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Abstract. In this paper we consider the estimation of parameters under a bounded asymmetric loss 
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1   Introduction 

In the literature, the estimation of a parameter is usually considered when the loss is squared error or in 
general any convex and symmetric function. The quadratic loss function has been criticized by some 
researches (e.g., [4], [5], [6] and [7]). The proposed loss function is 
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where 0a   determines the shape of the loss function,   0b   serves to scale the loss and 0k   is 
the maximum loss parameter. The general form of the loss function is illustrated in Figure 1. This is 
obviously a bounded asymmetric loss function. 

Figure 1. The loss function (1.1) for a=1.	

In this paper, we first study the problem of estimation of a location parameter, using the loss function 
(1.1). In section 2 we introduce the best location-invariant estimator of   under the loss (1.1). In 
section 3, Bayesian estimation of the normal mean is obtained under the loss (1.1). Then we study the 
problem of estimation of a scale parameter, using the loss function 
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where 0a  , , 0b k  . The loss (1.2) is scale invariant and bounded. In section 4 we introduce the best 
invariant estimator of the scale parameter   under the loss (1.2). Finally in section 5 we consider a 
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subclass of the exponential family and obtain the Bayes estimates of   under the loss (1.2). Since the 
parameters b  and k  do not have any influence on our results, so without loss of generality we take 

1b k   in the rest of the paper. 

2   Best Location-Invariant Estimator 

Let 1( ,..., )nX XX  have a joint distribution with probability density 1( ) ( ,..., )nf f X X     X  
where f  is known and   is an unknown location parameter. The class of all location invariant 
estimators of a location parameter   is of the form [3] 
 0( ) ( ) ( )v  X X Y   

where 0  is any location-invariant estimator and 1 1( ,..., )nY Y Y  with ,i i nY X X   1,..., 1i n   
and the best location-invariant estimator *  of   under the loss function(1.1), is 

* *
0( ) ( ) ( )v  X X y , where *( )v y  is a number which minimizes 
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(see [3]). Differentiating with respect to ( )v y  and equating to zero, it can be seen that *( )v y  must 
satisfy the following equation 
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Example 2.1: (normal mean) Let 1,..., nX X  be i.i.d. random variables having normal distribution with 
mean   (real but unknown) and known variance 2.  If 0( ) ,X X  it follows from Basu’s theorem 
that 0( ) X  is independent of Y  and hence the best location-invariant estimator of   is given by 

* *( ) ,X v  X  when *v  is a number which satisfies (2.1), i.e. 
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So, we can find *v  by a numerical solution. 

Example 2.2: (Uniform) Let 1,..., nX X  be i.i.d. according to the uniform distribution on 

,
2 2
  
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 where   is real (but unknown) and ( 0)   is known. Taking 0 (1) (2)( ) ( ) 2X X  X  

which is an invariant estimator of  , the conditional distribution of 0( ) X  given Y y  depends on 

y  only through differences ( ) (1) , 2,...,i iX X V i n   . Now, note that  (1) (n),X X  is a complete 

sufficient statistic for  ,   and is independent of ( ) (1)
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, 2,..., 1i n   for all ,   by 

Basu’s theorem. Hence  (1) ( ), nX X  and '
iZ s  are independent for all   and any given .  Also, note 

that the conditional distribution of 0( ) X  given '
iV s  which is equivalent to conditional distribution of 

0( ) X  given (n) (1)X X  and '
iZ s  depends only on (n) (1).X X  On the other hand, the conditional 

distribution of 0( ) X  given ( ) (1)nW X X   at 0   is of the form 
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Hence the estimator (1) ( )* *( )
2

nX X
v


 X  is the MRE estimator of ,  if *  satisfies (2.1), which 

simplifies to 
* *( ) ( ) * ** * ( ) ( )2 2
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So, we can find *v  by a numerical solution. 

Example 2.3: (Exponential distribution) Let 1,..., nX X  be . . .i i d  random variables with the density 

 ( )1( ) xf x e x 
 


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where R   is unknown and ( 0)   is known. 0 (1)( ) X X  is an equivariant estimator and by the 
Basu’s theorem, it is independent of Y . Therefore, * *

(1)( ) X  X  is the MRE estimator of ,  if 
*  satisfies (2.1), i.e. satisfies 
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which simplifies to 
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So, we can find *  by a numerical solution. 

