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Abstract. In this paper, simple explicit expressions and some recurrence relations satisfied by single 
and product moments of generalized order statistics from exponential-Weibull lifetime distribution 
have been obtained. These relations are deduced for moments of order statistics and upper record 
values. Further, conditional moments and a recurrence relation for single moments of the generalized 
order statistics are used to characterize this distribution and some computational works are also 
carried out. 
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1   Introduction 

The concept of generalized order statistics ( )gos  was introduced by Kamps [1]. A variety of order 
models of random variables is contained in this concept, such as order statistics, upper record values, 
progressive Type II censoring order statistics, sequential order statistics and Pfeifer’s records. 

Let 1 2, ,X X   be a sequence of independent and identically distributed ( )iid  random variables ( )rv  
with distribution function ( )df ( )F x  and probability density function ( )pdf  ( )f x . Let 0k  , n N , 
m   and ( )( 1) 0r k n r m      . If the random variables ( , , , )X r n m k , 1,2, ,r n   possess a 
joint pdf  of the form 
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on the cone 1 1
1(0) (1)nF x x F     , then they are called gos  of a sample from a distribution 

with df  ( )F x . Note that in the case 0m  , 1k  , this model reduces to the joint pdf  of the 
ordinary order statistics and when 1m   , we get the joint pdf  of the k  th upper record values. In 
view of (1), the marginal pdf  of the r  th gos  ( , , , )X r n m k  is given by 
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and the joint pdf  of ( , , , )X r n m k  and ( , , , )X s n m k , 1 r s n   , is 
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and ( ) ( ) (0)m m mg x h x h  , [0,1)x  . 
Several authors utilized the concept of gos in their studies. References may be made to Kamps and 

Gather [2], Keseling [3], Cramer and Kamps [4], Ahsanullah [5], Habibullah and Ahsanullah [6], Raqab 
[7], Kamps and Cramer [8], Ahmad and Fawzy [9], Beiniek and Syznal [10], Al-Hussaini and Ahmad 
[11] , Cramer et al. [12], Khan and Alzaid [13], Jaheen [14], Khan et al. ([15],[16]), Khan and Zia [17] 
among others. 

Kamps [18] investigated the importance of recurrence relations of order statistics in characterization. 
In this paper, we study the generalized order statistics from exponential-Weibull lifetime distribution 
and derive explicit expressions for single moments. We also establish some simple recurrence 
relationships for the single and the product moments. Further, various deductions and particular cases 
are discussed. At the end, the characterization results based on conditional expectation and recurrence 
relations are presented and some computational works are also carried out. 

A random variable X  is said to have exponential-Weibull lifetime distribution (Cordeiro et al. [19]) 
if its pdf  is of the form 
 ( )1( ) ( ) , 0, 0, 0, 0x xf x x e x

              (4) 

and the corresponding df  is  
 ( )( ) 1 , 0, 0, 0, 0x xF x e x

             (5) 

It can be seen that 
 1( ) ( ) ( )f x x F x      (6) 

We can obtain several special models from relation (4). The exponential and Weibull distributions are 
the special cases for 1   or 1  , 0   or 0   and 0  , respectively. The Rayleigh dis-
tribution arises when 0   and 2  . The two-parameter linear failure rate distribution is obtained 
when 2  . 

The relation (6) will be used to derive explicit expressions and some recurrence relations for the 
moments of gos  from exponential-Weibull lifetime distribution. 

2   Relations for Single Moments 

We shall first establish the existence of [ ( , , , )]jE X r n m k . Using (2), we have when 1m    

 1 11
0

[ ( , , , )] [ ( )] ( ) ( ( ))d
( 1)!

rj j rr
m

C
E X r n m k x F x f x g F x x

r
  

    (7) 

