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Abstract In this article,for the compressible Navier-Stokes equations which have reaction diffu-
sion, the stability of contact discontinuities is considered. The new characteristic for the flow is
appearance of the divergence between energy gained and lost because of the reaction . In the
energy equations,the term related to the mass fraction of the reactant leads to new technical prob-
lem. To solve this problem, in terms of the solutions,a new system should be set up. Using the
anti-derivative method and the elaborated energy method, we obtain that as long as the general
perturbation of the initial datum plane and the strength of the contact wave are properly small,
the contact wave is nonlinear and stable. As a byproduct, we can establish the convergence velocity
of contact wave.
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vergence rates.

1 Introduction

In this paper, we consider the stability of the following compressible Navier-Stokes equations for a reacting

mixture.
Ve — Uy = 0,

Ut -H?(Ua 9)1: = (H:T )zv

2

(e %), + (0o 0. = (2222), + (), +

2y = (Ui,zzz )z — ¥z,
where x € R is the Lagrangian space variable, ¢ € R* the time variable and the primary dependent
variables are the specific volume v = v (¢,2) > 0, the velocity u = w (¢, z), the absolute temperature
0 =0 (t,x) > 0 and the mass fraction of the reactant z = z (t,z) . The last term Apz on the right hand
side of the energy equation (1.1), represents the difference of the rate of energy gained by the product
and that of energy lost to the reactant as a result of the reaction. The positive constants d and A are
the specific diffusion coefficient and the difference in the heat between the reactant and the product,
respectively. The reaction rate function ¢ = ¢ (0) is defined, from the Arrhenius law [5], by

(0) Oa 0393917
A K@Bexp(—g), 0>460;, B3>0,

(1.1)

where the positive constants K and A are the coefficients of the rate of the reactant and the activation
energy. This function describes that combustion will occur when the temperature of the given fluid
particle rises above the ignition temperature §; with §; > 0. As a result, the reactant (z = 1) is
transformed to the product (z = 0) via an irreversible reaction governed by the function ().

The positive constants p and x denote the viscosity coefficient and the heat conduction coefficient,
respectively. The pressure p and the internal energy e are given by the state equations:

RO R
p(v,@) = €= ﬁ07
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where R and v are the positive constants. We present the initial data for the system (1.1) as follows.
(vo, w0, b0, 20)(x) = (v4,0,04,0), asax — too, (1.2)
where v4 > 0 and 64 > 0; are constants and

RO RO
= =—t2p,. (1.3)

.
v_ V4

Now we will give an overview on the study for (1.1). The global existence and asymptotic behavior
of solutions to (1.1) were obtained by Chen [2] with discontinuous reacting rate functions. In [4], Chen,
Hoff and Trivisa proved the existence and dynamic behavior of discontinuous solutions with discontinuous
initial data. The existence theory of global solutions to (1.1) on unbounded domains was established by
Li [22]. The long time behavior toward rarefaction waves for the Cauchy problem to (1.1) was shown by
Xu and Feng in [39]. Recently, Peng [28] studied the stability of viscous contact wave for the Cauchy
problem under the zero mass condition on the initial perturbation. When the effect of radiation is taken
into account, the total pressure p of the gas is expressed as p = % + %94 which includes a four-order
radiative part through the Setfan-Boltzmann law, c.f., e.g., Mihalas and Mihalas [27]. In such a case, the
global existence and uniqueness of solutions of the Cauchy problem was achieved by Liao and Zhao [25]
with constant viscosity coefficients and by He et al. [10] with temperature dependent viscosity coefficients.
The existence and uniqueness theory for the initial boundary value problem for the one-dimensional model
(1.1) has been well established, see [3,7,8,9,20,21,24,29,32,34]. For the study of the three-dimensional case,
we refer the readers to [6,23,30,33,36,42] and the references therein. In this paper, we study the stability
toward contact waves for solutions to the system (1.1) provided that the general perturbation of the
initial data is suitably small. When z = 0, the system (1.1) is reduced to the compressible Navier-Stokes
equations with heat conduction. Indeed, there are many studies providing insight into the contact wave
phenomena in the development of the mathematical theory for compressible Navier-Stokes equations, see
[12,11,13,14,15,16,18,19,31,35,38,40,41] and the references therein. As far as we know, a first work of the
stability toward contact waves for solutions to systems of viscous conservation laws was represented by
Xin in [37], where the metastability of a weak contact discontinuity for the compressible Euler system
with uniform viscosity was investigated. The local stability of the contact discontinuities for a class of
general system of viscous conservation laws with artificial viscosity was studied by Liu and Xin [26]. For
the compressible Navier-Stokes system, the main difficulty is that the viscosity matrix for Navier-Stokes
equations is only semi-positive definite. Huang, Matsumura and Xin [15] used the anti-derivative method
to obtain not only the stability of the viscous contact waves for solutions to the compressible Navier-
Stokes system, but also the convergence rate (1 + t)_% under the zero mass condition on the initial
perturbation. By using a weighted energy method, Huang, Wang and Wang in [17] obtained a better
decay rate (1+ 75)_%‘*‘0\/g for the wave strength 6 > 0 suitably small. Recently, this convergence rate was
improved to (1+1t)~% In? (2+1t) by Yang in [40]. It is worth recalling that the major assumption in the
stability theory in [15] that the initial perturbation has zero excessive mass is a crucial constraint. This
constraint of the zero mass condition on the initial perturbation was removed by Huang, Xin and Yang
in [18]. Motivated by [18], the main purpose of this paper is to get rid of the constraint difficulty for
initial excessive mass stated in [28] and obtain the stability and convergence rate for the viscous contact
waves.

