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Abstract In some applications of equilibrium theory, the fixed point involves not only a state and
a value of a parameter in the dual of the state space, but also a particular subspace of the state
space. Since the set of all subspaces of a finite-dimensional Euclidean space has a structure which
does not allow immediate application of fixed point theorems, the problem must be reformulated
using a suitable parametrization of subspaces. One such parametrization, the Plücker coordinates,
is used here to prove a general equilibrium existence theorem. Applications to economic problems
involving hierarchies of consumers or incomplete markets with real assets are outlined.
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1 Introduction

An equilibrium problem in its simplest version is given by a map F : K ×K → R, where K is a closed
and bounded subset of some topological vector space, with the property that F (x, x) ≥ 0 for all x ∈ K,
and the task is to find an equilibrium, which is an element x0 ∈ K such that F (x, y) ≥ 0 for all y ∈ K
(Blum and Oettli [1], Bianchi and Schaible [2], Iusem [3]). In the recent literature, the discussion has been
extended to more general versions of equilibrium problems, see e.g. Ansari and Flores-Bazán [4], Lin and
Yu [5].

In some instances of equilibrium problems, notably those occurring in economic theory, the equilibrium
involves not only a state x0 but also a vector subspace chosen from a large family of such subspaces. Since
the space of all subspaces of given dimension does not lend itself easily to classical fixed-point arguments,
one must use roundabout methods to ascertain the existence of an equilibrium. In the approach given
below, we use Plücker coordinates of vector subspaces combined with assumptions which allow us to stay
away from situations where this parametrization breaks down.

The paper is organized as follows: Sect. 2 contains the main theorem and its proof, and Sect. 3 some
extensions of the main theorem. In the following two sections, some applications are given, the first
one dealing with economic equilibria with a hierarchy of agents, and the second one treating financial
equilibria under conditions of incomplete markets with real assets. The final Sect. 7 contains a proof of a
lemma used in Sect. 2.

2 The Main Theorem

Let X,Y be subsets of Rn. A multimap φ : X ⇒ Y is a map from X to 2Y , the set of subsets of Y , and
the graph of φ is the set {(x, y) ∈ X × Y | y ∈ φ(x)}. Let Lnk denote the set of k-dimensional subspaces
of Rn.

Definition 1 (a) A (one-person) equilibrium problem is an array E = (X, f, g, φ,L), where
(i) X ⊂ Rn is nonempty, compact and convex,
(ii) f = (f1, . . . , fk) : X → Xk is continuous,
(iii) g : X ×X → Rn is continuous, g(X ×X) ⊂ X, and g(·, x) is linear for each x ∈ X,
(iv) φ : X ⇒ Rn is a multimap with open graph such that g(x, x) /∈ φ(x) for each x ∈ X, and
(v) L ⊆ Lnk is such that f1(x), . . . , fk(x) ∈ L for some L ∈ L, all x ∈ X.
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(b) An equilibrium is a pair (x0, L0) ∈ X × Lnk such that fj(x0) ∈ L0, j = 1. . . . , k, g(x0, x0) ∈ L0 and
φ(x0) ∩ L0 = ∅.

Theorem 1 Let E = (X, f, g, φ,L) be an equilibrium problem. Assume that there is V0 ∈ Lnk such that
for all x ∈ X, if φ(x) = ∅, then the vectors f1(x), . . . , fk(x) are linearly independent, and fj(x) /∈ V0,
some j. Then there is an equilibrium in E.

The proof of Theorem 1 relies on a suitable parametrization of Lnk . Let (v1, . . . , vk) ∈ Rn be a basis of
a k-dimensional subspace of Rn. The vector of determinants of all k × k submatrices of the k × n matrixv11 v12 . . . v1n

...
...

...
vk1 vk2 . . . vkn

 .

consisting of k (not necessarily distinct) columns i1, . . . , ik is an array of nk numbers, not all 0. Another
basis of this subspace will give the same nk-tuple of numbers except for multiplication by a real number,
thus defining a point in Pnk−1, real projective space of dimension nk−1, called the Plücker (or Grassmann)
coordinates of the subspace (cf. e.g. Griffiths and Harris [6], pp. 209 – 211). The subspace is uniquely
determined by its Plücker coordinates.

Define the mapping W : (Rn)k → Rnk by

W(i1,...,ik)(v1, . . . , vk) =

∣∣∣∣∣∣∣
v1i1 . . . v1ik
...

...
vki1 . . . vkik

∣∣∣∣∣∣∣ (1)

(the determinant of the submatrix determined by columns i1, . . . , ik). We shall use the following lemma,
the result of which is not new, but for selfcontainedness a proof is given in Section 7 below.

