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Abstract Electron-electron correlation forms the basis of difficulties encountered in multi-electron
systems. Accurate treatment of the correlation problem is likely to unravel some nice physical
properties of matter embedded in this correlation. In an effort to tackle this multi-electron problem,
two complementary parameter-free pseudopotentials for n-electron atoms are suggested in this
study. Using one of the pseudopotentials, near-exact values of the groundstate ionization energies of
helium, lithium, and berrylium atoms have been calculated. The other pseudopotential also proves
to be capable of yielding reasonable and reliable ionization energies within the non-relativistic
quantum mechanics framework.
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1 Introduction

The theory of quantum many-body systems is an effective theoretical structure and solvable approach of
understanding the collective behaviour of the interacting many-particle systems [1]. The solution of the
many-electron problem is important because electrons determine the physical properties of materials and
molecules. Many-body physics is heavily applicable in condensed matter, Bose-Einstein Condensation
(BEC) and superfluidity, quantum chemistry, atomic, molecular, nuclear physics, as well as quantum
chromodynamics.

Electron correlation energy, among the interacting many-body particles, is defined as the difference
between the exact non-relativistic energy eigenvalue of the electronic Schrödinger equation and the energy
of the single configuration state function (CSF) approximation, commonly called the Hartree-Fock energy
[2].

Accurate description of electron-electron interaction remains a major challenge in atomic structure
calculations [2]. To meet this challenge, a number of different methods have been developed such as the
many-body perturbation theory (MBPT) [3], configuration interaction (CI)[4], density functional theory
[5], coupled cluster theories, and different kinds of variational methods [6]. Hylleraas-type calculations
[7] is an example of the variational methods in which the interelectronic distance r12 is employed ex-
plicitly in the construction of the wavefunction resulting into the most accurate eigenvalues, although
computationally expensive.

A pseudopotential is an effective potential used as an approximation for the simplified description of
complex atoms, molecules, and other quantum systems. The use of pseudoptentials was first introduced
by Fermi [8]. Hellmann [9] subsequently developed a pseudopotential model for atoms which has been
extensively used in atomic scattering [10]. The use of pseudopotential method in the many-body problems
is computationally less expensive and has the potential of revealing the underlying processes in the
interaction dynamics.

In this work, a central screening potential in an independent particle model introduced in our previous
papers [11,13], is extended to an n−electron atom. The generalised parameter-free pseudopotentials
developed in this work are used to evaluate the groundstate ionization potentials of atoms with upto 12
electrons. Also, the eigenvalues of some of the excited states of lithium atom have been calculated.

2 Theory

The non-relativistic Hamiltonian of an n-electron system with a nuclear charge Z is given by

20
Journal of Advances in Applied Physics, Vol. 2, No. 2, May 2020 

https://dx.doi.org/10.22606/jaap.2020.22002

JAAP Copyright © 2020 Isaac Scientific Publishing



H =
n∑
i

p2
i

2
− Z

ri
+

n−1∑
j ̸=i

1
|ri − rj |

 (1)

where the first term on the right corresponds to the kinetic energy of the ith−electron, the second term
corresponds to the interaction of the ith−electron with the nuclear charge, and the last term in the
summation corresponds to the interaction between the ith− and jth− electron. The second and the last
term form the potential energy function of a bound n-electron system.

In our previous work [11,12,13], it is shown that the electron correlation interaction simplifies to
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= 1√
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i + r2
j

(2)

using the lowest-order alternative multipole expansion approximation. In the independent particle ap-
proximation method,
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(3)

is the potential function for the ith−electron of the system. The coefficient γi defines the ratio for
partioning the electron-electron interaction. Conventionally, factor 1/2 which assumes equal sharing of
the correlation energy between the interacting electrons is usually preferred. The interaction potential
V (ri, rj) can be completely separated using the equal partitioning of the electron-electron interaction,
by minimizing it with respect to the spatial co-ordinates [11], as

V (ri) = −Z

ri
+ (n − 1)

2

[
2Z
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]1/3

ri
. (4)

An alternative expression for the single-electron interaction potential

V (ri) = −Z

ri
+ (n − 1)

[
Z f(ri,rj)

2(n−1)

]3/5

ri
(5)

is obtained by using a classical partition function

f(ri, rj) = r2
i

r2
i + r2

j

(6)

introduced in ref.[13]. The exact evaluation of the electron correlation term of equation (2), resulting into
equation (5), is shown in appendix A. As a limitation to the corresponding pseudopotential, the value of
the function [f(ri, rj)] 3

5 in equation (5) cannot be evaluated exactly but can only be approximated by
taking its expectation value relative to the some trial wavefunction of the jth electron.

