a]. Set

o= [a{f" ’ag]T’ﬂ = [ﬂ?7 ’617;]11"7 = [7{1v"' 77?{)7"' 5’7317"- 77§b]T'

Then under the constraints (4)~(7), simple algebra shows that the three null hypotheses (3) can be
equivalently written as

Hox: [H,®IJa=0, with H, = (Ia_l, f1a_1),

HOB : [Hb®Ip],B:0, with Hb: (Ib717_1b71>7 (8)

Hoap : [Hay @ Ly = 0, with Hap = (Lo1,~1a-1) @ (Tp1,~ 101 ),
where and throughout, I, and 1, denote the identity matrix of size r and the r-dimensional vector of
ones, respectively, and ® denotes the Kronecker product operation. The matrices H,, Hy, and H,;, are
full rank contrast matrices, having ranks (a — 1), (b — 1) and (a — 1)(b — 1), respectively.

When the weights can be written as w;; = wwv;, ¢ = 1,2,--- ,a;5 = 1,2,---,b, such that u; >

0, >¢ ,u; =1 and v; > 0, Z?Zl vj = 1, we can easily identify the parameters pg, o;, 3; and v,; as

b b
KBy = Z?:1 Zj:l UiV 5, O = Zj:l Vil — Moy By = Z?:1 Uifb;; — Ko, and v;; = p;; — o — B — pg- Let
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T T T T T T1T . .
w=[ur, - ,U) 0 =1[v1, -, 0", and p= (i1, Wip, > Ha1r " Map) - Denote an [-dimensional
unit vector whose r-th component is 1 and others are 0 as e, ;. Then we have

po = [(u" @v")® I)p, a; = [(€q — w)! @v’® Iy,
B; = [u” @ (ejp — v)'® I))p, Yij = [(eia— u)’ @ (ejp — v)''® I)p, 9)
i=1,2-,a;j=1,2,---,b.

In matrix notation, we can further write

a=[A,®I,)u, with A, = (I, —1,u”) @7,
B = [Ab & Ip]u7 with 4, = uT ® Iy — 11)’UT)7 (10)
v =[Aw @ Iplp, with Ay, = (I, — 1,u”) @ (I, — 1,v7),

where the matrices A,, Ay, and A,y are not full rank matrices, having ranks (a — 1), (b — 1), and
(a —1)(b — 1), respectively.

Notice that each of the testing problems associated with the three null hypotheses (8) can then be
equivalently expressed in the form of the general linear hypothesis testing (GLHT) problem (12) as
described in next subsection with C, respectively, being

c,= (HaAa) ® Ip, (= (HbAb) (024] Ip, Cuw = (HabAab) & Ip. (11)

There are a few methods which can be used to specify the weights w;;, ¢ =1,2,--- ,a;j =1,2,--- ,b;
see for example, [28]. In this paper, we use the following two simple methods: the equal-weight method
and the size-adapted-weight method. Both methods specify the weights as w;; = u;v5, i =1,2,--- ,a;j =
1,2,---,b, with the equal-weight method specifying w and v as u; = 1/a,v; =1/b, i =1,2,--- ,a;j =
1,2,---,b, while the size-adapted-weight method specifying v and v as u; = 2221 n;j/N,i=1,2,-- ,q,
and v; = > % n;j/N,j=1,2,--- b, where N = Y7 | 22:1 ni;. When the two-way MANOVA design is
balanced, i.e., when all the cell sizes n;;, i =1,2,--- ,a;j = 1,2,--- ,b, are the same, the size-adapted-
weight method reduces to the equal-weight method. In practice, both weight methods can be used when
the cell sizes are near the same. However, when the cell sizes are quite different, the size-adapted-weight
method is recommended so that the effect of the cell sizes can be taken into account.

2.2 Wald-type Test Statistic for Linear Hypotheses

Using the cell mean vector p defined in the previous subsection, we can write the GLHT problem under
the two-way MANOVA model (2) as

Hy: Cu=c, vs Hy: Cu+#ec, (12)

where C = Cy ® I,, : ¢ x (abp) is a known matrix of full rank with rank(Cy) = gy and ¢ = gop, and
c: g x1is aknown constant vector, often specified as 0. For the three testing problems (3), the associated
C-matrices are given in (11).

To construct the test statistic for the GLHT problem (12), we denote the usual unbiased estimators of
the cell mean vectors and cell covariance matrices of the random sample (1) as

ﬂij = nfjl Zzz’l Yijks iy = (mj — 1)_1 ZZ:ﬁ(yUk - ﬂij)(yijk - ﬂij)T, (13)
i=1,2,---,a;5=1,2,--- ,b.