Now, we focus on the asymptotical behavior of solutions to (1.1) according to the far field states (1.2)
and (1.3) without the zero mass condition on the initial perturbation. First of all, we recall the contact
wave (v, U, 0)(z, t) for the compressible Navier-Stokes equations defined in [15]. For a corresponding Euler
equations

vy — Uy =0,

Ut —‘y—p('U, 9)30 = Oa (14)
(c+%), +u. =0,

a contact discontinuity takes the form
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if the positive constants v+ and i satisfy (1.3). We assume that the contact wave profile (v, 1,6, Z)
exists as a smooth function and is given as follows

@:&@, a:&@% =0 —
P+ p+6

-1

RS— z=20. 1.
s U % 0 (1.5)

Here © is a smooth function which is determined by a nonlinear diffusion equation

O, K‘,p+(’y— 1)
Qt:a(9>z, a:’yT>O, (16)

with the boundary conditions
O (foo,t) =04. (1.7)

From [1], the problem (1.6) and (1.7) admits a unique self-similar solution 6 (t,z) = O (£),¢ = A
Furthermore, © (£) is a monotone function, increasing if 6, > 6_ and decreasing if 6, < 6_. On the other
hand, there exists some positive constant ¢, such that for 6 = |64 — 6_| <, O satisfies

» ca:2
(1412 |050] +10 — 04| < crde™ T, k>1, as |a| — oo, (1.8)

where ¢p and ¢; are two positive constants depending only on ¢_ and 5. Tt is straightforward to check
that (17,@, 9) satisfies

5= V.a=0.-8)],, = 0 (/) (1Y, p=1,
which means the nonlinear diffusion wave (17, U, é) (z,t) approximates the contact discontinuity
(‘7, U,é) (z,t) to the Euler system (1.3) in LP norm, p > 1 on any finite time interval as the heat

conductivity coefficient x tends to zero. And it is easy to check that the viscous contact wave (17, U, é)
satisfies the system
'ljt - ’ljm = 0,

U+ Pe = p(% ) + Rig, (1.9)

where
K(y—1 Ug

Rl( ( R )#)_+PP+

v v (1.10)
0L x
— O(B)(1+ )" te T as |z| — oo,
k(y—1 U g _ _
Ry = (h]%) u) — + (P —py)u
v v (1.11)
0 x
—0(8)(1+¢)~ 2 ™0 as |z] = oo.
Denote
1 t _ 41 t
m(a:,t) = (’U,U,e —|— ,}/21%’U/2> 5 ’I’T’Z(J?,t) = (1_}711,9 + ma2) . (112)
Let

0 -1 0

R
A(v,u,0) = - 0 g (1.13)

_(=Dpu =1 _ (y=1u
Rv p v
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The first eigenvalue of A(v_,0,0_) is \] = —, / — with right eigenvector

1 T
— (—1,)\177Rp> . (1.14)

The third eigenvalue of A(vy,0,6,) is AT = —, / + with right eigenvector

1 T
rf = ( 1], VR p+> . (1.15)
The vectors rf,er —m_ = (vy —v_,0,04 —0_)T and r§ are linearly independent in R3. Similar
to [18], the integral f m(z,0) —m(z,0))dz can be distributed as follows
+o0 _ _ _
/ (m(x,0) — m(x,0))dz = O1r] + O2(my —m_) + 0317, (1.16)
with some constants 6;, i = 1,2, 3.
Set B B B
ﬁl(.’L‘, t) = m(.% + 05, t) + 91917“; + 93937“;, (1.17)
where
1 (@=A] (1+1))?
heh= i e
Jr
m(1+1) L (1.18)
1 (2=AF (1+4)
Os(z,t) = ————=e" ~ 0¥ |
VAr(1+1t)
satisfying
elt + )\1_91L = 01.’1).’1}7 03t + )\;_931 = 03wxa (119)
andf ;(x,t)dz =1 for i = 1,2, 3.
Denote
_ ~1 \T
(1) = (17,11,0+ 723 a2> (z,1), (1.20)
with
(2, t) =v(x + 02,t) — 6161 — O30,
u(x,t) =u(x + 02, )+ )\1_9_191 + )\;5393,
O(x,t) =0(x + 0o, 8) + L——a%(x + O, 1) (1.21)
v—1 ] ] -1,
0101 + 0505) — ———u”.
+Rp+(11+33) or *
Then
400
/ (m(z,0) —m(z,0))d
+oo +oo
:/ (m(z,0) —m(z,0))dx —|—/ (m(z,0) —m(z,0))dx (1.22)
_ +oo _
=03(my —m_) + / (m(z,0) —m(z + 62,0))dzx = 0.
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In the following, we assume fy = 0 for simplification. Then,
Vg — Uy = Rla:a
i+ P = 1 (%), + Raa, (1.23)