In our working, the expectation value of the correlated function in equation (5), expressed in terms
of one of the radial co-ordinate, is evaluated approximately as

⟨[f(ri, rj)] 3
5 ⟩ ≈ 1 −

[
27
25

+ 6
5

Zri − 6
125 Zri

]
exp(−2Zri). (7)

Appendix B shows the explicit method used in arriving at this expectation value. The approximation in
equation (7) if employed in the independent electron potential, defined in equation (5), is found to be
of a better agreement with the experimental results. However, more work needs to be done in order to
refine this approximation further.

From equation (5), the effective interacting potential for a single electron becomes

V (ri) = −Z

ri
+ (n − 1)

[
Z

2 (n−1)

] 3
5

ζ(ri)

ri
(8)
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with ζ(ri) as the expectation value of the correlated function given by equations (7). It can be noticed
that equation (8) is consistent with the form of a pseudopotential prescribed by Hellmann [9]. With the
pseudopotentials formulated, the one electron non-relativistic Hamiltonian

h(ri) = p2
i

2
+ V (ri) (9)

is completely defined. It is evident that the first term of the single electron potential defined in equation (8)
is the electron-nuclear interaction, and the second term yields the screening potential of the active electron
from the other electrons. For the pseudopotential in equation (4), the charge screening parameter is
constant where as for equation (8), the charge screening parameter is r-dependent. The energy eigenvalues
of the n-electron system can then be evaluated as

Eα1,α2 ··· =
n∑
i

⟨Ψ(r1, r2, · · · )|hi(ri)|Ψ(r1, r2, · · · )⟩ (10)

where Ψ(r1, r2, · · · ) is the total wavefunction expanded as a Slater determinant and {α1, α2, · · · } are
the set of quantum numbers representing the configuration of the quantum state for the system. As an
example, equation (10) is evaluated further using lithium atom, consisting of three electrons, as a case
study.

The total wavefunction for lithium atom can be expressed as

Ψ(r1, r2, r3) = 1√
3

3∑
i=1

[1 + (−1)P Pjk]ϕαi(ri) ϕαj (rj) ϕαk
(rk) (11)

where Pjk is the permutation operator which interchanges the positions of jth− and kth− electron, and
P = 0 or 1 for a symmetric or anti-symmetric wavefunction respectively.

Substituting equation (11) into equation (10) and simplifying yields
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where δαiαj
is the Kronecker delta whose value is 1 if αi = αj and 0 otherwise.

The eigenvalue ϵαi corresponding to state αi for an n-electron atom can be generalized as

ϵαi = m

n
⟨ϕαi |h(ri)|ϕαi⟩ (13)

where m refers to the number of non-vanishing integrals out of the possible n! permutations. It is
important to note that out of these integrals, there is only 1 direct integral and the remaining m − 1 are
exchange integrals. For lithium atom, m/n = 2/3. In principle, the integer m can be determined from
the groundstate configuration of the atom.

3 Results and Discussions

We have developed two pseudopotentials for an n-electron system given by equations (4) and (8). The
pseudopotentials are used to calculate the groundstate ionization potentials for n-electron atoms as shown
in table 1 with 2 ≤ n ≤ 12. Our results are compared with available reference data [15]. In generating
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Table 1. Some numerically calculated groundstate ionization energies for n-electron atoms using the present
pseudopotentials versus the reference values [15]. Present1 and Present2 are the results given by the Hamiltonians
with equations (4) and (8) as the pseudopotentials respectively. The results presented are truncated to 2 d.p.

n Atom m/n Present1 Present2 Ref.(eV)

2 He 2/2 24.76 35.21 24.58
3 Li 2/3 5.50 4.97 5.39
4 Be 3/4 9.40 8.90 9.32
5 B 3/5 10.65 8.08 8.29
6 C 4/6 15.95 12.29 11.26
7 N 4/7 17.73 13.82 14.53
8 O 4/8 19.53 15.37 13.61
9 F 4/9 21.34 16.92 17.42
10 Ne 5/10 28.96 23.11 21.56
11 Na 2/11 5.55 5.30 5.13
12 Mg 3/12 8.94 8.58 7.64

our results, a B-spline radial box of 600 B-splines with a box radius rmax = 200, order k = 10, and a non-
linear knot sequence is used. The groundstate ionization energies calculated using the pseudopotential in
equation (4) are in very good agreement with the reference values only for spherically symmetric cases
of helium, lithium, and berrylium atoms. The results are therefore only reliable for these three atoms.
Following the discussion for helium atom in reference [11], the discrepancy between groundstate ionization
energies for the three atoms may be attributed to the relativistic and other higher-order corrections in
the interaction Hamiltonian. For atoms with non-s states in the groundstate configuration, the role of
the electron-electron interaction term is underestimated by the pseudopotential given by equation (4).