Set f1 = [fi1y, -, fly -y, ily]T as the estimator of p. Then fi ~ Napp(p, X) where ¥ =

diag(& RIS 2“’,-~~ 2o Haz . Z‘Lb).Since Cii—c~ Ny(Cpu—c,CXCT), the associated

ni1 ’ niz ’ nap 7 na1 ? Na2’ ? Mab

Wald-type test statistic is

T = (Cii—e)" (CSC") “(Ch—e), (14)

where ¥ = diag(%‘“, 212,-~ , 2“’,~-~ , 2 , @7 e ,%). Notice that the test statistic T is affine
11 niz N1y Nal Na2 Nab

invariant with respect to the GLHT problem (12) in the sense that for any nonsingular ¢ X ¢ matrix B,

T is invariant if the constant matrix C' and the constant vector ¢ in (12) are replaced with BC' and Be,

respectively.
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2.3 MB Test for Heteroscedastic Two-way MANOVA Models

To construct the MB test, following [18], we re-express T as
T=2"Wlz, (15)

where
z=(xCcH V2 Ccp-ec), W= (xch)\2(cxch(cxct) /2. (16)

Notice that z ~ N,(p,,I,), where p, = (CXCT)~1/2(Cpu — ¢), and under the null hypothesis, z is a
standard ¢-dimensional normal random vector, i.e., z ~ Ny(0,1I,). Let nyin = min{_; min?=1 n;; denote
the minimum cell size. To study the asymptotic distribution of T', we impose the following condition:

Nij

AS?’lmin—>OO7 —r Tij < 00, i:1727"'aa;j:172a"'7b' (17)

Nmin
This condition indicates that all the cell sizes tend to infinity at about the same rate so that ny, (CXCT)
tend to a non-singular matrix as ny;, — 0o. We then have the following result.

Theorem 1 Under the condition (17) and Hy, as Nmin — 00, we have
L. 2
T — xg-

The above theorem shows that T asymptotically follows a y2-distribution with q degrees of freedom.
Similar results for some special C' must have appeared in the literature but we here show that it is true for
the GLHT problem (12). Based on Theorem 1, a y2-test for the GLHT problem can be constructed easily.
However, it is well known that a y?-test for (12) usually converges very slowly. In fact, from our proof of
Theorem 1 in the Appendix, we can see that the convergence rate of T to x7 is of Op(n;mllf 2). This indicates
that the y2-test directly based on T’s asymptotic distribution can be very inaccurate when n,;, is small or
moderate. In this case, the convergence of the mean and variance of T to those of the limit distribution xﬁ
is also very slow. To overcome this problem, we may use the well-known Bartlett correction which corrects
the mean of T' to order O(n_ 2 ) to improve the convergence rate, but a better choice would be the modified
Bartlett (MB) correction proposed by [2] which corrects both the mean and variance of T' to order O(n_2)
to improve the convergence rate further. Set §2;; = ni_leijZinz;, 1 =1,2,---,a;5 =1,2,--- b,
where H;; = (CECT)_1/2CU, 1=1,2,---,a;j=1,2,--- ;b with C11,C12,--- ,Cqy being the (ab)-th
column of C. To apply the MB correction to T" and propose the so called MB test, we need the following
result.

Theorem 2 Under the condition (17) and Hy, a8 Nmin — 00, we have

aq (&%)

B(T) =q(1+—)+ O(nys,) and E(T?) = q(q+2)(1 + )t O (i),
where
a1 = nmin(Al + AQ)/qa
Q2 = Nmin[(2g + 8) A1 + (2 + 6) A2]/[g(q + 2)],
Ay = Z?:l 22:1 tr(ﬁ?j)/(nij -1),
Ay =300, 2o P (025) /(nyy — 1).
Furthermore, we have
7 q ¢ pq
— < < <A —_— 1
(Nmax — 1)abp — b= Nmin — 1 and (Nmax — 1)ab — 2 < (Nmin — 1) (18)

Notice that under the conditions of Theorem 2, cv; and ap will tend to their finite limits as ny,;, — oo. Based
on Theorems 1 and 2, we can apply the modified Bartlett correction to 7' through the log-transformation

Tyus = (nminﬂl + 62)109(1 + )7

nminﬂl
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and By = (l1+2)042—2(f1+4)a1.

where 1 = 5(as—2a1)

Qs 72041
By [2], we have T/ L Xq and E(Ty) = ¢+ 0(n, ) and E(T2,,) = q¢(¢+2)+O0(n mm) as Nmin — 00.
On contrast, as seen from Theorem 2, we only have E(T) = ¢+ O(n_1 ) and E(T?) = ¢(q +2) + O(n
It follows from [2] that Ty converges to x2 much faster than T does.
In real data analysis, 51 and (2 have to be estimated from the data. Proper estimators can be obtained
via replacing $2;;, @ =1,2,---,a;j =1,2,---,b with their estimators:

min

m1n> N

sz _TL (CECT) 1/202]2’LJC,11;(020T)_1/27 i= 1727"' 7a;j = 1727"' 7b‘ (]‘9)
Thus,
a b
ZZ /(ni; —1) and Ay = ZZtr 2;5)/(ni; — 1). (20)
i=1 j=1 i=1 j=1

The estimators 1, &2, 81 and B, are then obtained accordingly. By the law of large numbers, it is classical

to show that as nyn — 00, %, g—z, % and % all tend to 1 almost surely, so that as npyy, — o0,
- A A L
Tyie = (MminB1 + P2)log(1 + =) — X§~ (21)
MminP1
Some simple algebra leads to NminB1 = % and nminf1 + 32 = %. From the proof of

Theorem 2, we can see that the ranges of Ay and Ay as given in (18) are also the ranges of Ay and
Ag respectively. Thus, provided npiyn > p + 1, we always have nminﬂAl > 0 and nmin31 + /5’2 > (0. This
guarantees that T, uve > 0 and it is a monotonically increasing function of 7. The critical value of the MB
test can then be specified as Xg(l — «) for any given significance level cv. We reject the null hypothesis in
(12) when this critical value is exceeded by Tos. The MB test can also be conducted via computing the
P-value based on xﬁ- Thus, the MB test can be conducted easily via using the usual x2-table.

