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Abstract The theory of spherical distributions is employed to develop a generalized F-test for
testing the mean of a subfamily of elliptically contoured distributions. The exact null distribution
of the generalized F-test is obtained. The power performance of the generalized F-test is illustrated
by choosing several distributions in the subfamily of elliptically contoured distributions. The Monte
Carlos study shows that the generalized F-test is not sensitive to the increase of sample dimension.
The generalized F-test is applicable to the case of any dimension with any sample size. An analysis
on a real dataset in financial models illustrates possible applications of the proposed tests.
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1 Introduction

The family of elliptically contoured distributions (ECD for simplicity) is a natural extension to the classical
multivariate normal distribution Np(µ,Σ). Many theoretical results for ECD have been obtained since
the last few decades ([2]). Following the same notation as in [2], we denote a p-dimensional distribution
in the family of ECD by ECD(µ,Σ) with a mean vector µ (p× 1) and a covariance matrix Σ ≥ 0 (p× p,
non-negative definite). It is well-known that a distribution in ECD(µ,Σ) may not have a probability
density function. This makes it difficult to develop any parametric statistical inference on the mean vector
µ or the covariance matrix Σ. Fang and Zhang (1990) ([2]) gave some thoughts on statistical inference
on µ and Σ based on the theory of spherical-matrix distributions, where the samples are not traditional
ones with the i.i.d. (independently identically distributed) assumption. If an ECD(µ,Σ) has a probability
density function, it must be of the form f [(x− µ)′Σ−1(x− µ)] (Σ must be positive definite) with some
nonnegative scalar function f(·). Even so, the the scalar function f(·) is still unknown. This makes it
impossible to construct the traditional likelihood ratio test. The uncertainty of an ECD with or without
a probability density function creates the major difficulty in developing parametric statistical inference
on the two parameters µ and Σ.

Because of the great challenge in developing parametric statistical inference on the two parameters µ
and Σ for a general ECD(µ,Σ), we try to tackle this problem by considering a subfamily ECDp(µ, σ2Ip)
with an i.i.d. sample, where σ > 0 is unknown and Ip stands for the p× p identity matrix. Without loss
of generality, testing the mean µ in ECDp(µ, σ2Ip) can be reduced to testing the hypothesis

H0 : µ = 0, versus H1 : µ 6= 0. (1)

We will develop the theoretical details for constructing the test for hypothesis (1) under an i.i.d.
sample in section 2. Section 3 will present the Monte Carlo study on the performance of the test. Section
4 illustrates some possible application of the proposed test. Some concluding remarks are summarized in
the last section.

2 Theoretical Development

The following theorem provides the theoretical basis for the generalized F-test.
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Theorem 1. Let {x1, . . . ,xn} be an i.i.d. sample from ECDp(µ, σ2Ip). For each xi = (xi1, . . . , xip)′
(p× 1), define

Fi(xi) = (√px̄i)2
/ 1

p− 1

p∑
j=1

(xij − x̄i)2

 , (2)

for i = 1, . . . , n, where x̄i = (1/p)
∑p

j=1 xij is sample mean from xi = (xi1, . . . , xip)′. Construct the
generalized F-statistic by

GF = max
1≤i≤n

{Fi(xi)}. (3)

Under the null hypothesis in (1), GF has an exact distribution given by

P (GF < x) =
[
F (x; 1, p− 1)

]n
, x ≥ 0, (4)

where F (·; 1, p− 1) stands for the cumulative distribution function of the F-distribution with degrees of
freedom (1, p− 1).
Proof. Note that under the null hypothesis in (1), each observation xi (i = 1, . . . , n) in the i.i.d. sample
{x1, . . . ,xn} has an ECD(0, σ2Ip), which reduces to a spherically symmetric distribution [1]. Each
statistic Fi defined by (2) is scale-invariant:

Fi(axi) = Fi(xi)

for any constant a > 0. According to [1], we have

Fi(xi)
d= Fi(z0), (5)

where z0 ∼ Np(0, Ip), the p-dimensional standard normal distribution, and the notation “ d=” means that
both sides of the equation have the same distribution. It is noted that

Fi(z0) =
[√
pz̄
]2/ 1

p− 1

p∑
j=1

(zj − z̄)2

 d=
[
t(p− 1)