(e+%),+ G = (%) +(42) + R,

where B B -
Ry = —0101, — 0303, (1.24)
RQ :Rl + 1% Tx - uf) + (/\1_9_1911 + /\3_9_393L)
vov (1.25)
+(p—p— (A])?0:101 — (A])?0305),
and
- 0, 6, Uy Uy ~ -
Ry =Ry 4+ k(2 - 22) 4+ — — —— | + p4 (61601, + 0303,
s H(U v) u<v v) P+(616, 3052) (1.26)
+ (it — P — pp Ay 0101 — py AT 0305).
Denote the perturbation around (4,1, 6, 0) by
dz,t)=v—o, Y@ t)=u—a, ((z,t)=0-0, (1.27)
and set . .
d(z,t) :/ oy, t)dy, P(xz,t) :/ Y(y, t)dy, (1.28)
. C R
W (z,t) = e+ o € o + Az | (y,t)dy. (1.29)

Now we are in a position to state the main result in this paper.

Theorem 1.1. Let (0,4, 0)(x,t) be defined in (1.21) and & = |0, —6_|. Then there exist positive constants
do and €, such that if 6 < &g and the initial data (vg,ug, 00, 20) satisfy

H(@,![QW)(-j:O <e, (1.30)

M ey

and
lzo(x) |y <€ 0<z20(x) <1, (1.31)

then the system admits a unique global solution (v,u,0,z)(x,t) satisfying

(0,0, W) € C (0,+00; H*(R)), z€ C(0,400; H'(R)), (1.32)
¢ € L* (0,400; H'(R)),  (¥,(,2) € L (0, +00; H*(R)). (1.33)
Furthermore, the solution satisfies
(v = B,u— @, 0 — 0)|| oo ) < Cle+38)(1+ )71, (1.34)
and .
2]l Lo () < Cle+ 63 )e " (1.35)

Remark 1.1. Compared with the compressible Navier-Stokes equations, the term related to z in the
energy equation (1.1), leads to new technical difficulties, such as deducing the LlLl-norm estimates of
the term Apz(. One of the main reasons is that the anti-derivative technique can not be directly applied
to the system (1.1). To overcome the difficulties, our way is to construct a new perturbation system (2.1)
about some modes &, ¥ and W.
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Notations. Throughout this paper, ¢ and C' denote the generic positive constants depending only on
the initial data and physical coefficients but independent of time ¢. The norms in the Sobolev spaces
H™(R) is denoted by ||| ym for integer m > 0. In particular , for m = 0, we will simply use ||-||.

The rest of this paper is organized as follows. In Section 2, we reformulate the system (1.1). Then,
the local in time existence and some a priori estimates for the solutions are established in Section 3. In
Section 4, we obtain the decay rates of solutions and hence the global existence theory of Theorem 1.1
by using the standard continuity method.

2 Reformulated System
Since (¢, ) = (P,¥), and %C + Az + LW, |2 4+ a¥, = W, we have

b, — W, = —R,
W +p—p=Lu, — L0, — Ry, (2.1)
K

Wi + pu— pi = £60, — %0, + Luu, — Lai, — Ry + 24z,

v

For simplify, a new variable is introduced as follows:

-1 -
W=1""(W —aw). (2.2)
R
It follows that \ . L /1
¢+ %z =W,-Y, withY = % (2@3 - uzw> . (2.3)
Then, the system (2.1) can be rewritten as
b — ¥y = — Ry,
Uy — %Q)x + %Wac - % vz = G1, (24)

%Wt +p+wx - %Wzr = G27

where the right hand side terms of (2.4) are

R Ay -1
Gy = (ﬁ—@) wot By p gy - Ry 202D (2.5)
v v v v
G2:(g—%)ez—l—%gﬁj—Rg—ﬂt!p+ﬂR2+J2
Cry  MG-D M 20
v Ry 7" 277
with
o N R i
Ji :p ~p+¢x_ [p_ﬁ+l~)¢x_~(9_9)
v v v (27)
=O(1) (P2 + W2 +Y?% + 22 4 |a|*),
Jy = (py —p)Wo = O(1) (P2 + W2 + W2 + Y +2° + |u|h). (2.8)

3 Some a priori Estimates

In this section, we establish some a priori estimates bounded with respect to time. As usual, the global
existence of solutions will be obtained by combining to the local existence result with some a priori
estimates and then employing the standard continuity argument. In what follows, we first show the local
in time existence of solutions to the Cauchy problem (1.1) and (1.2).
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Proposition 3.1 (Local existence). Under the assumptions of Theorem 1.1, for any constant Mo > 0,
there exists positive constants Cy and Ty = T1(Mo) > 0 such that if ||(¢po(-), Yo(-), Co(+), z0())||mr < Mo,
then the Cauchy problem (1.1) and (1.2) admits a unique solution (p,v,C, z) satisfying

(¢>,¢’Cvz) € C([OleLHl)v (¢L,Z) € Lz([()’Tl]aLQ)v

) L (3.1)
(¢ZL’7C&E)ZI) S L ([OaTI]aH )7

and

sup ||(¢?w7€7'z)(ta )H%—[l S C’IMO~ (32)
te[0,Ty]

Remark 3.1. The proof of Proposition 3.1 can be completed by using standard iteration arguments. We
refer for instance to [2]. We omit the details for brevity.