2.4 Some Desirable Properties of the MB Test

Notice for hypotheses (8), the contrast matrices H,, Hj, and H,, which are used to specify the main
effect test and interaction effect test respectively are not unique. For example, I:Ia =(—14-1,14-1) is
also a contrast matrix for the first hypothesis in (8). It is known from [29] (Ch. 5, Sec. 4) that for any two
contrast matrices H, and H, which specify the same hypothesis, there is a nonsingular matrix P such
that H, = PH,, where * may be replaced with a, b or ab. By (11), the C-matrix associated with the
contrast matrix H, can be expressed as C, = (H,A,) ® I,. Let C, be the C-matrix associated with
the contrast matrix H,. Then we have C, = (I:I*A*) ®I,=(PH.A,)®I,=(P®I,)C,. Theorem 3
shows that the MB test is invariant to different choices of the contrast matrix for the same hypothesis.

Theorem 3 The MB test is invariant when the coefficient matriz C and the constant vector ¢ in (12)
are replaced with 3
C=(P®I,)Candc=(PxI,c, (22)

respectively where P is any nonsingular matriz.
The MB test is also affine-invariant. That is, it is invariant under the following affine-transformation:
yijk = Byz]k+£ak = 1727"' s Thigs T = 1527"' ,Cl;j = 1727"' 7b7 (23)

where B is any nonsingular matrix and & is any given vector. This property is desirable since in practice,
the observed cell responses y,; (1) are often re-centered or re-scaled before an inference is conducted. The
re-centering and re-scaling transformations are special cases of (23).

Theorem 4 The MB test is invariant under the affine transformation (23).
Finally, we have the following result.

Theorem 5 The MB test is invariant under different labeling schemes of the cell mean vectors p;;, i =
1a27"' aa;j = 1527"' ab'

Copyright © 2016 Isaac Scientific Publishing JAS



100 Journal of Advanced Statistics, Vol. 1, No. 2, June 2016
https://dx.doi.org/10.22606/jas.2016.12006

3 Simulation Studies

It is well known ([1]) that for homogeneous data, the WLR, LHT and BNP tests are asymptotically
equivalent and they perform similarly for finite samples with the LHT test outperforming the other two
in many situations. [3] showed that for heteroscedastic data, the large-a asymptotics of the three tests
are also equivalent. Based on some simulations, [3] further showed that their modified WLR, LHT and
BNP tests also perform similarly for finite samples, with the modified LHT test, namely LHT,,, slightly
outperforming the BNP test. Therefore, in this section, we only need to compare the MB test with the
LHT and LHT,, tests via comparing their empirical sizes (Type I error rates) and powers for the main
and interaction effects of two factors in two-way MANOVA models via simulations.

Let the two factors be A and B with a and b levels respectively. Let n = [n11,n12, - , nqp) denote
the vector of cell sizes. For given n and covariance matrices X;;, 1 =1,2,--- ,a;j =1,2,--- ,b, we first
generate ab multivariate random samples as

1/2
Yijk = Kij + Eij/ €ijks kb =1,2,--+ ,ngj, (24)

where the cell mean vectors p,;; = pq; +1ijoh/(ab) with py; being the first cell mean vector, h a constant
unit vector specifying the direction of the cell mean differences, and § a tuning parameter controlling the
amount of the cell mean differences. We independently generate the p entries of the error terms €;;;, using
two schemes: (1) from the N(0, 1) distribution and (2) from the t,/+/2 distribution, so that we always
have E(e;;;) = 0 and Cov(e; ;) = I,,. This means that (24) will generate the (ij)-th multivariate normal
or non-normal sample y,;,k =1,2,--- ,n;; with the given mean vector p,;; and covariance matrix X';;.
Without loss of generality, we specify p;; as 0 and h as hg/||ho|| where hg = [1,2,--- ,p|T for any given
dimension p and ||hgl|| denotes the usual L?-norm of hy. We then apply the three tests to the generated
data, and record their P-values. This process is repeated N = 10000 times. The empirical sizes (when
d = 0) and powers (when ¢ > 0) of the three tests are the proportions of rejecting the null hypothesis,
i.e., when their P-values are less than the nominal significance level a. In all the simulations conducted,
we used a = 5% for simplicity.