By using binomial expansion, (7) can be rewritten as 
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Further, on using (6) in (8), we obtain 
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where 
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Integrating by parts now yields 
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On expanding r u xe    in Taylor series, we get 
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where *
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We have [20] 
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Now on substituting (10) in (9), we have 
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Since (11) is of the form 0
0

 at 1m   , therefore, we have 
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Differentiating numerator and denominator of (12) ( 1)r   times with respect to m , we get 
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On applying L’ Hospital rule, we have 
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But for all integers 0n   and for all real numbers x , we have [21] 
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Substitute (14) in (13) and after simplification, we find that 
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where 
( )k

rY denotes the k  th upper record values. 
Remark 1. Putting 0   in (11), we get the explicit expression for single moments of gos  from the 
Weibull distribution as given by Kamps [1] pp-101. 
Remark 2. Putting 1   in (11), the results for single moments of gos  from exponential distribution 
with parameter ( )   is deduced in the form 
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Remark 3. Setting 1   and 0   in (11), we get the explicit expression for single moments of gos  
from the exponential distribution, established by Kamps [1] pp-101. 
Remark 4. Setting 0   in (15), the result for single moments of k  th upper record values is 
deduced for the Weibull distribution, which verifies the result obtained by Kamps [1] pp-101. 
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Remark 5. At 1   in (15), the result for single moments of k  th upper record values is deduced for 
the exponential distribution with parameter ( )   in the form 
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Remark 6. Setting 1   and 0   in (15), the result for single moments of k  th upper record 
values is deduced for the exponential distribution as given by Kamps [1] pp-101. 

Special cases 

i) Putting 0m   and 1k   in (11), the exact expression for the single moments of order statistics 
from exponential-Weibull lifetime distribution can be obtained as 
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ii) Putting 1k   in (15), we deduce the explicit formula for the single moments of upper records for 
exponential-Weibull lifetime distribution in the form 
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Expressions (16) and (17) can be used to obtain the moments of order statistics and upper record values 
for arbitrary chosen values of  ,  ,   and various sample size 1,2, ,5n   . Some numerical 
computations for the first four moments of order statistics and upper record values from exponential-
Weibull lifetime distribution are given in Table 1, 2, respectively. 

Table 1. First four moments of order statistics 

n  r  
1  ,   3   1  , 3 

1   2 
( )E X  2( )E X  3( )E X  4( )E X  ( )E X  2( )E X  3( )E X  4( )E X  

1 1 0.4847 0.4257 0.4214 0.4564 0.4123 0.2975 0.2401 0.2111 

2 1 0.2524 0.1633 0.1207 0.0985 0.2285 0.1236 0.0756 0.0506 
2 0.7169 0.6880 0.7221 0.8143 0.5960 0.4714 0.4047 0.3716 

3 
1 0.1574 0.0835 0.0512 0.0349 0.1492 0.0672 0.0345 0.0195 
2 0.4425 0.3229 0.2598 0.2257 0.3871 0.2365 0.1578 0.1129 
3 0.8541 0.8706 0.9533 1.1086 0.7005 0.5888 0.5282 0.5009 

4 

1 0.1074 0.0489 0.0260 0.0154 0.1056 0.0413 0.0186 0.0093 
2 0.3074 0.1873 0.1268 0.0932 0.2802 0.1447 0.0822 0.0502 
3 0.5775 0.4585 0.3928 0.3582 0.4939 0.3282 0.2334 0.1756 
4 0.9463 1.0080 1.1401 1.3588 0.7693 0.6757 0.6265 0.6093 

5 

1 0.0776 0.0311 0.0147 0.0078 0.0785 0.0274 0.0110 0.0049 
2 0.2266 0.1200 0.0712 0.0460 0.2138 0.0971 0.0487 0.0264 
3 0.4286 0.2882 0.2103 0.1640 0.3798 0.2163 0.1323 0.0860 
4 0.6769 0.5721 0.5144 0.4877 0.5700 0.4028 0.3007 0.2354 
5 1.0137 1.1169 1.2965 1.5766 0.8192 0.7439 0.7079 0.7028 

 

n  r  
2  ,   3   2  ,   3   

1   2   
( )E X  2( )E X  3( )E X  4( )E X  ( )E X  2( )E X  3( )E X  4( )E X  

1 1 0.2796 0.2131 0.1882 0.1851 0.2524 0.1633 0.1207 0.0985 

2 1 0.1094 0.0567 0.0350 0.0245 0.1074 0.0489 0.0260 0.0154 
2 0.4497 0.3696 0.3415 0.3457 0.3974 0.2777 0.2155 0.1816 
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3 
1 0.0568 0.0226 0.0109 0.0060 0.0584 0.0210 0.0089 0.0043 
2 0.2148 0.1250 0.0831 0.0613 0.2054 0.1048 0.0601 0.0377 
3 0.5671 0.4918 0.4706 0.4880 0.4934 0.3642 0.2932 0.2535 

