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Abstract. In this paper we consider the estimation of parameters under a bounded asymmetric loss
function. The Bayes and invariant estimator of location and scale parameters in the presence and
absence of a nuisance parameter is considered. Some examples in this regard are included.
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1 Introduction

In the literature, the estimation of a parameter is usually considered when the loss is squared error or in
general any convex and symmetric function. The quadratic loss function has been criticized by some
researches (e.g., [4], [5], [6] and [7]). The proposed loss function is

L(5,0) = k{1 — 100"y (1.1)

where a # 0 determines the shape of the loss function, b > 0 serves to scale the loss and k>0 is
the maximum loss parameter. The general form of the loss function is illustrated in Figure 1. This is
obviously a bounded asymmetric loss function.

Figure 1. The loss function (1.1) for a=1.

In this paper, we first study the problem of estimation of a location parameter, using the loss function
(1.1). In section 2 we introduce the best location-invariant estimator of € under the loss (1.1). In
section 3, Bayesian estimation of the normal mean is obtained under the loss (1.1). Then we study the

problem of estimation of a scale parameter, using the loss function

n(é—l)

p{ira o1y —"'F )

L(6,7)=k{1-e g } (1.2)
where @ # 0,0,k > 0. The loss (1.2) is scale invariant and bounded. In section 4 we introduce the best
invariant estimator of the scale parameter z under the loss (1.2). Finally in section 5 we consider a
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subclass of the exponential family and obtain the Bayes estimates of 7z under the loss (1.2). Since the
parameters b and k£ do not have any influence on our results, so without loss of generality we take
b=k =1 in the rest of the paper.

2 Best Location-Invariant Estimator

Let X =(X,,..,X,) have a joint distribution with probability density f(X-6)= f(X -6,.,X -80)
where f is known and @ is an unknown location parameter. The class of all location invariant
estimators of a location parameter 6 is of the form [3]

3(X) = 6,(X) - v(Y)

I}
where §, is any location-invariant estimator and Y =(Y,,....,Y ) with Y, =X -X |, i=1..n-1
and the best location-invariant estimator &  of @ under the loss function(1.1), is
5 (X)=6,(X)-v (y), where v (y) is a number which minimizes

0
1+a (8,(X)-v(y))- e
E,_, [1 —-e

a(8g(X)-v(y))

Y-y

(see [3]). Differentiating with respect to v(y) and equating to zero, it can be seen that v (y) must
satisfy the following equation

By {(e“wo(xw*(y)) -1) (0 (X)=0" ()=t P O

Y= Y} =0 (2.1)

Example 2.1: (normal mean) Let X,...,X be iid. random variables having normal distribution with
mean @ (real but unknown) and known variance o”’. If 0,(X) = X, it follows from Basu’s theorem
that ¢,(X) is independent of Y and hence the best location-invariant estimator of @ is given by
8§ (X)=X—v", when v is a number which satisfies (2.1), i.e.

200”5 uxad « d’e? , 40" 9 ax-av

0 Z(X—T)Z—E av =27 - LQ(X‘ ” P-e )

I e dr=e n j e % dz (2.2)
—00

—00

n

So, we can find v by a numerical solution.

Example 2.2: (Uniform) Let X,,..,X be iid. according to the uniform distribution on
(9—%,94—?] where @ is real (but unknown) and A(>0) is known. Taking & (X)= (X +X(2))/2

which is an invariant estimator of @, the conditional distribution of & (X) given Y =y depends on
y only through differences X(i)_X(l) =V ,i=2,..,n . Now, note that (X X ) is a complete

(1)?""(n)
_ . . (i) _X(l) .
sufficient statistic for (6’,/5’) and is independent of Z :ﬁ’ t=2,...,n—1 for all 6,8 by
o o

Basu’s theorem. Hence (X(l),X(n)) and Z;s are independent for all @ and any given f. Also, note

that the conditional distribution of &, (X) given V/s which is equivalent to conditional distribution of

6,(X) given X —X, and Zs depends only on Xy =Xy

distribution of 6,(X) given W =X —X  at =0 isof the form
1 p—w

fuoorwe v = 2= i [tk =

On the other hand, the conditional

s B>w
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X X, +X X .
Hence the estimator ¢ (X) = %—v is the MRE estimator of 6, if v satisfies (2.1), which
simplifies to
-a M-HJ* — * ui—v* —w ok —w ok
,a(uﬂ,*), ST ) a(ﬂ Y ) —Gu(ﬂQ ) —C_a(ﬁQ )
e —e 2 =(1+a)e —(1+a)e (2.3)

. * . .
So, we can find v by a numerical solution.