For space saving, here we just report the simulation results for interaction effect tests. Similar
conclusions can be drawn from the simulation results for main effect tests. We used the equal-weight
method to specify the weights of the LHT and MB tests so that their simulation results are comparable
with those of the LHT,, test. The empirical sizes and powers of the three tests for interaction effect
tests, together with the associated tuning parameters, are presented in Tables 1 — 3, in the columns
labeled with LHT, LHT,,, and MB under “§ = 0” and “d > 0” respectively. As seen from the three
tables, three sets of the tuning parameters for the cell covariance matrices are examined, with the first
set specifying the homogeneous cases; four sets of the cell sizes are specified, with the first two sets
specifying the balanced cell size cases; and the two error schemes are considered. To measure the overall
performance of a test in terms of maintaining the nominal size «, we define the average relative error as
ARE = M1 ij\i1 |&; — | /v x 100 where &; denotes the j-th empirical size for j =1,2,--- , M, a = .05
and M is the number of empirical sizes under consideration. The smaller ARE value indicates the better
overall performance of the associated test. Usually, when ARE < 10, the test performs very well; when
10 < ARE < 20, the test performs reasonably well; and when ARE > 20, the test does not perform well
since its empirical sizes are either too liberal or too conservative and hence may be unacceptable. Notice
that for a good test, the larger the cell sizes, the smaller the ARE values. The ARE values of the three
tests under the two error schemes are also presented in these three tables. Notice that for simplicity, in
the specification of the covariance and size tuning parameters, we often use (u,) to denote “u repeats
r times 7. For simplicity and space saving, following [30], the cell covariance matrices and the cell sizes
were specified the same as for the b levels of factor B but they may be different for the a levels of factor
A. That is, for each ¢ =1,2,--- ,a, we have X;; = X;1,n4; =n41,7 = 1,2,--- ,b. The above method for
specifying the cell covariance matrices and the cell sizes will have no effect on our methodologies and
conclusions on general designs. Table 1 shows the empirical sizes and powers of the three tests for a
bivariate case with a = 2 and b = 20. With b = 20, one may be able to check how the three tests behave
when one of the factors has a large number of levels. Tables 2 and 3 show the empirical sizes and powers
of the three tests for a 3-variate case with ¢ = 3 and b = 10 and a 10-variate case with a =3 and b=5
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Table 1. Empirical sizes and powers of the three tests for interaction effect tests for bivariate two-way MANOVA.

a:2, b:207 21]':12, Egj:diag()\), j:1,2,--- ,20.
60=0 0=138 0=3.6 0=>54
Error A n LHT LHT,, MB LHT LHT,, MB LHT LHT,, MB LHT LHT, MB

N(,1) X1 m .053 .036 .042 130 .093 .093 532 457 .381 .948 .923 .857
na .053 .041 047 182 151 148 755 718 .668 .996 .994 .988
n3 .044 .030 .041 .155 114 122 .656 557 533 983 .968 957
Ny .054 .049 .052 437 .330 .402 .996 .986 994 1.00 1.00 1.00

A2 .066 .028 .042 - .050 .078 - 134 .235 - 391 .621
n2 .068 .032 .046 - .063 .108 - 237 436 - .658 .895
n3 -039 .036 .046 - .062 .089 - 221 .309 - .595 739
ny 194 .035 .051 - .095 .303 - .480 .968 - .958 1.00
Az .078 .027 .044 - .038 .068 - .078 218 - .222 574
n2 .076 .029 .045 - .049 .104 - 139 .403 - 418 .864
n3 .039 .033 .043 - .049 .082 - 131 .278 - .369 .688
ng .253 .031 .049 - .074 287 - 311 .958 - .808 1.00

ARE 79.2 31.4 9.02
ta/\V2 Ao .047 .018 024 132 .062 .078  .553 .379 464 949 .860 .933
na .050 .024 032 182 112 150 770 .650 762 1995 978 .996
n3 .049 .022 .029 161 .076 108 673 475 624 982 924 983
ny .051 .036 .040 442 .289 444 995 973 997 1.00 .999 1.00

A2 .064 .017 .023 - .031 .054 - 104 .264 - 337 728
n2 .064 .021 .031 - .046 .092 - .202 .504 - .595 .945
n3 .032 .018 .027 - .041 .075 - 170 .354 - .536 .830
ny 191 .029 .041 - .073 313 - 441 978 - .926 1.00
Az .072 .017 .024 - .022 .055 - .058 .240 - 178 .684
n2 .071 .018 .029 - .032 .090 - 107 467 - .363 921
n3 .037 .022 .030 - .037 .075 - .105 .325 - 324 .795
e .252 .023 .038 - .057 .305 - 274 .968 - 173 1.00

ARE 75.2 55.1 37.7

Al = (1, 1), Az = (1,5), and )\3 = (1, 10). ny = (7, 7)20, ns = (10, 10)207 ns = (7, 10)207 and ng = (307 15)20.

respectively. These two tables allow us to compare the three tests for higher-dimensional normal and
non-normal data.

First of all, let us compare the LHT and MB test via examining their empirical sizes and powers. It is
seen from the three tables that under homogeneous cases, the LHT test generally outperforms the MB
test under both N(0,1) and ¢4/ V/2 error schemes. Its empirical sizes are closer to 5% and powers are
bigger. The MB test also performs reasonably well, but not so well as the LHT test. It is not surprising
since the MB test does not take the homogeneity assumption into account while the LHT test does. On
the other hand, for the heteroscedastic cases, the LHT test no longer performs well. Under the N (0, 1)
error scheme, its empirical sizes are either too conservative or too liberal, ranging from 3.9% to 25.3% in
Table 1, from 4.5% to 15.4% in Table 2 and from 0% to 75.0% in Table 3 as listed in Table 4. However,
the MB test still maintains the nominal sizes quite well, with the empirical sizes ranging from 4.1% to
5.2% in Table 1, from 4.3% to 6.9% in Table 2 and from 4.6% to 7.2% in Table 3 as given in Table 4.
Since the empirical sizes of the LHT and MB tests are very different, it does not make too much sense to
compare their powers for the heteroscedastic cases. That is why we replaced the power values of the LHT
test with “-” in these cases. Under ¢4/ V2 error scheme, the MB test also outperforms the LHT test with
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Table 2. Empirical sizes and powers of the three tests for interaction effect tests for 3-variate two-way MANOVA.