4 

1 0.0341 0.0110 0.0044 0.0020 0.0361 0.0107 0.0038 0.0015 
2 0.1248 0.0573 0.0305 0.0182 0.1254 0.0517 0.0242 0.0125 
3 0.3048 0.1927 0.1358 0.1044 0.2853 0.1578 0.0959 0.0630 
4 0.6545 0.5915 0.5823 0.6158 0.5628 0.4330 0.3589 0.3170 

5 

1 0.0224 0.0066 0.0020 0.0008 0.0242 0.0061 0.0019 0.0006 
2 0.0806 0.0307 0.0137 0.0069 0.0837 0.0291 0.011 0.0052 
3 0.1912 0.0973 0.0558 0.0351 0.1880 0.2163 0.0431 0.0236 
4 0.3806 0.2563 0.1891 0.1506 0.3502 0.2061 0.1312 0.0892 
5 0.7230 0.6753 0.6806 0.7321 0.6160 0.4897 0.4158 0.7028 

 

We can note that the relation :
1

( ) ( )
n

j j
i n

i
E X nE X



  (David and Nagaraja [22]) is satisfied here. 

Table 2. First four moments of upper record values 

n  
1  ,   3   1  ,   3   

1   2   
( )E X  2( )E X  3( )E X  4( )E X  ( )E X  2( )E X  3( )E X  4( )E X  

1 0.56889 0.45576 0.43111 0.45468 0.49141 0.32772 0.25429 0.21836 
2 0.91044 0.95121 1.08956 1.3383 0.76444 0.65921 0.61777 0.61749 
3 1.14476 1.41461 1.85524 2.55571 0.94710 0.95972 1.02645 1.14873 
4 1.32344 1.84239 2.67656 4.03511 1.0857 1.23354 1.45714 1.78128 
5 1.46938 2.24072 3.53063 5.72872 1.19903 1.48698 1.90049 2.49615 

n  
2  ,   3   2  ,   3   

1   2   
( )E X  2( )E X  3( )E X  4( )E X  ( )E X  2( )E X  3( )E X  4( )E X  

1 0.39750 0.25454 0.20498 0.19060 0.36227 0.20163 0.13772 0.10710 
2 0.69970 0.60646 0.60059 0.65433 0.61746 0.45846 0.38254 0.34751 
3 0.93362 0.98443 1.13275 1.39520 0.80598 0.72009 0.69402 0.71042 
4 1.12136 1.36087 1.75728 2.38843 0.95367 0.97240 1.04633 1.17799 
5 1.27750 1.72650 2.44491 3.60436 1.07519 1.21276 1.42480 1.73455 

 

Now, we obtain the recurrence relations for single moments of exponential-Weibull lifetime distribution 
in the following theorem. 
Theorem 1.  For the distribution as given in (5) and n N , m  , 1 r n  , 0,1,2,j    
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Proof. From (2) and (6), we have 
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Now (18) can be seen by noting that in view of Athar and Islam [23] 
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r
    

    

Remark 7. Substituting 0m  , 1k   in (18), we deduce the recurrence relation for single moments of 
order statistics from exponential-Weibull lifetime distribution in the form 

 1 1
: : 1: : 1:

( 1) ( 1)( ) { ( ) ( )} { ( ) ( )}
1

j j j j j
r n r n r n r n r n

n r n rE X E X E X E X E X
j j

  


   
 

   
   

 
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At 1  , 0  , the result for single moments of order statistics is deduced for exponential 
distribution as given in Kamps [1] pp-122. 
Remark 8. Putting 1m    in (18), the result for single moments obtained by Khan et al. [24] for 
upper k  th record values from exponential-Weibull lifetime distribution is deduced. 
Remark 9. Setting 0   in (18), we get the recurrence relation for single moments of gos  from the 
Weibull distribution, obtained by Khan et al. [25] for j j   . 
Remark 10. Assuming 0   and 1   in (18), the result for single moments of gos  is deduced for 
exponential distribution, established by Pawlas and Syznal [26]. 
Remark 11. By putting 2   in (18), the result for single moments of gos  obtained by Ahmad [27] 
with / 2v   for linear failure rate distribution is deduced. 
Remark 12. By putting 0   and 2   in (18), the recurrence relation for single moments of gos  is 
deduced for Rayleigh distribution in the form 