To prove Theorem 1.1, we need to close the following a priori assumption:

N(T):= sup {[(®,%,W)|7 +[l(¢, 0, ¢, 2) |7 } < €5, (3-3)
0<t<T

where &g is a positive small constant. By (1.16), it is obvious that 61| + |05 < Ceo. The generalized
profile components ¥, € have positive lower and upper bounds, which are only determined by initial data.
If g¢ is suitably small, then we have

1

3 0<0=0+¢<20. (3.4)

DN | =

1<v=0+¢ <20 and

Consequently, we will use ~
0<c<0,v,0,0<C, (3.5)

directly here and after. Similar to Lemma 2 in [2], we have

0 < z(x,t) <1. (3.6)

Remark 3.2. To close the low order estimates of the solutions, the L{°L2-norm estimate of (@, ¥, W)
is allowed to grow at the rate (1 +t)%. However, this growth of the low order energy norm is compensated
by the decay in the energy norm of higher order derivatives. The elementary energy method based on the
anti-derivative argument introduced in [18] is used to obtain some desired energy estimates bounded with
respect to time and hence the global existence.

3.1 Low Order Estimates on (&,%, W)

In this subsection, we establish the L{°L2-norm estimates of (&, ¥, W, ®,) and the L? L2-norm estimates
of (®,,¥,,W,) by using the classical energy method.

Lemma 3.1. Let 6 =6 + 0, + 0s. It holds that

d / <p+ 2 U2 R? 2) 1 / ( 2 Bk 2)
— — P Ut —————— W= | de + - Uo+ —W: | de
dt Jg \ 2 2 2(y — Dp+ 2 Jo I p+v

_ 1 _ _ 1
<(Co+ DA+ (I + 122 + [1W]*) + C+ =" + Co(1 +1)~7

+C (0 +e0)(IBe]l* + 1217 + (¢, %, O)all?)-

Proof. Multiplying the equations (2.4),, (2.4), and (2.4), by p1 @, ?¥ and %W, respectively, we have

Fxt 2
(]’*452 p ey M W2> w2+ gy
2 2 2(y — Dp+ : P40
(3.8)
1. o = Rk . R
— 5% — Rapy @ — [ —= ) WW, + 9G¥ + — WG+ (- )a,
2 pyv /. D+
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where the notation (- - ), represents the term in the conservative form. By integration (3.8) with respect
to x in R, we get

d Prge Vg2 ° 2 / 2 B o

— — P+ U+ + U, +—W; |d

dt ]R<2 2 2(y = Dp+ 2\ T )

1 - R

_! / 502 da — / Rup, dda — / ( ’i) WW,de (3.9)
R R RA\P+V/
R

R R P+
Now we will estimate the right hand side terms of (3.9) as follows. By using (1.5), (1.6), (1.8), (1.18)
(3.10)

1 _
/ 15, 02da < C5(1 + )~ 1||@||2.
R

and (1.21), we have
2
Noticing (1.24) and using (1.18) and the Cauchy-Schwarz inequality, we get
/ || o < O5(1+6) || @]2 + O5(1 + 1) 2. (3.11)
R
(3.12)

Similarly, by (1.8), (1.18) and the Cauchy-Schwarz inequality, we obtain
< CO(1+t) "YW + C8||W, ||

~) WW,dz

/ (Rl'i
R \P+V
In the following, we show the estimates of the last two terms on the right hand side of (3.9). It is

- |w|dx+/R|Y| |@|dx
R
(3.13)

YT
<
_/R g ’(v ) e
+ [ follwide + [ faliRal@ide + Ay~ 1) [ J2)eide
R R R

clear that

/ 1G1¥dx
R

Z:.Il +IQ +I3 +I4+I5
For I, by (1.8), (1.18), (1.21) and the Cauchy-Schwarz inequality, we have
b, Py
ns 22 wiwlan s [ |2 adwias
R| Y R| U (3.14)
<C(6 +0)||D:]1* + Ceollyu||” + CO(L + 1) |||
(3.15)

By the assumption (3.3) and the Cauchy-Schwarz inequality, we have
I gc/ |Wz|2|W|dm+C/ || |2 d
R R
<Ceoll%sl* + Co(1+ )~

For I3, it is obvious that
_ _ R 3
I < / P Prg |1w|de +/ ‘p 5+ Lo, - 20— 9)‘ 7|dz. (3.16)
R (Y R v v
Due to (1.5), (1.21) and Taylor’s expansion, we obtain
_ _ 1
ﬁ — P+ = 91(91 + 0393 - = 17,2, (317)
(3.18)

O(1) (#2 + W2+ 22 +Y?).