1
a=3, b= 10, =y, =1Is, o, = diag(\), ¥y = (pfg) j=1,2,--,10
PP
5= §=18 §=36 §=5.4
Error (A,p) n LHT LHT, MB LHT LHT, MB LHT LHT, MB LHT LHT, MB

N(0,1)  (A1,p1) ma .051 .031 .043 138 .095 105 57T .490 435 968 951 .906
n2 .050 .036 .045  .199 .165 173 .830 .792 760  1.00 .999 997
n3 .045 .029 .060  .269 152 238 945 .807 .890  1.00 .999 1.00
ng .053 .035 .064  .260 .150 238 .936 .806 .881 1.00 .999 1.00

(A2, p2) ma 07T 020 053 - 054 124 - 316 538 - 868 958
ny 069 021  .049 - 099 208 - 630 847 - 993 1.00
ns 104 036  .066 - 135 320 - 736 976 - 998 1.00
ns 103 037 .069 - 134 317 - 710 975 - 997 1.00
(As,ps) m1 074 025  .048 - 059  .126 - 319 514 - 844 947
ny .075 030  .053 - 110 199 - 616 824 - 988 999
ns 154 037  .066 - 143 .301 - 743 967 - 998 1.00
ns 093 038 062 - 134 308 - 676 970 - 994 1.00
ARE 60.7 365  18.6

ta/vV2  (A,p1) mi .049 017 031 140  .061  .101 591  .399 528 969  .895  .957
ne  .049 022 035 203  .126  .176 835  .729  .833  .998  .988  .998
ns 054 022 045 281 113 259 942 736  .935 1.00 986  1.00
ns 054 020 .045 265  .116  .243 936  .734 936 1.00 986  1.00

(A2, p2) M1 .070 .012 .033 - .035 131 - .262 .654 - 798 .985
n2 .070 .017 .035 - .076 .229 - 57T 912 - 976 1.00
n3 .106 .024 .050 - .109 .357 - .696 .989 - .986 1.00
N .109 .026 .045 - .102 .354 - .668 987 - .980 1.00
(A3, p3) M .066 .012 .029 - .039 116 - .264 .631 - 173 .988
n2 .071 .017 .035 - .079 211 - 571 .896 - 971 1.00
ns .166 .028 .052 - 115 .328 - .698 .982 - .985 1.00
g .095 .025 .048 - .110 337 - .636 .985 - 975 1.00
ARE 61.3 59.1 19.8

(A1, p1) = (13,0), (A2, p2) = (1,15,.1,.1), and (As, ps) = (1,10,.1,.5). n1 = (10, 10,1010, n2 = (15, 15,15)10, s = (10,20, 40)10, and
na = (40,20, 10)10.

the LHT test’s performance really unacceptable. This also shows that without the normality assumption,
the classical LHT test is much more sensitive to the homogeneity assumption, that is why we need to
propose new procedures which can work well under heteroscedastic cases.

We now compare the LHT,,, and MB tests via examining their empirical sizes and powers under the
two error schemes. In terms of size controlling, the MB test generally outperforms the LHT,, test for all
the cases under consideration as shown by their empirical sizes and associated ARE values presented in
the three tables. The LHT,), test is generally too conservative, especially under the ¢4/v/2 error scheme. It
is probably due to the fact that the LHT,, test is not affine-invariant and its degrees of freedom can not
be accurately estimated using the method proposed by [3]. In terms of power, the MB test outperforms
the LHT,, test for almost all the cases except for some homogeneous cases under the N(0,1) scheme.
The LHT,, test can have higher powers in these cases probably due to the fact that the LHT,, test uses
the similar test statistic to the one used by the LHT test.
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Table 3. Empirical sizes and powers of the three tests for interaction effect tests for 10-variate two-way MANOVA.

a=3, b=5, X = Tho, ;= diag(A), Xs; = diag(n), i=12,..,5
6=0 =21 =42 §=26.3
Error (A, m) n LHT LHT,, MB LHT LHT,, MB LHT LHT,, MB LHT LHT,, MB

N(0,1) (A,m) ma 052 031 046 162 111 137 701 617 597 994 989 977
na  .049 037 .048 334 300 304 987  .983  .978 1.00  1.00  1.00
ns 051 033 056 .234 152 208 916  .819 853 1.00  1.00  1.00
nse 051 038 052 271 234 251 961  .950  .936 1.00  1.00  1.00

(A2,m5) M .095 .030 .065 - .044 113 - 130 .336 - .386 .760
n2 .086 .043 .054 - .089 .166 - .380 .27 - .888 .996
n3 138 .036 .052 - .064 128 - .202 478 - .590 .923
N4 .324 .037 .054 - .082 .153 - .334 .658 - .841 .989
(Az,m3) M .106 .028 .072 - .035 .088 - .042 120 - .064 .204
n2 .094 .040 .053 - .048 .082 - .074 179 - .159 .448
n3 .000 .033 .048 - .043 .066 - .073 131 - 143 284
g .750 .036 .066 - .041 .077 - .057 .158 - .107 .347
ARE 217 29.0 14.0

ta/V2 (A,my) M .048 .017 .039  .159 077 141 .720 .565 .658  .994 977 .988
n2 .050 .034 .047 346 275 326 988 .980 986  1.00 1.00 1.00
n3 .051 .022 .048  .238 122 214 924 792 .896  1.00 .998 1.00
Ny .052 .030 .052  .276 .203 268 .962 .933 954 1.00 1.00 1.00