Lemma 1 For each (i1, . . . , ik), the map u(i1,...,ik) : Rnk → (Rn)k defined by

u
(i1,...,ik)
j (z) = (uj1, . . . , ujn),

ujh =
{
zi1,...,ij−1,h,ij+1,...,ik h /∈ {i1, . . . , ij−1, ij+1, . . . , ik},
0 otherwise,

(2)

for j = 1, . . . , k, is linear, and
(i) if zi1,...,ik 6= 0, then u(i1,...,ik)

1 (z), . . . , u(i1,...,ik)
k (z) span a k-dimensional subspace of Rn,

(ii) W (u(i1,...,ik)(z)) = z if z ∈W ((Rn)k) and zi1,...,ik = 1.

In the sequel, we assume that the subspace V0 in Theorem 1 has the form

V0 = {z = (z1, . . . , zn) ∈ Rn | zh = 0, h > n− k} .

This does not restrict the generality since it can be obtained by choosing a suitable basis for Rn. For any
x ∈ X, we let Vx = span({f1(x), . . . , fk(x)}) be the subspace spanned by the vectors f1(x), . . . , fn(x),
and let V ⊥x be its orthogonal complement (in Rm).

Lemma 2 Suppose that φ(x) = ∅. Then dim V ⊥x = n− k, and

W(1,...,n−k)(u1, . . . , un−k) 6= 0

for any basis (u1, . . . , un−k) of V ⊥x .

Proof: For u1, . . . , un−k a basis of V ⊥x , W(1,...,n−k)(u1, . . . , un−k) = 0 implies that the (n − k) vectors
ur1, . . . , ur,n−k, r = 1, . . . , n− k, are not linearly independent, so that V ⊥x contains a vector u 6= 0 with
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uh = 0 for h = 1, . . . , n− k, and consequently, every z with zh = 0 for h > n− k must belong to Vx, a
contradiction.

Define the sets

B+ =
{
w ∈ Rn

n−k ∣∣ ‖w‖ ≤ 1, w1,...,n−k ≥ 0
}

S+ =
{
w ∈ B+

∣∣ ‖w‖ = 1
}
.

In the proof, B+ is used as parameter space for subspace selection; clearly, B+ is convex and compact.
Let Σ be the set of ordered (n−k)-tuples σ = (i1, . . . , in−k) from {1, . . . , n}, and for each w ∈ B+\{0},

let Σw be the subset of Σ consisting of all σ = (i1, . . . , in−k) such that wσ = wi1,...,in−k 6= 0. For each
σ ∈ Σw, we define the σ-normalized map ûσ : {w ∈ B+\{0} | σ ∈ Σw} → (Rn)n−k by

ûσ(w) = uσ(w−1
σ w).

Then (ûσj (w))n−kj=1 is a basis for an (n− k)-dimensional subspace of Rn associated with w. We write ûσ(w)
as ûσ(w) = (ûσ1 (w), . . . , ûσn−k(w) with ûσj (w) = (uσj1(w), . . . , ûσjn(w)) for j = 1, . . . , n− k.

In the following, ε > 0 is chosen arbitrarily.

Lemma 3 Let the multimaps γε,σ, γε : X × B+ ⇒ X be given by

γε,σ(x,w) =
{
x′ ∈ X | −ε < ûσj (w) · g(x′, x) < ε, j = 1, . . . , n− k

}
,

γε(x,w) =
{
conv ({γε,σ(x,w) | σ ∈ Σw}) w ∈ S+,

X otherwise,

Then γε has open graph and convex values.

Proof: Choose (x,w) ∈ B+ and y ∈ γε(w), arbitrarily. For each σ ∈ Σ there are open neighborhoods Uσ
of (x,w) and Gσ of y such that

Wσ ×Gσ ⊂ Graph γε,σ,
and if W = ∩σWσ, G = ∩σGσ, then W and G are open neighborhoods of (x,w) and y with W ×G ⊂
Graph γε. This shows that γε has open graph. Convexity of γε(x,w) follows from the definition of γε and
the linearity of g(·, x).

Lemma 4 For i = 1, . . . ,m, the multimap ψε : X × B+ ⇒ X given by

ψε(x,w) =
{
γε(x,w) g(x, x) /∈ cl γε(w)
γε(x,w) ∩ φ(x) otherwise.

has open graph and convex values, and x /∈ ψε(x,w) for each (x,w) ∈ X × B+.

Proof: Let (x,w) ∈ X ∈ B+ and y ∈ ψε(x,w) be arbitrary. Choose an open neighbourhood G of y;
if g(x, x) /∈ cl γε(w), then there is a neighborhood U of (x,w) such that ψε(x′, w′) = γε(w′) for all
(x′, w′) ∈ U , so that ψε has open graph on all such (x,w) by Lemma 3. If g(x, x) ∈ cl γε(w), then y ∈ φ(x),
and there is an open neighborhood of (x,w) such that φ(x′) intersects G. It follows that φε is lower
hemicontinuous on all of X × B+.