Ca‘ g
—~
>
|

™

N—

Il

and
p—D
JAAM

Copyright © 2021 Isaac Scientific Publishing



120 Journal of Advances in Applied Mathematics, Vol. 6, No. 2, April 2021

Then, we have
I; < Co(L+ )T H[* + Col|@all* + Ceo (lda I + Wall® + 11201 + 1%]1%) , (3.19)

where we have used the fact that

/Y2|w|dx gc/ |%|4|W\dx+0/ |tz |* |2 da
R R R

(3.20)
<Ce|| T, |* + CS(1+ )| 7|,
For I, we first have

__ p, R N

p—p=— 2 —0)+ (0 0)+ 0o~ 1) + (6 - )
:77'%9191 0 9393 (3.21)

—, — 1 cx? cl@—AT (1+1))2 c(z—AF(141)2
+ O((S + 9% + Hg)m (e_ T+ 4 e i TLe” i ) ’

for some positive constant c. By a direct calculation, similar estimate also holds for pa — pu. Therefore,

N 1 ? e(e—AL (14))? e(e—rF (141)?
Ry =0(6 + 6?2 +62) T <e1+t +e T 1w fe T 1w ) , (3.22)
for i = 1,2,3. By using (3.22), we get
I < CS(L+t) Y w|? +Co(1+1t)" 2. (3.23)
By a direct calculation, one have
1
I< (1+1)° )2 + X2 (y — 1)2(1+ 1) 2] (3.24)

Putting (3.14), (3.15), (3.19), (3.23) and (3.24) into (3.13), we get

_ 1
[ 36| <(CE+ D+ 0 P + 220 - 121+ D)
R
_ 3.25
T+ C@ + o) (18,2 + 1212 + 12 12 + W2 (3.25)
+C5(1+1)72 + Ceolltba |
Similarly, we get
Rk
—Wde + Co(1+t) (@) + W)
(3.26)

+ c<5 +e0) (1Bl + [12]12 + 1212 + | W |12)
FOS(1+1)"F +C(6 +20)|l(¢, 0, )%

Substituting (3.10)-(3.12) and (3.25)-(3.26) into (3.9) and using the smallness of § and ¢, we get (3.7). [

In the following, we show the estimates on ¥,.

Lemma 3.2. It holds that

d L g2 ¢ wde /p+¢2
dt RQ’U

(3.27)
Rk - 3
SCl/ (qu + MWQ?) dx + 01(5(1 + t)7§ + 01”2”2 + C1€o||¢x||2,
R +

for some positive constant C1.
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Proof. From (2.4), and (2.4),, it is obvious that

R ~
Ww - Gl - %le

Loy —w + P, =
v 0]
Multiplying (3.28) by &,, we obtain

(ﬂ@i) _ (ﬁ) P2 — oW, + g = v PR\ e,
20 t 20/ ¢ v 0 0]

Since )
DU = (W) — (W), + W2 — R,

Putting (3.30) into (3.29) and integrating the resultant with respect to  over R yield

DO g2 g waz) + / Pr g2 4y
dt R 20 R VU

g/ (ﬁ) @idx—i—/&fdx—/ﬁlifmdx
R 20 t R R

R v v

By using (1.8), (1.18), (3.22) and the Cauchy-Schwarz inequality, we have

d H 52 Dt 52
S| e~ wa P+ 24
dt(/Rf;’” v x)+R@xx

- 1
< <05+>/’7f¢§dx+o/ (wngR’fwﬁ) da
4) Jr © R p+v
+C/Gfdx+05(1+t)*%.
R

Similar to the estimate (3.25) in the proof of Lemma 3.1, we have

[ Gda < Ceallful + 12 + [Wol) + ClzlP + C5(1+ )4 + Calll
R

By substituting (3.33) into (3.32) and using the smallness of § and &y, we get (3.27).

Choosing C; > max{1, % 4C4 } and satisfying

L)

~ Pt o Uoo R? 2) / H 22
C / — Q¢+ U+ ——W* ) dax + —&; — O,V ) dx
' R ( 2 2 2(y — Dp+ R <2?) )

1~ o R
zfcl/ (“@2 + 2wy W2> dz +/ L p24q,
2 " Jr\2 R

2 2(y — Dp+ 40
and
Ch Ch
Denote R B2
~ P+ -0 V.o 2 oo

£ :c/(q5 + Yy +W)dx+/(~d5w—d5zw>da:,

R\ 2 27 2(y-1)ps & \20
and

D, = g/ (ng n R"iwg) da +/ P g2 4y,
4 Jr p4U R 80

then it follows from Lemmas 3.1-3.2 and (3.34) that
_ 1 - 1
Eit + Dy <(CH+ Z)(l +1) L+ C5(1+1) 2
+C0 + o)l (d, 9, Qal® + C(L+ 1|2
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(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)
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3.2 Estimates on (¢, %, (, z)
Now we estimate the derivatives of (@, ¥, W). First of all, we denote