Example 2.3: (Exponential distribution) Let X ,...,X be idd. random variables with the density

f(@) = ief(zfg)/ﬂ x>0

where 6 € R is unknown and (> 0) is known. & (X) =X

Basu’s theorem, it is independent of Y . Therefore, 5*(X) = Xu) —v' is the MRE estimator of 6, if

is an equivariant estimator and by the

v’ satisfies (2.1), i.e. satisfies

*
—av 1- —

. _
jo x '3 x—eﬂj “dx  ;a<0
1,1
J-W*x dx—eﬂj e”dx ;a >0
e
which simplifies to
n n
[ — P — )1
af ( ) (I,V*(— n—T) av af ( ) (Iv(l#—)

n (2.4

. * . .
So, we can find v by a numerical solution.

3 Bayes Estimation of the Normal Mean

Let X,,..,X be a random sample of size n from a normal distribution with mean @ (unknown

parameter) and variance o’ (known parameter). In this section we consider Bayesian estimation of the
parameter @ using the loss function (1.1).

If the conjugate family of prior distributions for @ is the family normal distributions N(z,b°), then
the posterior distribution of 8 is N(m,v) where

nro o pd
2 2
m=2 b & L= - ,
b n, b
0_2 b2 0_2 b2

and the posterior risk of an estimator &(X) under the loss function (1.1) is

o o(o-0(x) o 1ealo- s(x)) et (0-0) - Loy
1_ gl trelo-ox))- ‘X :1_1_ Gro(0-o(x)) 1 2ol7m)

nmxov

so, 0,(X) is the solution of the following integral equation

w - 1 (0-200-m) -1~ alS —av—m) fo - 2o av—m) =)
j e 20( ) d@ —e (53 )J. e QU( ) d@ (31)

—00 —00

Hence, we can find &, from the equation (3.1) by a numerical solution.
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Also, notice that the generalized Bayes estimator relative to a diffuse prior, 7(8)=1 for all § € R
2

can be found by letting b > w0, ie. v— g
n

. 2 . 2 . . . .
In the presence of a nuisance parameter ¢~ , i.e. when o~ is unknown, a modified loss function is as
follows

l+a [5_ 0)— ¢ [6;6]
L(5;0,06)=1-¢ ° (3.2)

a # 0 which is a location scale invariant loss function.

. . . . . 1
In this position, we obtain a class of Bayes estimators of the location parameter 6. Let 7=— be

o
the precision which is unknown and suppose that conditional on 7, € has a normal distribution with

1
mean u and variance 1//117 where g e R, A >0 are both known constants, i.e., 6|7 ~ N(M/I_j
T

and 7 hasa pd.f g(r). In this case, one can easily verify that

r~ .
_ 72(177—6’)2 _ ﬂ(g_ﬂ)z
ﬂ(é"x,r) oce SF e ?

Or

2
7r(¢9|x,r) oc exp _%<n+l){6_[n:-l/lf+ ni/lluﬂ

It is clear that 6 |x,7 ~ N 77,; , with 7 = T+
(n+ )

n+A n+A

4. To obtain the Bayes estimate of

@ for our problem, it is enough to find an estimate &(z) which minimizes E|:L(5(X);9,T)|X,Tj| for

any X,7. This expectation is under the distribution of 0|X,r. So &, is the solution of the following

integral equation

[[J e

which can be solved numerically.

e (6-6p) - g(um)(ew)'-) yu,\/;(b’f(iﬂ) - g(um)(aw)z

2(1\/;(9—53 )— e

g(r)d6dr = fowf:‘f g(r)d0dr (33)

4 Best Scale Invariant Estimator

) 1 x . . .
Consider a random sample X ,..,X from — f(=), where f is a known function, and 7 is an
T T

unknown scale parameter. It is desired to estimate 7 under the loss function (1.2). The class of all
scale-invariant estimators of 7 is of the form

5(X) = 5,(X)/ W(2)