Convexity of ψε(x,w) for each (x,w) ∈ X × B+ is obvious. Also for each (x,w) ∈ X × B+, we have
that ψε(x,w) ⊂ γε(x,w), and if x ∈ cl γε(x,w), then ψε(x,w) ⊂ φ(x). Since g(x, x) /∈ φ(x) for all x ∈ X,
the statement in the lemma follows.

Let W (L) ⊆ S+ be the set of points W (v1, . . . , vn−k) where (v1, . . . , vn−k) is a basis of a subspace L⊥
with L ∈ L.

Lemma 5 The multimap Ω : X ⇒ S+ defined by

Ω(x) =
{
w ∈W (L) | ∃ v1, . . . , vd−k ∈ f(x)⊥, W (v1, . . . , vn−k) = w

}
has closed graph and nonempty values.
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Proof: Nonemptiness of Ω(x) for each x is obvious, as f(x) consists of at most k linearly independent
vectors. Let (xν , wν)∞ν=1 be a sequence in the graph of Ω converging to some (x0, w0) ∈ X × S+. For each
ν, choose an orthonormal basis (vν1 , . . . , vνn−k) for an (n− k)-dimensional subspace of Rn with

vνr · fj(xν) = 0, r = 1, . . . , n− k, j = 1, . . . , n,

and (W (vν1 , . . . , vνn−k) = wν . Taking subsequences if necessary, it may be assumed that the sequence
(vν)∞ν=1 with vν = (vν1 , . . . , vνn−k) converges to some v0 = (v0

1 , . . . , v
0
n−k) ∈ (Rn)n−k. Since W (v0) = w0

by continuity of W , the family {v0
1 , . . . , v

0
n−k} spans an (n− k)-dimensional subspace of Rn. Continuity

of f implies that
v0
r · fj(x0) = 0, r = 1, . . . , n− k, j = 1, . . . , k,

so that w0 ∈ Ω(p0).

Lemma 6 There is a multimap H × convΩ : X × B+ ⇒ X with closed graph and nonempty convex
values such that H(x,w) ⊂ ψε(x,w) whenever ψε(x,w) 6= ∅.

Proof: The set Domψε = {(x,w) | ψ(x,w) 6= ∅} is open, and by Michael’s selection theorem (Michael
[7]), there is a continuous map h : Domψε → X such that h(x,w) ∈ ψε(x,w) for (x,w) ∈ Domψε. Let
H : X × B+ ⇒ X be given by

H(x,w) =
{
h(x,w) (x,w) ∈ Domψε

X otherwise.

Then H has the desired properties.

Now we may apply a fixed point theorem to obtain an approximate equilbrium. The lemma uses the
approach of Gale and Mas-Colell [8].

Lemma 7 There is (xε, wε) ∈ X × B+, such that
(i) ψε(xε, wε) = ∅,
(ii) wε ∈ Ω(xε, wε) and wε ∈W (L).

Proof: The multimap
H × convΩ : X × B+ ⇒ X × B+,

given by Lemma 6 where convΩ takes (x,w) to the convex hull of Ω(w), is upper hemicontinuous with
nonempty closed and convex values, and by the fixed-point theorem of Kakutani [9], there is (xε, wε) such
that

xε ∈ H(xε, wε), wε ∈ convΩ(xε).

From the irreflexivity of the multimaps ψε(xε, wε) = ∅, so that that property (i) of the lemma is
satisfied. To show that property (ii) holds, assume to the contrary that wε does not belong to Ω(xε), i.e.
that wε is a proper convex combination of points in Ω(xε). Then wε belongs to B+\S+, and by definition,
γε(xε, wε) = X. It follows that φ(xε) = ∅, so that xε ∈ E. However, by Lemma 2, Ω(xε) then consists of
a unique point in w ∈ S+ with w(1,...,l−k) > 0, and it follows that w ∈W (L).

Now we are in a position to prove the main theorem.

Proof of Theorem 1: Let (εν)∞ν=1 be a decreasing sequence of numbers converging to 0. For each ν, choose a
pair (xεν , wεν ) satisfying (i) and (ii) of Lemma 7. Since wεν ∈ Ω(xε)∩S+, it defines a (n−k)-dimensional
subspace of Rn; let Lεν be its orthogonal complement. Then f(xεν ) ∈ Lεν and Lεν ∈ L.

Identify the elements of Lnk with their intersections with the compact set X, so that the Painlevé-
Kuratowski and Hausdorff topologies on Lnk are identical. Using the definition of ψεν , we get that

γεν (xεν , wεν ) ∩ φ(x) = ∅.