 2 22
( ( , , , )) { [ ( , , , )] [ ( 1, , , )]}

2
j j jrE X r n m k E X r n m k E X r n m k

j
    


  

3   Relations for Product Moments 

Theorem 2. For the given exponential-Weibull distribution in (5) and n N , m  , 1 r s n    
and , 0i j  , 

1 1[ ( , , , ) ( , , , )] { [ ( , , , ) ( , , , )] [ ( , , , ) ( 1, , , )]}
( 1)

{ [ ( , , , ) ( , , , )] [ ( , , , ) ( 1, , , )}
( )

i j i j i js

i j i js

E X r n m k X s n m k E X r n m k X s n m k E X r n m k X s n m k
j

E X r n m k X s n m k E X r n m k X s n m k
j

 



 


 

 

  


   


 

  (20) 
Proof. From (3) and (6), we have 

 

11
0

1

11
0

1 1

[ ( , , , ) ( , , , )] [ ( )] ( ) ( ( ))
( 1)!( 1)!
[ ( ( )) ( ( ))] [ ( )] d d

( 1)!( 1)!
[ ( )] ( ) ( ( ))[ ( ( )) ( ( ))] [ (

s

i j i j m rs
mx

s r
m m

i js
x

m r s r
m m m

C
E X r n m k X s n m k x y F x f x g F x

r s r
h F y h F x F y y x

C
x y

r s r
F x f x g F x h F y h F x F y









  

 

   

  


  

 


  

 

 

 
)] d ds y x

  (21) 

In view of Athar and Islam [23], note that 

 

2

1 1 1

0

[ ( , , , ) ( , , , )] [ ( , , , ) ( 1, , , )]
( 1)!( 1)!

[ ( )] ( ) ( ( ))[ ( ( )) ( ( ))] [ ( )] s

i j i j s

i j m r s r
m m mx

jC
E X r n m k X s n m k E X r n m k X s n m k

r s r

x y F x f x g F x h F y h F x F y dydx



     

  
  

  
  (22) 

Substitute (22) in (21) and after simplification, we get the result given in (20). 
Remark 13. At 0i   in (20), the recurrence relation for product moments reduces to relation for single 
moments as obtained in (18). 
Remark 14. Putting 0m   and 1k   in (20), we obtain the recurrence relation for the product 
moments of order statistics from the exponential-Weibull lifetime distribution as 

 1 1
: : : : : 1: : : : 1:

( 1) ( 1)( ) { ( ) ( )} { ( ) ( )}
( 1) ( )

i j i j i j i j i j
r n s n r n s n r n s n r n s n r n s n

n s n sE X X E X X E X X E X X E X X
j j

  


   
 

   
    

 
  

At 1  , 0  , the relation for product moments of order statistics is deduced for exponential 
distribution as 

 1 1
: : : : : 1:

( 1)( ) { ( ) ( )}
( 1)

i j i j i j
r n s n r n s n r n s n

n sE X X E X X E X X
j

  


 
 


  

Remark 15. Setting 1m    in Theorem 2, the relation for the product moments in Khan et al. [24] for 
upper k  th record values from the exponential-Weibull lifetime distribution is deduced. 
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Remark 16. Setting 0   in (20), we get the recurrence relation for the product moments of gos  
from the Weibull distribution as obtained by Khan et al. [25] for j j   . 
Remark 17. Assuming 0   and 1   in (20), the result for the product moments of gos  is 
deduced for the exponential distribution, established by Pawlas and Syznal [26]. 
Remark 18. By putting 2   in (20), the result for product moments of gos  obtained by Ahmad [27] 
with / 2v   for linear failure rate distribution is deduced. 
Remark 19. By putting 0   and 2   in (20), the recurrence relation for the product moments of 
gos  is deduced for Rayleigh distribution in the form 

 
2

2

2
[ ( , , , ) ( , , , )] { [ ( , , , ) ( , , , )]

( 2)
[ ( , , , ) ( 1, , , )}

i j i js

i j

E X r n m k X s n m k E X r n m k X s n m k
j

E X r n m k X s n m k

 






 

  

4   Characterizations 

Let ( , , , )X r n m k , 1,2, ,r n   be gos , then the conditional pdf of ( , , , )X s n m k  given ( , , , )X r n m k   
x , 1 r s n   , in view of (2) and (3), is given by 

 1 111
( , , , )| ( , , , )