X
where ¢, is any scale-invariant estimator, X =(X,.,X ), and Z=(Z,..,Z ) with Z =-—;
n n 1 X

i=1..,n-17 = |— Moreover the best scale-invariant (minimum risk equivariant (MRE)) estimator

n|

& of r isgiven by
§'(X) =6,(X)/w'(Z)

where w (Z) is a function of Z which maximizes
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wz) _
E e ‘Z =z (4.1)

In the presence of a location parameter as a nuisance parameter, the MRE estimator of 7 is of the
form

§'(X)=6,(Y)/w'(Z)
where 6,(Y) is any finite risk scale-invariant estimator of 7z, based on Y =(Y,..,Y ), with

V=X -Xi=l..n-1, Z=(Z,...2, ), % =——;i=1..,n-2, and Z | :Ll| and w (Z) is
n—1 n—1
any function of Z maximizing

E e w(Z) ‘Z =7 (4 2)

In many cases, when 7 =1, we can find an equivariant estimator &,(X) or & (Y) which has the

gamma distribution with known parameters v,n and is independent of Z.

* 5 *
It follows that 6 = —2 is the MRE estimator of r where w is a number which maximizes
w
o1, oy v @ a(= -1)
© 1+(l(£*1)*6 w €T _ e (= -n)—e v
g(w)=j e v 72 . ’”d:czn—e”_[ AR dz (43
’ I(v) Llv) =
and hence w’ must satisfy the following equation
2 %*U, %*U,
o, Croma-er Lo, Cemmaser
I xev dx=e IO x'e” dz (4.4)
0

Theorem 4.1: If ¢§,(X) is a finite risk scale-invariant estimator of 7z, which has the gamma

distribution with known parameters v,n, when 7 =1.Then the MRE (minimum risk equivariant)

é‘0 (X)

*

w

., where w' must satisfy the equation

estimator of 7 under the loss function (1.2) is & (X) =

(4.4).
Example 4.1: (Exponential) Let X,..,X be a random sample from FE(0,4) with density

367 ; 2 >0, and consider the estimation of A under the loss (1.2). &,(X)= )X, is an equivariant
i=1
estimator which has Ga(n,1)-distribution when A =1 and it follows from the Basu’s theorem that o,

is independent of Z , hence the MRE estimator of A under the loss (1.2) is & (X) = —, where
® must satisfy the following equation
© (2%—1).T—€“77d o (%—l)z—e”?ﬂ
IO e dz = e“jo e dz (4.5)
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Example 4.1: (Continued) Suppose that X,..,X is a random sample of FE(,4) with density

1 . . . . .
— g ;x>0 , and consider the estimation of A when € is unknown. We know that

(X(1>’ZL1(XZ-_X(1))) is a complete sufficient statistics for (6,4) . It follows that

o,(Y) = 22:;1()(1. —-X,) has Ga(n—lé) -distribution, when A =1, and from the Basu’s theorem

Z:l (Xz' _Xu))

*

@
the loss (1.2), where @ must satisfy the following equation

5 (Y) is independent of Z and hence & (X)= is the MRE estimator of A1 under

0

2a 1 —-a a 1 - e

S (—-=)z-ev © (——=)z—em
n—=2 _\, a n-1_%,
e ? dr=e I ' ev 2 dx
J.O 0 (46)
Example 4.2: (Normal variance) Let X ,..,X be a random sample of N (0,6°) and consider the

estimation of ¢*. & (X)= ZX; is a finite risk scale-invariant estimator of ¢ and is independent of

0
i=1
14
>
Z_
_ =1

1 *
Z , and when o’ =1, (X) has Ga(g,g) -distribution and hence § (X)=--— 1is the MRE
@
estimator of &, where @ must satisfy the following equation
o 2ot Zheat R
IO 2 e” d;z::e”’_[o x’e” dx (4.7)

Example 4.2: (Continued) Let X ,..,X be a random sample from N(u,c*), with a nuisance

parameter 4 . In estimating o’ using the loss (1.2), it follows that 50(X>ZZ(X1-_)_()2 is

i=1

independent of Z , and when o° =1, the distribution of 6,(Y) is Ga(n_l, ) . Therefore,

L
2 2
$(x -5
5 (X)=-=L——— is the MRE estimator of ¢”, where @ must satisfy the following equation

o — (ﬁ‘g)f—e“" W x 3
I$Qew dx:e’ijew dx (4.8)

Example 4.3: (Inverse Gaussian with zero drift) Let X|,...,X be a random sample of IG(e0,4) with
density

[

f(x|/1):( A Jei it £>0

2’

n

and consider the estimation of 4. &, (X)= X' has Ga(g,

i=1
Z and hence & (X)=-1—— is the MRE estimator of 1, where @ must satisfy the equation (4.7).
®

)-distribution and is independent of

N | —
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5 Bayes Estimation of Scale Parameters

In the section, we consider the Bayesian estimation of the scale parameter 7 in a subclass of one-
parameter exponential families in which the complete sufficient statistic ¢ (X) has G(V,g) -

distribution, where v >0, >0 are known.