Therefore, d(xεν , Lεν ) ≤ εν (where d is distance from the point xεν to the set X ∩ Lεν ).
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Since X ×L is compact, we may assume that the sequence (xεν , Lεν )∞ν=1 converges to some (x0, L0) ∈
X × L. Clearly, g(x0, x0) ∈ L0 and f(x0) ∈ (L0)k.

We check that (x0, L0) has the properties stated in Theorem 1. Suppose that x ∈ φ(x0) belongs to L0.
Since φ has open graph, there is are open neighborhoods Nx of x and Nx0 of x0 such that Nx ⊂ φ(x′) for
x′ ∈ Nx0 . But Lεν ∩Nx 6= ∅ for large enough n, and xεν → x0, and we get a contradiction.

3 Extensions of the Main Theorem

The result of Theorem 1 can be somewhat improved, since the assumption of linear independence of the
vectors f1(x), . . . , fk(x) can be replaced by a weaker one, at least if we allow L to be all of Lnk . We then
get the folkowing version of the main theorem.

Theorem 2 Let E = (X, f, g, φ,L) be an equilibrium problem. Assume that the set E = {x ∈ X | φ(x) =
∅} is finite, and there is V0 ∈ Lnk such that for each x ∈ E, fj(x) /∈ V0 for some j. Then there is an
equilibrium in E.

Proof: Let E = {x1, . . . , xp}, choose ε > 0 so small that there are mutually disjoint ε-neighborhoods Uεt
of xt, t = 1, . . . , p. For each t choose k linearly independent vectors vε1, . . . , vεk such that∥∥ vεj − fj(xt)∥∥ < ε

2n, j = 1, . . . , k.

The family {Uε0 , Uε1 , . . . , Uεp}, where Uε0 is open and X\ ∪pt=1 U
ε
t ⊂ Uε0 ⊂ X\E, is an open covering of X.

Let (ψεt )
p
t=0 be a partition of unity subordinated to this covering, and define the map fε : X → (Rn)k by

fεj (x) =
p∑
t=1

ψεt (x)vεt (x) + ψε0fj(x), j = 1 . . . , k,

for x ∈ X. Applying Theorem 1 to the problem given by X, Lnk , φ and fε, we find a point xε ∈ X and
a subspace Lε ∈ Lnk such that fε(x) ∈ Lε and ψ(x) ∩ Lε = ∅. If xε ∈ X\ ∪pt=1 U

ε
t , then xε has all the

desired properties, and we are done. So we may assume that xε ∈ Uεt for some t ∈ {1, . . . , p}.
Choosing a sequence of numbers ε > 0 going to 0, and passing to subsequences if necessary, we obtain

sequences of points xε converging to some x0 ∈ E, and k-dimensional subspaces Lε converging to some
L0 ∈ Lnk . By our construction x0 and L0 have the desired properties.

It is seen that the method of proof applied relies on the possibility of approaching the vectors
fj(x), j = 1, . . . , k arbitrarily close by linearly independent vectors v1, . . . , vk, for each x ∈ E. The
assumption of finiteness of E might be done away with altogether if the approximations could be chosen
as continuous functions of x on all of E.

The result of Theorem 1 (or Theorem 2) can be extended easily so as to cover the case of several
multimaps φ1, . . . , φr instead of a single one.

Definition 2 A many-person equilibrium problem is an array (X, f, (gh, φh)rh=1,L), where
(i) X ⊂ Rn is nonempty, compact and convex,
(ii) f = (f1, . . . , fk) : X → Xk is continuous,
(iii) for h = 1, . . . , r, gh : X ×Xr → Rn is continuous, gh(X ×Xr) ⊂ X, and gh(·, x) is linear for
each x ∈ Xr,
(iv) for h = 1, . . . , r, φh : X ⇒ Rn is a multimap with open graph such that gh(x, x) /∈ φh(x) for each
x ∈ X, and
(v) L ⊆ Lnk is such that f1(x), . . . , fk(x) ∈ L for some L ∈ L, all x ∈ X.

An equilibrium is a pair (x0, L0) ∈ Xr × Lnk such that x0 = (x0
1, . . . , x

0
r) ∈ L0, fj(x0) ∈ L0, j = 1, . . . , k,

gh(x0
h, x

0) ∈ L0 and φh(x0
h) ∩ L0 = ∅ for h = 1, . . . , r.