]2 d= F (1, p− 1), (6)

where z0 = (z1, . . . , zp)′, z̄ = (1/p)
∑p

j=1 zj , and t(p − 1) stands for the Student’s t-distribution with
degrees of freedom p− 1. The assumption on the i.i.d. sample leads to:

P (GF < x) = P
(

max
1≤i≤n

{Fi(xi)} < x
)

= P
(
∩n

i=1 {Fi(xi) < x}
)

=
n∏

i=1
P (Fi(xi) < x) =

[
F (x; 1, p− 1)

]n

, x > 0.
(7)

This completes the proof.
The GF-statistic in (3) can be applied to test hypothesis (1). If the null hypothesis in (1) is true, GF

tends to departure from zero. The critical value c(α) at a given level 0 < α < 1 for the GF -test can be
accurately determined by

P (GF > c(α)) = 1− P (GF < c(α)) = 1− [F (c(α); 1, p− 1)]n,
or c(α) = Finv

(
(1− α) 1

n ; 1, p− 1
)
,

(8)

where Finv(·; 1, p− 1) stands for the inverse of the cumulative distribution function of the F-distribution
F (1, p − 1). Computer programs for Statistical computation such as MATLAB usually provides the
computation for Finv(·; 1, p − 1). The principle for testing hypothesis (1) by the generalized F-test
GF -statistic can be summarized as: for a given level 0 < α < 1, reject the null hypothesis if GF > c(α)
with c(α) computed by (8).
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3 A Monte Carlo Study

The following subfamilies of ECDp(µ, Ip) (σ = 1) (Chapter 3 in [1]) are chosen for simulating the empirical
type I error rates and the empirical power by using MATLAB code, where the Ci (i = 1, 2, 3, 4, 5) are
suitable normalizing constants.

(1) The multivariate normal distribution Np(µ, Ip);
(2) The multivariate t-distribution has a density function of the form

ft(‖x− µ‖) = C1

(
1 + ‖x− µ‖

2

m

)− p+m
2

, m > 0,

where “‖ · ‖” stands for the Euclidean norm of a vector, let m = 5;
(3) the Kotz type distribution Kotz(N,m, s) with parameters N = 2, m = 1 and s = 0.5 has a density

function of the form

fk(‖x− µ‖) = C2‖x− µ‖2(N−1) exp{−r‖x− µ‖2s},

where N , r and s are parameters. Let N = 2, r = 1 and s = 0.5.
(4) The Pearson type II distribution with the density function of the form

fP 2(‖x− µ‖) = C3
(
1− ‖x− µ‖2)−m

,

where m > −1 is a parameter. Let m = 3/2.
(5) The Pearson type VII distribution with the density function of the form

fP 7(‖x− µ‖) = C4

(
1 + ‖x− µ‖

2

m

)−N

, N > p/2, m > 0

Let m = 2 and N = 20 for p = 10 and N = 30 for p = 50.
(6) The multivariate Cauchy distribution has a density function of the form

fCauchy(‖x− µ‖) = C5
(
1 + ‖x− µ‖2)− p+1

2 .

An i.i.d. sample from each of these distributions can be easily generated by MATLAB code (available
from the authors upon request). Without loss of generosity, the mean vector µ is chosen as µ = c1p and
let the constant c increase from c = 0 to a suitable number until the power can reach 1 approximately
with a suitable equal increment, which means that taking the equal step length. The power is computed
by taking the significance level α = 0.05. In order to compare the impact of the sample size n on the
power performance, we plot the power values versus the c-values. Figure 1 presents the plots of power
values against the departure from zero of the mean vector µ = c1p with increasing c-values for relatively
low dimensions p = 5 and p = 10. Figure 2 presents the plots of power values against the departure from
zero of the mean vector µ = c1p with increasing c-values for relatively high dimension p = 50 with a
sample size n ≤ p. The following two empirical conclusions can be summarized.