(A2,m5)  mi .091 019 054 - 026 102 - 098 362 - 333 817
ns 083 032 048 - 074 AT - 366 780 - 869 998
ns 142 029 051 - 048 121 - 179 526 - 550 951
ny 312 027 048 - 063 164 - 305 707 - 809 992
(As,ms)  ma 102 021 064 - 02 076 - 030 109 - 046 212
ny .08  .028  .047 - 038 077 - 065 187 - 134 468
ns  .000 029  .043 - 036 058 - 057 128 - 122 305
na 759 031 060 - 030 081 - 049 163 - 084 377
ARE 214 460  9.97

}\1 = (110)5, 7’]1 = (110)5; )\2 = (123,13,24371)57 172 = (13,0.13,22,24721)5; and )\3 = (13,33,93,20)57 7’]3 = (537153,453,100)5
ny, = (253)5,1’12 = (503)5, ns = (25,35,50)5, and ng = (70,40,35)5.

We also notice that our MB test may perform relatively worse when the cell sizes are very different
from each other and when ny;, is too small. It is probably because the MB test is based on the test
statistic’s asymptotic properties and Theorem 1 requires all cell sizes tend to infinity proportionally.

In summary, in terms of size controlling, overall speaking, the MB test generally outperforms the
LHT and LHT,, tests as shown by the ARE values listed in the three tables under the two error schemes.
In terms of power, the MB test generally outperforms the LHT,,, test for almost all the heteroscedastic
cases under consideration. Thus, one may recommend to use the MB test in real data analysis.

4 An Example
In this section, for illustration and comparison, the MB test, together with the LHT and LHT,, tests, is

applied to a real multivariate data set collected from a smoking cessation trial conducted by Dr. Kari J.
Harris in her Greek Health Project. The project aimed to assess the efficacy of a motivational interviewing
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Table 4. The empirical size ranges (in percentage) of the three tests, taken from Tables 1-3.

LHT LHT,, MB
Error Tabl Tab2 Tab3 Tabl Tab2 Tab3 Tabl Tab2 Tab3

N(0,1) 3.9-253 4.5-154 0-75.0 2.7-49 2.0-38 2843 4152 4369 4.6-7.2
ta/vV2  3.2-25.2 49-166 0759 1.7-36 1228 1734 2341 2952 3964

versus an attention matched control on smoking quit rate. The subjects for the research are students from
20 individual fraternity or sorority chapters (Greek houses) of the University of Missouri-Colombia and
with 2 levels (low and high) of depression. The researchers believed that the level of depression of each
subject is associated with the nicotine dependence of the subject and they also wanted to know if the
nicotine dependence of the subjects depended on the chapter they came from. The nicotine dependence
of the subjects was measured by three well-known scales, namely, the Fagerstr;om Test for Nicotine
Dependence ([31]), the Hooked on Nicotine Checklist ([32]), and the Minnesota Tobacco Withdrawal Scale
([33]). The resulting data may be referred to as the smoking cessation data. For the detailed description
about the background of the smoking cessation trial and the interpretation of the variables, the reader is
referred to [3] who analyzed the data using their modified WLR, LHT and BNP tests.

Table 5 shows the test results of applications of the LHT, LHT,,, and MB tests to the smoking cessation
data for checking the significance of the main and interaction effects of the two factors “Chapter” and
“Depression”. Both the equal-weight and the size-adapted-weight methods, as described in Section 2.1, were
considered. Note that the P-values of the LHT and LHT,,, tests were computed using the F-approximation
method widely adopted in SAS and SPSS.

Table 5. P-values for the smoking cessation data.

LHT LHT,, MB

Equal-weight method

Chapter .015 .350 211
Depression .000 .000 .000
Chapterx Depression .075 .465 .601

Size-adapted-weight method

Chapter 124 - .204
Depression .000 - .000
Chapterx Depression .075 - .601

We first examine the test results of the three tests under the equal-weight method. It is seen that all
the three tests suggest that the main effect of “Depression” is highly significant. However, both MB and
LHT,, tests suggest that the main effect of “Chapter” and the interaction effect between “Chapter” and
“Depression” are not significant, while LHT test indicates that “Chapter” is significant at 5% level and the
interaction is significant at 10% level. Application of the Box’s M test ([7]) to the smoking cessation data
suggests that the cell covariance matrices for the two-way MANOVA model are significantly different. In
this case, the conclusion made by the LHT,, and MB tests is more credible than that made by the LHT
test since both LHT,,, and MB tests take the data heteroscedasticity into account.

The LHT,, is not defined for the size-adapted method in [3]. The test results of the MB test for the
main and interaction effects of “Chapter” and “Depression” are consistent under both weight methods.
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However, it is not the case for the LHT test. Actually, for the main effect of “Chapter”, the conclusion
made by the LHT test under the equal-weight method is opposite to the one under the size-adapted-weight
method, showing some impact of the cell covariance matrices heteroscedasticity on the LHT test. It is
well known ([28]) that if the cell covariance matrices were homogeneous, the test results of the LHT
test would not be affected by the weight method used. Thus, the LHT test’s inconsistent results under
different weight methods indicate a serious impact of the cell covariance matrices heteroscedasticity on
the LHT test.
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APPENDIX: Technical Proofs