Theorem 3 Let E = (X, f, (gh, φh)rh=1,L) be a many-person equilibrium problem. Assume that the set
E = {x ∈ X | φh(x) = ∅, h = 1, . . . , r} is finite, and there is V 0 ∈ Lnk such that for each x ∈ E,
fj(x) /∈ V 0, some j = 1, . . . , k. Then there is an equilibrium in E.
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The proof of Theorem 1 works also in this case, and the only extension needed is a reformulation of
Lemma 6 so as to obtain a multimap H : Xr × B+ ⇒ Xr with the property that Hi(x1, . . . , xr, w) ⊂
ψεi (xi, w) whenever ψεi (xi, w) 6= ∅, where the multimaps ψε1, . . . , ψεr are constructed from φ1, . . . , φr as in
Lemmas 3 and 4 above.

4 Applications (1): Hierachic Equilibria

We consider an exchange economy with m consumers and l commodities, cf. Debreu [10]. Each consumer
i is characterized by the pair (Zi, Pi). Here Zi ⊂ Rn is a set of feasible net trades in the n commodities,
and Pi : Zi ⇒ Zi is a multimap describing the preferences of consumer i in the sense that z′i ∈ Pi(zi)
means that z′i is considered as better than zi by consumer i. We assume (here and in the next section)
tha the economy is well-behaved in the sense that for each i,

(a) Zi is closed, convex and bounded from below, 0 ∈ intZi and Zi + Rl+ ⊆ Zi,
(b) zi /∈ Pi(zi) for all zi ∈ Zi (irreflexivity),
(c) Pi(zi) is a convex set, all zi ∈ Zi (convexity),
(d) the graph of Pi is open in Zi × Zi (continuity).
A price system in the economy is a vector p ∈ ∆ = {p ∈ Rn+ |

∑n
h=1 ph = 1}. A competitive

equilibrium is a pair (z1, . . . , zm, p) ∈ Rlm ×∆ such that
∑m
i=1 zi = 0 (aggregate balance of net trades)

and p · zi ≤ 0, Pi(zi) ∩ {z′i ∈ Zi | p · z′i ≤ 0} = ∅, i = 1, . . . ,m (individual optimality).

Definition 3 Let L = (L1, . . . , Lk) with Lk ⊂ Lk−1 ⊂ · · · ⊂ L1 = Rl be a chain of subspaces of Rl where
for each j there is i such that 0 belongs to the relative interior of Zi∩Lj . A hierarchic equilibrium relative
to L is an array (z1, . . . , zm, (pj)kj=1), where zi ∈ Zi, i = 1, . . . ,m, and pj ∈ ∆, j = 1, . . . , n, satisfying
the following conditions:

(i)
∑m
i=1 zi = 0,

(ii) For i = 1, . . . ,m, if minz′
i
∈Zi p

j · z′i < 0, then zi ∈ Lj, pj · zi = 0 and Pi(zi) ∩ {z′i ∈ Zi ∩ Lj |
pj · zi ≤ 0} = ∅.

Intuitively, in a hierarchical equilibrium consumers and commodities are split into classes, so that
members of classes with higher index are too poor to buy all the commodities available to those in classes
with a lower index. Hierarchic equilibria were introduced by Danilov and Sotskov [11], see also Florig [12],
Konovalov and Marakulin [13].

For simplicity, we consider here only hierarchies of the form L = (L1, L2) with L1 = Rl and L2 a
proper subspace of Rl.

Theorem 4 Let E = (Zi, Pi)mi=1 be a well-behaved economy. Assume that the associated structure of
subspaces is (L1, L2). Then there exists a hierarchic equilibrium in E.

Proof: In order to use the results of the previous section, we must define the state space X and the family
L of subspaces. For state space, we use the set of all arrays (z1, . . . , zm, p

1, p2) of net trades and prices
such that each zi belongs to a suitably bounded subset Ẑi of Zi, making sure that if

∑m
i=1 zi ≤ 0, then

zi ∈ Ẑi, all i. Next, for j = 1, 2, let Ij = {i ∈ {1, . . . ,m} | 0 ∈ riZi ∩ Lj} and j(i) = {j | i ∈ Ij}, and
define L as the family {L} consisting of a single subspace

L = L1 ⊕ · · · ⊕ L1︸ ︷︷ ︸
|I1| copies

⊕L2 ⊕ · · · ⊕ L2︸ ︷︷ ︸
|I2| copies

⊕R2l.

The maps f1, . . . , fk are inessential for this application and are defined as fj(x) = 0 for j = 1, . . . , k, and
the map g is projection on the second component, g(x, x′) = x′ for all (x, x′) ∈ X2.

We now define the multimap φ : X ⇒ X in several steps. For i = 1, . . . ,m, define multimaps
βi : ∆j(i) ⇒ Zi and φi : Ẑi ×∆j(i) ⇒ Zi by

βi(pj(i)) = {z′i ∈ Ẑi ∩ Lj(i) | pj(i) · z′i < 0}, (3)

φi(zi, pj(i)) =
{
βi(pj(i)) zi /∈ clβi(pj(i)),
βi(pj(i)) ∩ Pi(zi) zi ∈ clβi(pj(i)).