Ay —1 -
19:9+%z, n=1—0. (3.39)
Then the system (1.1) can be rewritten as
(Z)t - wx = _lev
P + (p - ﬁ)a: = (%uaz - %aw)x - RQau (3 40)
Lone + pup — pite = (50, — 50.), + A (%), + G, '
2= (%), — w9z
where 1
Gy = %ug - (%uum>l — Ryy + (@) + o (3.41)
Lemma 3.3. It holds that

d 1 o sa(v R -2(0Y\ 70 -

— = ROD ( - ——0d | = —z°|d

dtR[Qer (@)H—l (9)+2z v

d
(B e 20+ 20 ) (342
R \ U v 4 4 v
<COL+ )7 (I19a* + 1Zal* + W |?) + CO(1 +1)72,
where we denote the positive constant ~yy satisfying
2X2(y—1) (1 K 2)2d
> — . 3.43
o= max{ pop(6) o + R29 )7 kv? (343)
Proof. Set .
P(s)=s—1—Ins. (3.44)

It is clear that &'(1) = 0 and &(s) is strictly convex around s = 1. By a direct calculation, we obtain

~n ~ 4 ~ 1 1
[RG@ (gﬂ =R0,9 (g> + RO <— + ~> ol

/14 0] v oD

- 1 ~ 1 1
+ RO (—f; + ~> o + RO (— + ~> ot (3.45)
920 v oD
~ 1 1 ~ (D A
—R( (— + ) 0 — b (“) o+ (2 ),
v v 0
Multiplying (3.40), by %, we get

(3.46)

1 _ [ [ -
(W)t — (= + (B = L) vo = —Rov+ ().

Noticing that
~(1 1 R Ay —1
p_ﬁ:Re(—~>+77—(7 )., (3.47)
v (% (Y v
from (3.46) and (3.41),, we have
1 (1 1 R -
<2w2) — R ( - ) b= e + S 4 (B - L)y,
. voD v v voD
(3.48)

=—R2x¢_WZ¢I+R§<3J—;>§1I+(--~)1.
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It is obvious that ~

e 0 VAW
o = =(1--= —&| = . 4
{9 <9>]t ( ﬁ) b (ﬁ)et (3:49)
By a direct calculation, we get

R0

v -1 9 Up

(=) s (-9) 2 (8) o)
Y v v/, v )

~ Ro n, . 5 n KO, KO,

== gt 50— p)ia (ﬁ)x( >

_ (ﬁ)x Adzg %Gg (e

(3.50)

9 v2
__R Ay =1) N, . Kk o KAy—1)
= - v771/)a:+ o0 anx+19(p_p)ux_vﬁ77x+ Rod 2Nz
KNz Py ~ 9y [ KO, K0y n Adzy n
+ v Ou + 92 ( v 0 (19)1; v2 +19G3+( )a-

Lo R 5. (0 Hoo K 9
)+2¢ +7—10@(§>>d$+/R(v¢z+vﬂnz>dx

~~
— =<
=1

¥ A (U R [0\
= [ (= (5 t”ptgb(@)w—l@(w)"t)dx
_ (1 1\ =
R\V 0 R R vov (3.51)
-1 —1 -1
_ / M=)t s / M =D e / AO=D e
R v R ’1)19 R R'U’l?

n, . 5 KNz Dy ~ Ny (KO KOy
—(p— 2d 0..d — ——d
+/]R (P - p)u er/R v er/R 92 (v 0 o

Now we will estimate the right hand side terms of (3.51). Noting that &(s) is strictly convex around
s = 1. There exist positive constants ¢; and co such that

g <& (5) < cag?, (3.52)

and 9
e < & <9> < o (3.53)

Therefore, by using (1.8), (1.18) and (2.3), we have

L)
(s

dw+/R ‘@ﬁté (%)’dx < O5(1+ )2, (3.54)

and

dz <CS(14t)7|n|?

J

<C3(1+6)7 (IWe]* + 1Y) (3:55)

SOS(1+ )7L ([Wall? + 1%, ]?) + Cdeo(1 +1) 3.
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By the Cauchy inequality, (1.8) and (1.18), we get

/] A P T

dx = $ﬁx -
v (3.56)
§C5||1/)x|\2 + O3 +1)72 2|2,
and
(1:@[1/' o N < —
/ ePe 5 | Qe < CBlinall? + C51 + )6, (3.57)
r| vod
By using (3.22) and the Cauchy inquality, we have
/|ngw|dx < CF(1+ ) T2 + C5(1 + )3, (3.58)
and L
/ RO (v — U) Rip|dz < C5(1+t) Y| D, + CS(1+¢) 2. (3.59)
R
It follows from the Cauchy inequality and the assumption (3.10) that
—1 —1
A(v )| + FA(Y )zm da
Rvy (3.60)
2(r —1)2 2(n — 1)2 :
/ de +/ de _|_/ Mzﬂdx +/ szdx,
) r R0
and
AMy—1
[ A e < oo (1al? + a?). (3.61)
R v
By using (3.47) and the Cauchy inequality, we have
/ ’77 D)l | dz
3.62
<CO(1+ )7 (12 + 1l + 1) (362
<O+ )7 (19 l” + 1% 1 + [Wal® + [12]7) + Co(1 + )72
Similarly, we have
Ny KOy KOy 9 9
[ (2 - 22) | aw <0G+ o)l + 1)
+ O3+ (10012 + [Inll?) (3.63)