(1) The GF -test generally controlls thetype I error rates very well and shows fair effectiveness in testing
the mean for the selected distributions in ECDp(µ, σ2Ip);

(2) The GF -test seems to be nonsensitive to the increase of the sample size. The power plots show that
even the sample size is doubled, the power does not increase substantially. This implies that the
GF -test may still have good power performance in the case of high dimension with a small sample
size;

(3) The GF -test is applicable to the case of n ≤ p. Classical tests for parametric hypotheses usually
require n > p, for example, the Hotelling T 2-test for the multivariate normal mean. The power plots
for the case of n ≤ p in Figure 2 show the effectiveness of the GF -test for the case of high dimension
with a small sample size. For example, the power performance for n = p/2 (p = 50) is quite close
to the case of n = p = 50. The GF -test has an exact null distribution regardless of the sample size.
This property makes the GF -test applicable for the case of any sample size. Therefore, the GF -test is
especially applicable to the case of high dimension with a small sample size in real problems.
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Figure 1. Power performance illustration for six ECD(µ, σ2Ip) (p = 5 and p = 10): the real
line stands for sample size n = 25; the plot with “o” for sample size n = 50; and the plot
with “*” for sample size n = 100. Mean vector µ = c1p.

4 An Illustrative Example

The value-weighted New York Stock Exchange return data are available from the Center for Research
in Security Prices (CRSP) at the University of Chicago. We choose a partial data set (available from
the authors upon request) that contains the market monthly returns between the year of 1966 and 1975
(120 months) from a portfolio with 32 stocks. First, we run the CAPM (capital asset pricing model, see
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[3] and [4]) to get the monthly risk-adjusted returns. These risk-adjusted returns constitute a sample
with a sample size n = 120 and dimension p = 32. Second, we run a 2-factor analysis model to get
another set of monthly risk-adjusted returns. These risk-adjusted returns also constitute a sample with
a sample size n = 120 and dimension p = 32. Now we have two populations and two sets of samples:
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Figure 2. Power performance illustration for six ECD(µ, σ2Ip) (p = 50): the real line stands
for sample size n = 25; the plot with “o” for sample size n = 50; and the plot with “*” for
sample size n = 100. Mean vector µ = c1p.

(1) Population #1: risk-adjusted returns computed by CAPM, we have sample #1 with n = 120 and
p = 32;

(2) Population #2: risk-adjusted returns computed by a 2-factor model, we have sample #2 with n = 120
and p = 32.

In the theory of CAPM, an investment portfolio is said to be efficient if it satisfies two conditions: 1)
it reaches the smallest possible variance given its expected return; and 2) it reaches the largest possible
expected return given its variance. The verification of these two conditions is finally reduced to testing the
null hypothesis that the intercept parameter in the CAPM is equal to zero (vector) versus the alternative
hypothesis that the intercept parameter in the CAPM is not equal zero. In the CAPM, the observations
are the risk-adjusted returns. The purpose of constructing populations #1 and #2 is to double check the
efficiency of the portfolio consisting of 32 stocks. Assuming population #1 has an ECD(µ1, σ

2
1Ip) and

population #2 has an ECD(µ2, σ
2
2Ip), we set up the hypotheses:

H0 : µ1 = 0, versus H1 : µ1 6= 0, (9)

and
H0 : µ2 = 0, versus H1 : µ2 6= 0. (10)

The p-values of the GF -tests are 0.0000 and 0.0039 for hypotheses (9) and (10), respectively. The null
hypotheses in (9) and (10) rejected at level 0.01. It is concluded that the two portfolios can be considered
inefficient during the 10 years 1966-1975.
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5 Concluding Remarks

The GF -test in this paper provides a way to test the mean of some subfamilies of ECD under i.i.d. samples
without assuming existance of the probability density function for the population. This is substantially
different from many existing approaches to constructing parametric tests. The construction of the GF -test
in Theorem 1 shows that the test is applicable for any dimension regardless of any sample size. This
makes the GF -test particularly suitable for the case of high dimension with a small sample size. The
Monte Carlo study supports this assertion. The real-data example illustrates possible applications of the
GF -test in high-dimensional data analysis where the normal assumption may not be appropriate and the
number of observations may be very limited due to high cost or difficulty in obtaining data. The GF -test
is applicable for all population distributions in ECDp(µ, σ2Ip). This includes the normal distribution
Np(µ, σ2Ip) as a special case. Therefore, the GF -test in this paper could find more applications in some
areas like medical research where it is common to have data of high dimension with a small sample size
and the normal assumption may be violated.
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