(4)
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Next, define the multimaps φj : Ẑ1 × · · · × Ẑm ⇒ ∆j for j = 1, 2 by

φj(z1, . . . , zm) =
{
pj ∈ ∆j | pj ·

∑
i∈Ij zi > 0

}
.

For i = 1, . . . ,m, by our construction and using the properties of Pi, we get that φi has open graph and
satisfies zi /∈ φi(zi, p1), all (zi, p1), and φj has open graph for j = 1, 2. Moreover, if zi ∈ clβi(p1), i ∈ I1,
and zi ∈ clβi(p2), i ∈ I2, then p1 /∈ φ1(z1, . . . , zm), p2 /∈ φ2(z1, . . . , zm). Define now φ̂i, i = 1, . . . ,m, and
φ̂j , j = 1, 2 by

φ̂i(zi, pj(i)) =
{
φi(zi, pj(i)) zi /∈ φi(zi, pj(i))
Ẑi otherwise

φ̂j(z1, . . . , zm) =
{
φj(z1, . . . , zm) pj /∈ φj(z1, . . . , zm)
∆̂j otherwise

.

Then the multimap φ : X ⇒ X given by

φ(z1, . . . , zm, p
1, p2) =

∏
i∈I1

φ̂i(zi, p1)×
∏
i∈I2

φ̂i(zi, p2)×
2∏
j=1

φ̂j(z1, . . . , zm)

satisfies the properties stated in Theorem 1.
In order to apply the theorem, we consider an economy E = ((Z1, P1), . . . , (Zm, Pm)) for which no

competitive equilibrium exists. In this case the assumptions on the mappings f1, . . . , fk are fulfilled
trivially, and Theorem 1 gives the existence of a state x0 = (z0

1 , . . . , z
0
m, p

1
0, p

2
0) such that zi ∈ L2 for each

i ∈ I2 and such that φi(x0) ∩ L = ∅. By the definition of φ, we get that φi(z0
i , p

j(i)) = ∅ for i = 1, . . . ,m,
meaning that pj(i) · zi ≤ 0 and Pi(zi) ∩ {z′i ∈ Zi ∩ Lj(i) | pj(i) · z′i ≤ 0} = ∅. Moreover, φj(z0

1 , . . . , z
0
m) = ∅

for j = 1, 2, so that
∑m
i=1 z

0
i ≤ 0. Summing up, we have shown that (z0

1 , . . . , z
0
m, p

1
0, p

2
0) is a hierarchic

equilibrium.

5 Application (2): Pseudoequilibria in Economies with Incomplete Markets
and Real Assets

In this section we apply Theorem 2 to show existence of equilbrium in an economy with real assets and
incomplete markets. For a detailed account of the theory we refer to Duffie and Shafer [14], Geanakoplos
[15], Magill and Shafer [16]. More recent contributions are e.g. Zhou [17], Momi [18], and Hoelle, Pireddu
and Villanacci [19].

As in the previous section, there are m consumers and l commodities. The latter are interpreted as
contingent commodities: There are two periods of time, t = 0 and t = 1, and S uncertain states of the
world at t = 1, and assuming a fixed number n of basic goods at each date and state of the world, we get
that l = (S + 1)n.

An asset structure is given by k assets a1, . . . , ak ∈ RSn, which define the transfers of value between
states that are possible in the model. For p = (p0, p1, . . . , pS) ∈ ∆ a price and z = (z0, z1, . . . , zS) ∈ Rl a
vector of net trades in each state, the box product

p z = (p1 · z1, . . . , pS · zS)

of p and z (where · denotes the inner product in Rn) gives the values of the net trade z in each of the
future states.

Definition 4 An array (z, p, L) with z = (z1, . . . , zm) ∈
∏m
i=1 Zi, p ∈ ∆, and L ∈ Lnk , is a pseudoequi-

librium if
(i)

∑m
i=1 zi = 0,

(ii) for all i, p · zi = 0, p zi ∈ L, and Pi(zi) ∩ {z′i ∈ Zi | p · z′i = 0, p z′i ∈ L, } = ∅,
(iii) p aj ∈ L, j = 1, . . . , k.
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To explain the terminology, we notice the conditions for a pseudoequilibrium demands only that all
the vectors p aj are in L, not that L is actually spanned by these vectors. If we insisted on the spanning
condition, the existence theorem below would no longer hold true, as shown by counterexamples, cf. e.g.
Hart [20].

Using Theorem 1 we can prove the following result.