<C(6 + <o) (IImall” + 1z2]1%) + Co(1+1)72
+CO(L+ )7 (IWall” + 1% + I12:]) ,

)\2d2 9
/4 19777" / 19 3 sz
T OF(L 4 1) (I 2+ W) (3.64)
+Ceo+0) (221 + [Im:]12) + Co(1 +1)73.

and

)

J

( 77 )\dzz

By the Cauchy inequality, we have

/ (gGg,‘ dz < Ceolltbal|? + CO(1 + ) (10| + [|Wa]|2) + (1 + 1) 73 (3.65)
R

JAAM
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If we plug (3.54)-(3.65) back into (3.51), we obtain

d )] 1, R ~. /Y B K o
= R<R9¢(6)+2¢ +7_1945(9~>>daz+/R(20¢I+4Uﬁnx>dx

Ny —-1)2 /1 K 5 A2, < 3 (3.66)
< - d dz + Co(1+1) 7%
_/R i) <M+R219>Z er/Rm%?’Zm T+ 0o1+1)

+CO(1+ )71 (1o + 1% ]* + 1Wall*) + Cleo +6) (1211 + llz1) ,

where we have used the fact that the constants § and £y are small.
Multiplying (3.40), by z and integrating the resultant with respect to « over R, we get

1d 9 9 / d o,
5T Rz dr + /]R w(0)z°dx + A vzxdx =0. (3.67)
From (3.66) + 70(3.67) and the smallness of § and £, we get (3.42). O

Now we show the L?L2-norm estimate of ¢, as follows.

Lemma 3.4. It holds that

Hoo K o Yd o

SOQ/R (v¢x+wnx+4vzx> dz (3.68)
L+ )7 (19207 + 1917 + (W1 + [1211%)

14 8)7% + Coeolltpaa 1,

for some positive constant Cs.

Proof. From (3.40), and (3.40),, we have
%d)xt - ¢t - (p _ﬁ)x = (%)w 11[}36 - (E - %) Uy + RQw - %Rlxx (369)
Multiplying (3.69) by ¢,, we obtain

(2:42) = (%), 62 — 160 — (0= Plats

] ] (3.70)
= |:_ <g> wac + <,u¢~w ux) + Roy — lleamil ¢:c
vV/x VU x v
Note that
_(p_ﬁ)m :g(ﬁx - Enx + Mzz + (p - ?) Vg — <R - ?) Ha:
v v v v v v v
v v v v v
Ay —1 R R\
and
Gathe = (P2 — (De1))z + V3 — Rigths. (3.72)
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Putting (3.71) and (3.72) into (3.70) and integrating the resultant with respect to x over R, we have
d 2 2
5 ( 02— 6,0) dz + / Pg2da
2 2 R
:/ <7) ¢2dz + / Y2da — / Rupthuda +/ 2 ebada
R \20/¢ R U (3.73)
Ay —1 R R p ’
R v R v v R \V v
D, - -
R V/x VU . v
Now we estimate the right hand side of (3.73) as follows. It is clear that
HY 2 ‘ I 2 < D 9 B2
/R(‘(zﬁ)t‘bx + (5),0%)&”— R85¢xdx+c/ﬁ§v%dx' (3:74)
By using (3.22) and the Cauchy inequality, we have
~ ~ /’l’ ~
R v

<CG ([[¢al® + |9 )1?) + Co(1 + 1) 2.

) (3.75)

It follows from the Cauchy inequality that

[ ([Bred Ja
/8~¢ dm+0/< S w+z§> de. (3.76)

By using the Cauchy inequality and (1.8) and (1.18), we obtain

L= 5) s

<Ceo (2] + ll22]1*) + C(8 + o)l ds1* + CO(1 + 1) 1|z 1.
Similarly, we have

/ > Vg Pz
R

By using the Cauchy inequality, the Holder inequality, (1.8) and (1.18), we get
/ (l@f um> o

R (% 2
<C [ @ palde+C [ GElanlde+C [ 0,620, ds
R R R
+C/ |¢$ﬁ$¢xwx|dx+0/ |¢xﬂx¢i}dx+C/ | Dyl | Az
. * N (3.79)

R R
<C(8 + £0)|0]|* + CO(1 + )@ ||* + Ceo[traa ||

+CM%F+C/ﬁWﬂM
R
<O+ o)|all + CF(1+ ) |82 + Ceollte | + Clltsa,

‘/\(7 1)%%

(3.77)

v

da <C(8 + £0)||d||? + C(1 + )2
<O@ +<0)lldal® + C3(1 +1) -
+C65(1+6) 7 (1Dl + 1 1® + [We|I* + 1|211%) -

N
3
SI ]

dx
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where we have used the fact that

/R & |6olde <Cllbo |2 lalF nsll

1 1 3.80
<CUGall 19 1 192l + sl (350
<Ceo(lgzll” + lltoaal)-
Plugging (3.74)-(3.80) into (3.73) and using the smallness of £y and §, we get (3.68). O

3.3 Higher Order Estimates on (v, ¢, z)

In this subsection, we establish the L L2-norm estimates of the higher order derivatives of (¢, 7, z) and
the LZL2-norm estimates of (Vzz, ez, 22, 222) by using the energy method.