Proof of Theorem 1 Under the given conditions, we have

A

Ei]’ ~ Wq(nij — 1,2”/(711] — 1)), = 1,2,-" ,a;j = 1,27”' ,b, (Al)

where W,(m, V') denotes a g-dimensional Wishart distribution with m degree of freedom and covariance

matrix V. It follows that (25 — ;) /ni; = Op(n;”/?), i=1,2,---,a35 = 1,2, ,b. Thus ¥ — ¥ =
Op(n_g/Q). Notice that X' = O(n,,},), we further have

min

R=H(Y - X)H" =0,(n_\/%), (A.2)

min

where H is defined in (16) and H = O(nl/2 ). This implies that

W=I,+H$-XH" =1,+R=1I,+0,(n,. (A.3)

Theorem 1 holds from Slutsky’s theorem and the fact that under Hy, 27z ~ Xg-

Proof of Theorem 2 Notice that under Hy, we have z ~ N4 (0, I;). Applying the conditional expectation
rule, some simple algebra leads to

E(T) = E tr(W™1) and E(T?) = 2E tr(W 2) + E tr>(W ). (A.4)

—1/2

From the proof of Theorem 1, we have that W = I, + R with R = O,(n;."); sece (A.2). Then we have

W l=(I,+R) ' =1I,- R+ R’ R>+0,n;2),
W2=(I,+R)2=1,-2R+3R> - 4R’ + O,(n.})).

min

It is easy to see from (A.2) that E(R) = 0 and Etr(R) = 0. Thus

Etr(W ™) = ¢ + Etr(R?) — Etr(R*) + O(n,}.),
Etr(W™?) = ¢ + 3Etr(R?) — 4Etr(R?) + O(n_2), (A.5)
Etr2 (W) = ¢ + Etr?(R) + 2¢Etr(R?) — 2qEtr(R?) — 2Etr(R)tr(R?) 4+ O(n_2).
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To find Etr(R?) and Etr?(R) among others, we need some results from [34]. They showed that if
Y ~ Wy(m, V), then

Etr’[Y — E(Y)] = 2mtr(V?), Etr[Y — E(Y)]? = m[tr(V?) + tr2(V)],
Etr]Y — E(Y)]? = mtr® (V) + 3mtr(V)tr(V?) + dmtr(V?), (A.6)
Etr[Y — E(Y)]tr[Y — E(Y)]? = 4mtr(V)tr(V?) + dmtr(V?).
By (A ) R = Zz 1 Z] 1 - Qij) = Z?:l 22:1 Rij where Ri]‘ = Wij - EWZ‘J‘ with Wij =
ni_leij ) ”HZ;, t=1,2,---,a;5 = 1,2,---,b. Since Wy, -+, Wy, are independent and ER;; =
0, i=1,2,---,a;5=1,2,---,b, we have
Bir(R%) = Y1, X0y Bur(RY),
Bu(R) = S, Yoo B (Ry).
Etr®(R) = 37 12%‘ | Etr?(Ry;),
Etr(R)tr(R*) = 327, 3] Bte(R; )tr(Rfj)

v (A.1) and applying (A.6), we have

Bir () = Sy Y0 [ir(925) + 0%(920)) i — 1) = B+ A,

B (R) =253, 35 (425 (nyy — 1) = 24, an

BP(R) = £, S [0(02) + 3n(62 (25 + dex(2)] sy — ) = O,
Etr(R)t(R?) = Y0, ), [te(824)6r(25) + 46e(25)] /iy — 1)? = O(ny2),

where Ay and Ay are as defined in Theorem 2 and we have used the fact that 0 < tr(42;;) < ¢ since
POy Z?zl tr(£2;;) = g. Combining (A.5) and (A.7) gives that

EtI‘(W ) =q+ Al + AQ + O( mln)
E2(W) = ¢ + (2 + 1) Ay +2qA2+O( i)

min

These, together with (A.4), yield that E(T) = ¢ [1 oo ] +O(nz2) and E(T?) = q(q +2) [ + n} +

Mmin

O(n;2) where ay = npin (A1 + Az)/q and ag = npin[(2q + 8) A1 + (2¢ 4 6)Az]/[q(q + 2)] as desired.
We now find the lower and upper bounds of A; and A, as given in (18). For i =1,2,--- ja;j =

1,2,---,b, set B;; = n; 1/2H 2111/2, a ¢ x p full rank matrix so that §2;; = BijB;TFj. It follows that
Qij’b are nonnegative, so are their eigenvalues. Notice that §2;; and Q,;; = Bg;»Bij : p X p have the
same nonzero eigenvalues. Thus, §2;; has at most p nonzero eigenvalues. Denote the largest p eigenvalues
of §2;; by Aijr,v = 1,2,--- ,p which include all the nonzero eigenvalues of §2;;. It is easy to verify
b b
that >0 >/, 245 = I,. Therefore, we have Y7 >3/ tr(£2i;) =qgand I, — 25 =3 ;> 24
Therefore I, — Qw is nonnegative, showing that the eigenvalues of §2;; are less than 1. It follows
that tr(£2;;) = Y0 A2, < 5P N = tr($2)) and tr(£2;;) = 3P Aijr < p. These, together

with 37 12? 1'“( y) = @ imply that Ay = Yo7, 0 r(92))/(ni; — 1) < q/(nmin — 1) and
=i Z] 1tr (£2:5)/(nij — 1) < pq/(Nmin — 1).