Theorem 5 Let the economy with real assets be well-behaved (conditions (a)–(d) of the previous section)
and satisfy the strong monotonicity condition

(e) zi + [Rl+\{0}] ⊆ Pi(zi) for all zi.
Suppose, in addition, that the set E is a finite set, and for each (z1, . . . , zm, p) ∈ E, the set {y ∈ RS |
yh = 0, h > k} is not contained in the subspace spanned by p aj, j = 1, . . . , k.

Then the economy has a pseudoequilibrium.

Proof: The proof consists in applying Theorem 2 to a suitably constructed problem. As the first step, we
proceed as in the proof of Theorem 4 and replace each Zi by the compact and convex set Ẑi = {zi ∈ Zi |
zi ≤ ω}, where ω ∈ Rn+ is such that z =

∑m
i=1 zi with zi ∈ Zi implies that zh > −ωh for h = 1, . . . , l

For each i, let Ai be a compact and convex set containing all vectors p zi for zi ∈ Zi, p ∈ ∆. Let
X =

[∏m
i=1 Ẑi ×Ai

]
×∆ ⊂ (Rn × RS)m × Rn. Clearly, X is convex and compact.

To define L we notice that each k-dimensional subspace Ṽ of RS defines a subspace V = (Rn×Ṽ )m×Rn
of (Rn × RS)m × Rn. Let L be the set of all such subspaces V . Define fj : X → X, j = 1, . . . ,m by

fj(x) = ((0, p aj), . . . , (0, p aj), 0), j = 1, . . . , k, (5)

and let g : X ×X → X be given by

g(((z1, s1), . . . , (zm, sm), p),((z′1, s′1), . . . , (z′m, s′m), p′)
= ((z′1, p z′1), . . . , (z′m, p z′m), p′).

Clearly, fj is continuous for each j, g is continous, and g(x, .) is the restriction to X of a linear map.
For i = 1, . . . ,m, let βi, φi : X ⇒ Ẑi be defined as in (3) and (4), and define φ0 : X ⇒ ∆ by

φ0(x) = {p′ ∈ ∆ | p′ ·
∑m
i=1 zi > 0} .

It is easily checked that φi has open graph and convex values, and that g(x.x) /∈ φi(x) for all x ∈ X,
i = 0, 1, . . . ,m.

We check that the assumptions of Theorem 3 are satisfied. First of all, if x = ((z1, s1), . . . , (zm, sm), p)
and φi(x) = ∅ for all i, then p · zi ≤ 0 for i = 1, . . . , n, so that φ0(x) = ∅ implies that

∑m
i=1 zi ≤ 0. From

and p · z1 ≤ 0 we get from monotonicity of preferences that ph > 0 for h = 1, . . . , n, so p ·
∑m
i=1 zi = 0

and (z1, . . . , zm) is a competitive equilibrium. We conclude that {x ∈ X | φi(x) = ∅, i = 0, 1, . . . ,m} is a
finite set.

We now apply Theorem 3. Let (x0, L0) ∈ X × L be such that

fj(x0) ∈ L0, j = 1, . . . , k, (6)
g(x0, x0) ∈ L0, (7)

φi(x0) ∩ L0 = ∅, i = 0, 1, . . . ,m. (8)

Write x0 = (z0
1 , . . . , z

0
m, p

0
1 z0

1 , . . . , p
0
m z0

m, p
0) and

L0 = {(z1, . . . , zm, y1, . . . , ym, p) ∈ R(l+m)S+l | yi ∈ L0, i = 1, . . . ,m}

for some k-dimensional subspace L̃0 of RS . We claim that (z0
1 , . . . , z

0
m, p

0, L̃0) is a pseudoequilibrium.
Indeed, condition (iii) of Definition 4 follows directly from (6), and from (7) we get that p0 z0

i ∈ L̃0
for each i. Reasoning as before, and using that z0

i ∈ L̃0 for i = 1, . . . ,m, we get that p0 · z0
i = 0 for

i = 1, . . . ,m, so that φ(x0)∩ L̃0 = ∅ implies that
∑m
i=1 z

0
i = 0. Also, from φi(x0)∩L0 for i = 1, . . . ,m we

get that Pi(z0
i ) ∩ L̃0 = ∅, i = 1, . . . ,m, so that (z0, p0, L0) satisfies the conditions (i)–(iii) of Definition 4

and therefore is a pseudoequilibrium.
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6 Concluding comments

In the preceding sections, we have been concerned with equilibria which involve the choice of suitable
subspaces, and it has been shown that the use of Plûcker coordinates makes it possible to show existence of
equilibria by methods which are otherwise quite standard. This may be useful in the context of equilibrium
theory, as shown by the two examples above, where we considered hierarchical equilibria, a generalization
of the classical considerations of “minimum-wealth” conditions, as well as equilibria in economies with
real assets, where the set if achievable net trades is determined by the current and future market prices.
Here the subspaces must be considered as variables determined by the equilibrium conditions, and the
parametrization offered makes this possible.