3   Bayes Estimation of the Normal Mean 

Let 1,..., nX X  be a random sample of size n from a normal distribution with mean   (unknown 
parameter) and variance 2  (known parameter). In this section we consider Bayesian estimation of the 
parameter   using the loss function (1.1). 

If the conjugate family of prior distributions for   is the family normal distributions 2( , ),N b  then 
the posterior distribution of   is ( , )N m   where 

 
2 2

2 2 2 2

1& ,
1 1

nx
bm

n n
b b


 

 


 

 
  

and the posterior risk of an estimator ( ) X  under the loss function (1.1) is 
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so, ( )B X  is the solution of the following integral equation 
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Hence, we can find B  from the equation (3.1) by a numerical solution. 
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Also, notice that the generalized Bayes estimator relative to a diffuse prior, ( ) 1    for all R   

can be found by letting b   , i.e. 
2

.
n
   

In the presence of a nuisance parameter 2 , i.e. when 2  is unknown, a modified loss function is as 
follows 
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0a   which is a location scale invariant loss function. 

In this position, we obtain a class of Bayes estimators of the location parameter .  Let 
2

1


  be 

the precision which is unknown and suppose that conditional on  ,   has a normal distribution with 

mean   and variance 1 ,  where , 0R    are both known constants, i.e., 1| ~ ,N  
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 To obtain the Bayes estimate of 

  for our problem, it is enough to find an estimate ( )x  which minimizes  ( ); , X,E L     
 X  for 

any X, .  This expectation is under the distribution of X, .   So B  is the solution of the following 
integral equation 
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which can be solved numerically. 

4   Best Scale Invariant Estimator 

Consider a random sample 1,..., nX X  from 1 ( ),f
 

x  where f  is a known function, and   is an 

unknown scale parameter. It is desired to estimate   under the loss function (1.2). The class of all 
scale-invariant estimators of   is of the form 
 0( ) ( ) ( )W X X Z  

where 0  is any scale-invariant estimator, 1( ,..., ),nX XX  and 1( ,..., )nZ ZZ  with ;i
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X
Z
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    Moreover the best scale-invariant (minimum risk equivariant (MRE)) estimator 

*  of   is given by 
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where *( )w Z  is a function of Z  which maximizes 
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In the presence of a location parameter as a nuisance parameter, the MRE estimator of   is of the 
form 
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; 1,..., 1i i nY X X i n    , 1 1
1

( ,..., ), ; 1,..., 2 ,i
n i

n

Y
Z Z Z i n

Y


   Z  and 1
1

1

n
n

n

Y
Z

Y






  and *( )w Z  is 

any function of Z  maximizing 

 

(Y)
0 1

w (Z )
0 (Y)

1 ( 1)
w(Z)

1

a

a e
E e







 
 

 
  
   



 
 
 
 
 
 

Z z
  (4.2) 

In many cases, when 1,   we can find an equivariant estimator 0( ) X  or 0( ) Y  which has the 
gamma distribution with known parameters ,   and is independent of Z . 

It follows that * 0
*w


   is the MRE estimator of   where *w  is a number which maximizes 
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and hence *w  must satisfy the following equation 
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Theorem 4.1: If 0( ) X  is a finite risk scale-invariant estimator of ,  which has the gamma 
distribution with known parameters , ,   when 1.  Then the MRE (minimum risk equivariant) 

estimator of   under the loss function (1.2) is * 0
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X  where *w  must satisfy the equation 

(4.4). 
Example 4.1: (Exponential) Let 1,..., nX X  be a random sample from (0, )E   with density 

1 ; 0,
x

e x
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  and consider the estimation of   under the loss (1.2). 0
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estimator which has Ga(n,1)-distribution when 1   and it follows from the Basu’s theorem that 0  

is independent of Z , hence the MRE estimator of   under the loss (1.2) is * 1
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Example 4.1: (Continued) Suppose that 1,..., nX X  is a random sample of ( , )E    with density 

( )1 xe  


  ; x  , and consider the estimation of   when   is unknown. We know that 
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Example 4.2: (Normal variance) Let 1,..., nX X  be a random sample of 2(0, )N   and consider the 

estimation of 2 . 2
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Example 4.2: (Continued) Let 1,..., nX X  be a random sample from 2( , )N   , with a nuisance 

parameter  . In estimating 2  using the loss (1.2), it follows that 2
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Example 4.3: (Inverse Gaussian with zero drift) Let 1,..., nX X  be a random sample of IG( , )  with 
density 

 

1
2

2
3

( | ) if 0
2

xf x e x
x




 
  
 

  

and consider the estimation of  . 1
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5   Bayes Estimation of Scale Parameters 

In the section, we consider the Bayesian estimation of the scale parameter   in a subclass of one-

parameter exponential families in which the complete sufficient statistic 0( ) X  has G( , )
2
 -

distribution, where 0  , 0   are known. 