Notlce that for any nonnegatlve numbers a1, as, - , Gm, we always have
> ai = (> a)?/m. (A.9)
=1 =1
It follows that tr(£2}) = PN = OV ae)? e = w?(82y)/p. So Ay >

_ . . a b

DY Z; L t12(92:5)/(nij — 1) = Ag/p. Using (A.9) again and the fact that 3 7, >0, t,f(nij) =g,
we have AQ [Zl 1 Z] 1 ( )]2/[(nmax - )ab] m It follows that Al Z m The
theorem is then proved.

Copyright © 2016 Isaac Scientific Publishing JAS



108 Journal of Advanced Statistics, Vol. 1, No. 2, June 2016
https://dx.doi.org/10.22606/jas.2016.12006

Proof of Theorem 3 From the definition (14) of T', it is easy to see that T is invariant under the
transformation (22). Then by (21), we only need to show that B1 and f32, or equivalently, A; and A, are
invariant under the transformation (22).

Under (22), we have C = (P ®I,)C. Define C11, - - - , C 4 as the ab matrices of size ¢ x p so that C =
[C11, Ci2,- -+, Cgp). Define Ci1,- -+, Cqp similarly so that C = [Cll, e Cab]. It follows that Cij =(P®
I,)Cuw, =12, ,a;j =12 b Set G = CL({CEC")™'Cy;, i =12, ,a;5 =12, ,b.
Then it follows that G;; = CL(CECT)"'Cy; = CL(CXCT)™ICy; = Gy, i = 1,2, ,a;j =
1,2,---,b. Therefore, Gi;, i=1,2,---,a;j =1,2,---,b are invariant under (22). By (19) and (20), we

have ,
= ZZtr [(nig = 1) =" tx([n;' Gi; Z45)*) / (nsj = 1)
=1 j=1 =1 j=1
and ,
Ay =D 0 (82:5)/ (nij — Zztf ;' GijXij) /(i — 1),
i=1 j=1 i=1 j=1

showing that Al and Ag are also invariant under (22). Theorem 3 is then proved.
Proof of Theorem 4 The theorem will be proved if we can show that T,Al and Ag are affine
invariant. Let p,;;, ¥';; and f,;, i‘ij denote the mean vectors and covariance matrices of the responses
xijk, k = 1,--- ,n;; and the affine-transformed responses &;;i, k = 1,2, -+ ,n;; respectively. Then we
have fi,; = Bp,; + & and 3;; = BX;;B”. It follows that p;; = B*l(,}” — b). As we defined the
long mean vector g and the big covariance X in Section 2, we define ji and X similarly. Then we have
p=DB"1(ir—§) and ¥ = BEB7 where B = I, ® B and £ = 1oy @ €. Tt follows that the GLHT
problem (12) can be equivalently expressed as Hy : Cfi = £ ., vs Hy:Cji#b, where C = CB~! and
c=CB ¢ +ec

Since sz and 2‘”' denote the unbiased estimators of B and X;; for the original responses ;j, k =

1,2,--- ,nyj, we denote ﬁij and i‘ij as the unbiased estimators of p;; and 5]1-]- for the affine-transformed
responses &ji,k = 1,2,--- ,n;;. Then by the affine-transformation (23), it is easy to see that ﬁij =

Bp,;; + & and 21-3- = BE’UBT. It follows that ﬁ B+ €and ¥ = BXBT. Using the above, we have

Cih—¢c=CB ' (Ba+¢)— (CE £ 4 ¢) = Cji— c and CECT = CB-'BEBT(CB 1) = C5CT.
Thus, both Cjfi — ¢ and CXCT are affine-invariant. It follows that 7" in (14) is affine-invariant.

We now turn to show that A; and A, are affine-invariant. It is sufficient to show that tr(.Q”) and

2
tr(.Q ) are affine-invariant. Since we have showed that C3C” is affine-invariant, we only need to show
-1

that n; C” Z‘l]C”7 -] i
1mphes Cij =C;;B~ L i=1,2,-,a;5=1,2,--- ,band ¥ = BYBT implies 2@‘ = BﬁijBT, =
1,2,---,a;7 =1,2,--- ,b. The theorem is then proved. . A
Proof of Theorem 5 To show this theorem, it is sufficient to show that T, A; and Ay are invari-
ant under different labeling schemes of the mean vectors p;;, @ = 1,2,---,a;j = 1,2,--- b, Let
li,l2,--+,l, be any permutation of 1,2,--- ,a, and 7‘1,7"2, -+ Tp be any permutatlon of 1,2,---,b. Then
it is easy to see that > © 22:1 Ciji; = Zu S Crrity s and Y0 ZJ 1 ni; Clj Z‘ iCL =
Yoy 22:1 nl_ulrv Cir X0 Ca”, showing that

a b a b
Ci=3"% Cyiny; and €ECT =" nilC, 8,00

i=1 j=1 i=1 j=1

i=1,2,---,a;5 =1,2,--- b are affine-invariant. This is obvious since C = CB~!

are invariant under different labeling schemes of the mean vectors and so is 7.

‘We now show that A; and As are invariant under different labeling schemes of the mean vectors.
Set Sij = n;;'Ci; 3y CZ;, i=1,2,---,a;5 =1,2,--- ,band § = CXC”. By (20), we have A; =
Sy ijl tr([S”S 12) and Ay = 300, 22:1 tr?(8;;8~"). Since S is previously shown to be invariant
under different labeling schemes of the mean vectors, so are Ay and A,. This completes the proof of the
theorem.
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