The results obtained can be extended in several directions. An extension which almost suggests itself
is to allow for several subspaces in the formulation of an equilibrium. Here we should be interested in
particular families of subspaces: A flag in Rn is a finite sequence (L1, L2, . . . , Lk) of subspaces of Rn with
L1 ⊂ · · · ⊂ Lk. Extending the previous results to equilibrium problems involving the choice of a suitable
flag in in Rn might be worthwhile with a view to applications, actually it almost suggests itself in the
context of hierarchical equilibria. However, such an extension is not as straightforward as those considered
in the text, as a more elaborate method of parametrizing subspaces is needed. We shall not pursue this
topic further at present.

7 Appendix: Proof of Lemma 1

The present section contains a proof of Lemma 1. The one given below is adapted from Merslyakov [21].
We need two additional lemmas.

Lemma 8 The map W is continous, and if z ∈W ((Rd)k), then
k+1∑
t=1

(−1)tzi1,...,ik−1,jtzj1,...,jt−1,jt+1,...,jk+1 = 0

for all sets of indices {i1, . . . , ik−1, j1, . . . , jk+1}.

Proof: Continuity of W follows directly from its definition (1). To prove the second statement, for each t
we expand the determinant as

zi1,...,ik−1,jt =
k∑
s=1

(−1)k+svsjtD
s,jt
i1,...,ik−1,jt

,

where Ds,jt
i1,...,ik−1,jt

is the subdeterminant obtained by deleting column jt and row s. Then

k+1∑
t=1

(−1)zi1,...,ik−1,jt
zj1,...,jt−1,jt+1,...,jk+1

=
k+1∑
t=1

(−1)t
k∑
s=1

(−1)k+svsjtD
s,jt
i1,...,ik−1,jtzj1,...,jt−1jt+1,...,jk+1

=
k∑
s=1

(−1)k+s−1Ds,jt
i1,...,ik−1,jt

k+1∑
t=1

(−1)t+1vsjtzj1,...,jt−1,jt+1,...,jk+1 .

Here the last sum can be identified as an expansion along the first row of the determinant∣∣∣∣∣∣∣∣∣
vsj1 . . . vsjk+1

v1j1 . . . v1jk+1
...

...
vkj1 . . . vsjk+1

∣∣∣∣∣∣∣∣∣ ,
and this determinant is zero as the matrix contains two identical rows.
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Lemma 9 If z ∈W ((Rd)k), then

zi1,...,ikzj1,...,jk =
k∑
t=1

zi1,...,is−1,jt,is+1,...,imzj1,...,jt−1,is,jt+1,...,jk ,

where s is a fixed number with 1 ≤ s ≤ k.

Proof: Apply Lemma 8 replacing i1, . . . , is−1, is, . . . , im−1, j1, . . . , jm, jm+1 by i1, . . . , is−1, is+1, , . . . , im,
j1, . . . , , jm, is and use the skewsymmetry of zi1,...,ik in the indices.

Proof of Lemma 1: Linearity follows immediately from the definition. For property (i), we notice that
the matrix u1i1 . . . u1ik

...
...

uki1 . . . ukik


with ujih defined in (2), is a unit matrix when zi1,...,ik = 1.

It remains only to show (ii), that is for each subset {j1, . . . , jk} of {1, . . . , d}, we have∣∣∣∣∣∣∣
u1j1 . . . u1jk
...

...
ukj1 . . . ukjk

∣∣∣∣∣∣∣ = zj1,...,jk . (9)

We use induction on the number τ of indices in {j1, . . . , jk} which are not in the set {i1, . . . , ik}. For
τ = 0, the result follows from (i). Assume that 9 holds for some 0 ≤ τ < k, and consider any subset
{j1, . . . , jk} with τ + 1 indices not in {i1, . . . , ik}.

Expanding the determinant in (9) after column js we obtain

D =
k∑
t=1

(−1)s+tutjsD
t,js
j1,...,js−1,js+1,...,jk

.

Now,
Ds,js
j1,...,js−1,js+1,...,jk

= zj1,...,js−1,is,js+1,...,jk

by the induction hypothesis. For t 6= s,

Dt,js
j1,...,js−1,js+1,...,jk

= (−1)s+tzj1,...,js−1,it,js+1,...,jk

(replace column js by column it and apply the induction hypothesis). Inserting in the expansion and
using the definition of utjs , one gets

D =
k∑
t=1

zi1,...,it−1,js,it+1,...,ikzj1,...,js−1,it,js+1,...,jk

= zi1,...,ikzj1,...,jk ,

where the last equality follows from Lemma 9. Since zi1,...,ik = 1, the desired result is obtained.
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