The pseudopotential in equation (8), on the other hand, yields reasonable ionization energies for
all the atoms except helium when calculated results are compared to experimental values. Part of the
disparity between the Present2 results and the reference values stem from the approximation in equation
(7) and partly from the effect of the relativistic and other higher-order corrections which are expected to
increase with the number of electrons.

Table 2. Numerically calculated energy eigenvalues for the excited lithium atom using the present pseudopoten-
tials versus the reference values [16]. The present1 and present2 are the Hamiltonians given by equations (4) and
(8) as the pseudopotentials respectively. The results presented are truncated to 3 d.p.

S.No. State Present1 Present2 Ref.(eV)

1 2s -5.500 -4.977 -5.390
2 2p -5.500 -3.967 -3.542
3 3s -2.444 -2.033 -2.016
4 3p -2.444 -1.760 -1.555
5 3d -2.444 -1.748 -1.511
6 4s -1.375 -1.099 -1.048
7 4p -1.375 -0.988 -0.867
8 4d -1.375 -0.983 -0.852
9 4f -1.375 -0.983 -0.848

In table 2, we present the excited state eigenvalues of lithium atom calculated using the two pseu-
dopotentials developed in this study in comparison with existing literature values [16]. It is clear from
the table that the pseudopotential in equation (4) underestimates the effect of electron correlation for the
excited states for any symmetry. It also shares the accidental degeneracy of the hydrogen-like atoms, dif-
fering with the experimental observations. Equation (8) pseudopotential on the other hand yields excited
state eigenvalues which are quite comparable with the reference data for all symmetries examined. As
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expected, the accidental degeneracy is removed in this case. In general, the second pseudopotential yields
better results as compared to equation (4), which is only excellent for spherically symmetric groundstate
eigenvalues.

4 Conclusion

We have derived two parameter-free pseudopotentials generalized for n-electron atoms. One of the pseu-
dopotentials has an exact charge screening parameter which is invariant in space where as in the second
case, the charge screening parameter is nearly-exact and varies in space. The two pseudopotentials are
rather complementary. The first pseudopotential with equal partitioning of the electron-electron inter-
action yields near-exact groundstate ionization potentials for helium, lithium, and berrylium atoms and
unreliable results otherwise. On the other hand, the second pseudopotential with a classical spatially-
dependent partition function yields reasonable groundstate ionization potentials for all atoms considered
except helium. The excited state eigenvalues for lithium atom evaluated using the spatially varying
screening parameter pseudopotential yieds results comparable to the literature data. The latter pseu-
dopotential is therefore likely to be a candidate for further improvement in order to increase its validity
with the experimental observations. Such improvement may be achieved by including the relativistic
and higher-order corrections besides improving the approximation of the spatial distribution function
expressed in equation (7).
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Appendix: A

The potential energy function in equation (3) can be re-written as

V (ri, rj) = −Z

ri
+

n−1∑
j ̸=i

r2
i

[r2
i + r2

j ]3/2 (14)

where the classical partition function [13] for sharing the electron-electron interaction has been used. We
differentiate V (ri, rj) with respect to ri and equate to zero to find the extremum values. Following the
argument advanced in ref.[13] which ensures that the potential is minimized while treating the correlated
electrons with an equal weight, we obtain the inequality

∂V

∂ri
= Z

r2
i

−
n−1∑
j ̸=i

2 ri(r2
i + r2

j )
[r2

i + r2
j ]5/2 ≤ 0. (15)

We use the equality condition in equation (15) to obtain the electron-electron interaction term

1√
r2

i + r2
j

=
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Z f(ri,rj)

2(n−1)

]1/5

ri
(16)

between any two interacting electrons with the function f(ri, rj) defined in (6).

Appendix: B

The method through which the expectation value in equation (7) has been evaluated is shown in this
appendix. The integral

⟨f(ri, rj) 3
5 ⟩ =⟨ϕ(rj)|

[
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] 3
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+
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5
]
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(17)

is evaluated in parts where we consider that 0 ≤ rj ≤ ri, ri ≤ rj ≤ ∞, t = r</r>, r< = min(ri, rj), and
r> = max(ri, rj). We have used the hydrogenic orbital ϕ(rj) = exp(−Zri) for the probability density
function and a binomial expansion

(1 + t2)− 3
5 =

∞∑
k=0

(
−3/5

k

)
t2k (18)

to evaluate the expectation value. Equation (17) together with the series in equation (18) yield an
integral that cannot be evaluated exactly. In our case, only k = 0 and k = 1 are used for estimation.
It is important to note that the suggested method is a mean-field approach in which the other (n − 1)
electrons contribute by screening the active electron from the nuclear field.
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