1
T
distribution Ga(a,&) . Now, the posterior distribution of A is Ga(v+a,&+nd,(x)) and the Bayes

estimate of 7 is a function &§(x) which maximizes the function

Assume that the conjugate family of prior distributions for g = is the family of Gamma

E[elm(w—l)—e"“""” ‘X} _ (775015(}() + 5) ) o Jow grret (@051 (X)p=e 0 g
vV+a

Hence, the maximized 6 must satisfy the following integral equation,

a(fo-1

I:ﬁv+ae<2a6—é—n 8,(x)) BP0 dj = eaJ‘:ﬂv+ae(&5*§*U 8,(x)) B¢l

So all estimators satisfying (5.1) are also Bayes estimators.

Example 5.1: (Fisher Nile’s problem) The classical example of an ancillary statistic is known as the
problem of Nile, originally formulated by Fisher [1]. Assume that X and Y are two positive valued
random variables with the joint density function

dp (5.1)

~(rr4ty)
flz,y;r)=€¢ 7 x>0,y >0,7>0
and that (Xi,YZ.) ,i=1..,n is a random sample of n paired observation on (X,Y). Let X = lZXw
n =
Y = lZYI , T = \/% ,u=+XY . T isthe MLE of 7 and the pair (T,U) is a jointly sufficient, but
nia

not complete statistics for z and U is ancillary. Consider a nonrandomized rule &(T,U) based on the
sufficient statistic (X, Y) which is equivariant under the transformation

= 11l =1];¢c>0
0] 0 - |\Y

c

For &§(T,U) to be scale equivariant, we must have
ST, U)=68(cT,U) ; Ve>0 (5.2)
Following Lehman [3] a necessary and sufficient condition for an estimator & to be scale equivariant is
that it is of the form & = 3,7, where ¢, satisfies (5.2), hence §, =T, Z =¢(U). We see that all the

scale equivariant estimators J(7,U) must have the form

6(T,U) =Tg(U) (5.3)

T
using the loss function (1.2) and the fact that the joint distribution of [—7UJ is independent of 7,
T

and we can evaluate the risk at 7 =1. Hence

= L+a (TP(U)~1)—e" (P41
R(z,T§(U)) = B, [EQ-e"" 6 )| U]
It follows that R(z,T(¢(U)) is minimized by minimizing the inner expectation. Hence, the minimum

risk scale equivariant estimator is 7, =T¢ (U), where ¢ (U) must satisfy the following integral

equation
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© (2a¢*(u)—u)t—ﬁ—e”(w*(“)*l) 0 (a¢*(11)—11)t—ﬁ—ea(w*(“)*l)
I e t dtzeaj. e t dt (5.4)

0 0
where we use the fact that the joint density function of (T, U) is g(t,u), when ¢ =1, and [2]

-n u(1+£)

26 r ot uQn—l
gt = —_2"[( ez if  t>0u>0
! r n n—1)!
0 otherwise.

For deriving the Bayes estimator of 7, let us consider the Inverted Gamma distribution as a prior
distribution
ﬂae—ﬂ/z
ﬁa-i(z—): a+l
7" Ta)

Therefore the unique Bayes estimator &, which is admissible under the loss (1.2) must satisfy the

;o r>0,4>0.

following integral equation

1 a(esp-1) U 1 a(esp-1)
w0 (2a5373)77(1+ut)77@ b ©  (ady—- —)r—(A+ut)=—¢ P
I % ! i drzeaj T % ! i dz (55
0 0
Note that 7, =7,, whenever ¢ -0, 4 —0. This means that when the loss function is scale

~

invariant loss (1.2), then 7 is a generalized Byes rule against the scale invariant improper prior

MRE

1 . ..
7z(r)==; 7 >0 and is therefore minimax.
T
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