Assume that the conjugate family of prior distributions for 1


  is the family of Gamma 

distribution Ga( , )  . Now, the posterior distribution of   is 0Ga( , (x))      and the Bayes 
estimate of   is a function (x)  which maximizes the function 

 

( 1)( 1)
0( ( ))1 ( 1) 1 10

0

( ( ) )
d

( )
aa a ea e aE e e e

  
 

       
 

 



          

     XX
X   

Hence, the maximized   must satisfy the following integral equation, 

 
( 1) ( 1)

0 0(2 a (x)) (a (x))

0 0
d d

a ae eae e e
                  

            (5.1) 

So all estimators satisfying (5.1) are also Bayes estimators.	
Example 5.1: (Fisher Nile’s problem) The classical example of an ancillary statistic is known as the 
problem of Nile, originally formulated by Fisher [1]. Assume that X  and Y  are two positive valued 
random variables with the joint density function 

 

1( )
( , ; ) ; 0, 0, 0

x y
f x y e x y


 

 
       

and that ( , ) , 1,...,i iX Y i n  is a random sample of n paired observation on ( , ).X Y  Let 
1

1 ,
n

i
i

X X
n 

   

1

1 ,
n

i
i

Y Y
n 

  ,YT u XY
X

  . T  is the MLE of   and the pair ( , )T U  is a jointly sufficient, but 

not complete statistics for   and U  is ancillary. Consider a nonrandomized rule ( , )T U  based on the 
sufficient statistic ( , )X Y  which is equivariant under the transformation 

 
0

; 010

cz X
c

Y
c



               

  

For ( , )T U  to be scale equivariant, we must have 
 ( , ) (c , ) ; 0c T U T U c      (5.2) 
Following Lehman [3] a necessary and sufficient condition for an estimator   to be scale equivariant is 
that it is of the form 0Z  , where 0  satisfies (5.2), hence 0 T  , ( )Z U . We see that all the 
scale equivariant estimators ( , )T U  must have the form 
 ( , ) ( )T U T U    (5.3) 

using the loss function (1.2) and the fact that the joint distribution of ,UT


 
 
 

 is independent of  , 

and we can evaluate the risk at 1  . Hence 

 
( ( ) 1)1 ( ( ) 1)( , ( )) [ (1 ) | ]

a T Ua T U e
UR T U E E e U

 
      

It follows that ( , ( ( ))R T U   is minimized by minimizing the inner expectation. Hence, the minimum 
risk scale equivariant estimator is *ˆ ( )MRE T U  , where *( )U  must satisfy the following integral 
equation 
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* *(t ( ) 1) (t ( ) 1)* *(2 a (u) u) (a (u) u)

0 0
d d

a u a uu ut e t eat te t e e t
         

    (5.4) 

where we use the fact that the joint density function of (T, U) is g(t,u), when 1t  , and [2] 

 

( ) 2 1

2 2

2 if 0,u 0( , ) [( 1)!]
0 otherwise.

tn u nt

n

e uu tg t n n t





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


    



  

For deriving the Bayes estimator of  , let us consider the Inverted Gamma distribution as a prior 
distribution 

 , 1
( ) ; 0 , 0.

( )
e  

  

   
 




  


  

Therefore the unique Bayes estimator B  which is admissible under the loss (1.2) must satisfy the 
following integral equation 

 

( 1) ( 1)1 1(2 a ) ( ) (a ) ( )

0 0
d d

a aB B
B B

u uu t e u t eat te e e
             

              (5.5) 

Note that ˆ ˆ
MRE B  , whenever 0  , 0  . This means that when the loss function is scale 

invariant loss (1.2), then M̂RE  is a generalized Byes rule against the scale invariant improper prior 
1( ) ; 0  


   and is therefore minimax. 
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