1

( | ) [ ( )] [ ( ( )) ( ( ))] [ ( )] ( ),
( 1)!

r sm s rs
X s n m k X r n m k m m

r

C
f y x F x h F y h F x F y f y x y

s r C
    



   
 

 (23) 

Theorem 3. Let X  be a non-negative random variable having an absolutely continuous df  ( )F x  
with (0) 0F   and 0 ( ) 1F x   for all 0x  , then 

 ( )

1
[ { ( , , , )} | ( , , , ) ] , , 1

1

s l
l jx x

j l j

E X s n m k X l n m k x e l r r
 







 

 

 
    
  

   (24) 

if and only if 
 ( )( ) , 0, 0, 0, 0x xF x e x

            (25) 

where ( )( ) y yy e
   

 . 
Proof. We have from (23) for 1s r  , 

 

1
1

1
11 1

( )

[ { ( , , , )} | ( , , , ) ]
( 1)! ( 1)

( ) ( ) ( )1 d
( ) ( ) ( )
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s
s r

r
s rm

y y

x

C
E X s n m k X r n m k x

s r C m

F y F y f ye y
F x F x F x





 

 
 


  

  

 
  

         
     


  (26) 

By setting 
( )

( )

( )
( )

y y

x x

F y eu
F x e





 

 

 

 
   from (5) in (26), we obtain 

 
( )

1 1 11
1 0

1

[ { ( , , , )} | ( , , , ) ] (1 ) d
( 1)! ( 1)

s

x x
m s rs

s r
r

C e
E X s n m k X r n m k x u u u

s r C m

 


 
  

 


   
      (27) 

Again by setting 1mt u   in (27), we get  

 
1( )

11 11 1
0

1

[ { ( , , , )} | ( , , , ) ] (1 ) d
( 1)! ( 1)

sx x
s rs m

s r
r

C e
E X s n m k X r n m k x t t t

s r C m

  


 

   




  
      

and hence the necessary part given in (24). 
To prove the sufficient part, we have from (23) and (24) 

 
1

1( ) 1 1 11
1

1

|

[( ( )) ( ( )) ] [ ( )] ( )d
( 1)! ( 1)

( )[ ( )]

s

r

y y m m s rs
s r x

r

s r

C
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H x F x
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 
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
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  


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  (28) 

where 
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1
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r jx x
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H x e
 






 

 

 
 
  

   

Differentiating (28) both sides with respect to x , we get 

 
1 1

( ) 1 1 21
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1
1 1

| 1 |
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( 2)! ( 1)
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or 
 2 1 1 1
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Therefore, 
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H xf x x
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 
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
  

which proves that  
 ( )( ) 1 , 0, 0, 0, 0x xF x e x

             

Remark 20. At 1m    in (24), we get the characterization results from the exponential-Weibull 
distribution based on k  th upper record values. 
Remark 21. Setting 0m  , 1k   in (24), we obtain the characterization results of the exponential-
Weibull lifetime distribution based on order statistics. 
Following theorem contains characterization of this distribution by a recurrence relation for the single 
moments of gos . 
Theorem 4. Fix a positive integer k  and let j  be a non-negative integer. A necessary and sufficient 
condition for a random variable X  to be distributed with pdf  given by (4) is that 

 
1 1( ( , , , )) { [ ( , , , )] [ ( 1, , , )]}

1
{ [ ( , , , )] [ ( 1, , , )]}

j j jr r

j j

E X r n m k E X r n m k E X r n m k
j j
E X r n m k E X r n m k 

  


 

 
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 

  

  (29) 

Proof. The necessary part follows immediately from equation (18). On the other hand if the relation in 
(29) is satisfied, then on using (2), we have 
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Let 
 1( ) [( ( )] ( ( ))r r

mh x F x g F x     (30) 

Differentiating both sides of (30), we get 
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Thus, 
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Integrating right hand side in (31) by parts and using the value of ( )h x  from (30), we find that 
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r
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Applying the extension of Müntz-Szász Theorem, (see for example Hwang and Lin [28]) to (32), we get 
 1( ) ( ) ( )f x x F x      

which proves that ( )f x  has the form as in (6). 
Remark 22. Theorem 4 can be used to characterize the exponential, Weibull, linear failure rate and 
Rayleigh distributions by setting 0  , 0  , 2   and 0  , 2  , respectively. 
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