Lemma 3.5. It holds that

d 2 4 R et 52
dt/< Vet t )dx

(@) Adyir o
1/12 der/ mder/ zydx + Zypda
/ 2" R 4 r 4v? (3.81)
<Cy(F+ ol + G (117 + 617) + G [ ( 24 208, )
R
+ C3d(1+ )L (||B |2 + 122 + [Wal® + [[2]%) + C38(1 + )%

where C3 1s a positive constant and v, denotes a positive constant satisfying

A (d? (y—=1)%k
> (g L) .
n=- (m}g + ) (3.82)

Proof. Multiplying (3.40), and (3.40); by —t,, and —n,, respectively, and integrating the resultant
with respect to x over R, we have

St (W ( )d +/ —Z. dz+/ —n2,dz
~ [ 0= Pevrea + / Etbebende+ [ (’“‘Uqf}% ) o
+/Rﬁzxwmd:v+/(puzfﬁﬂx)nmder/R%nmmdx (3.83)
_/\WT;D/ m;zm mdx+/ (Kj;”” }) nmdw—/ngmdx
R R T R

dz, Ay —1
—1—)\/ (Z2 > NwzxdT + 7(7 )/ Ezmngm;d;v.
R v x R RV

Now we will estimate the right hand side of (3.83). By using the Cauchy inequality, (1.8) and (1.18), we
get

Dy < < < _
[ (B2200) tente < OBlarP + Clon 2+ 31+ ) P (3.8)
R x
Similarly, we have
P, ; . . o
[ (5226) ecde < CBlnal? + €Ol P + 31+ 07 o 2 (3.85)
R x
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By using (3.22) and the Cauchy inequality, we obtain

5

/ Rautbuad < Col[tonall? + C5(1+ )5 (3.86)
R

|

By using the Cauchy inequality, (1.8), (1.18), (2.3) and (3.71), we have

/ (9 — B)otbne| da
R

<O(lInall? + 1z 1? + 12]1%) / Py do (3.87)
FOS(L+ )7 (|| @] + 12|12 + | Wall? + [|2]12) + Co(1 +1) 3.

By using the Cauchy inequality and the Hoélder inequality, we get

Vg
[ V] o OBl + aa )+ € [ [l
(3.88)
<OG + o) (W + e ),
where we have used the fact that
[ tosllblralde <l sl 161l < Coolll? + ) (359)
Similarly, we have
KUg 9
o 02 —5 Naleads < C(§+50)(“’71|| + ||77:m|| ) (3.90)
Ay —1 KUy
D) [ s < CG + o) + el + el ), (391)
R 'U
dzy -
M (52) wite <CCen+8) (lull + el + Inel)
R v
v (3.92)
/ /2A2d2 9
—nmdx z2y.dx,
and
[ 1Ganealde <C [ G2 inaalde + €Tl + sl + €31+ 1)
R R (3.93)

SC(SJF 50)(”wx”2 + ”779096”2) + C€0||%/1xa:H2 + 05(1 + t)ig'
Noting that

Ay —1 D, ~
DUy — Pliy :p¢z+ [R(ny) (’Y )Z* R~ 0. Uy,
v v VU

and using the Cauchy inequality, (1.8), (1.18) and (2.3), we have

= Ko 2 2 N _s
JAL Piolds < [ o+ Ol +-C30 41 o
+ O+ (1@l + Wl + 112117) -

It follows from the Cauchy inequality that

Ay —1) K 9 2N (v = 1)%k ,
_ < — _ . 3.95
7 /]R vzmnmdx /Rsvnmdx +/R e 22.dz (3.95)
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Combining (3.83) and (3.84)-(3.95), we see that

(;it ( P2+ ( )dx+/ 2 dx—i—/ fnmdx

2)2 (v —1)2k _
< / . (+R) 2,z + C(6 + o) (e ? + 122 ]1?) (3.96)

FOS(L4+ 1) 2 +C (6]l + el + |22 ]?)
+Co(L+ )" (1D ll® + 1 lI” + IWal + [12]17) -

Multiplying (3.40), by —z,4, and integrating the resultant with respect to x over R, we have

1d 5 5 Ad
BT .darH—/]R (0)z; dm+/ 22 dx

. (3.97)
=— / ©(0)pzzpda —/ () ZgpZeed.
R R\V/ ¢
By using the Cauchy inequality, (1.18) and the assumption (3.3), we have
/R@(9)xzzzdx < Cleo +8) (IImal* + [121* + ll2211%) , (3.98)
and
d 5 2 2
- 2z Zgedz < C(eo + 0) ([|22]1” + | 222]%) - (3.99)
R .
Putting (3.98) and (3.99) into (3.97) and using the smallness of 6 and &y, we obtain
1d 2 2 2 2
- — < . 1
s [ [ B 200 [ 2022 a0 <06 +e0) (2P + nel?) (3.100)
From (3.96) + 71(3.100), by using the smallness of g9 and §, we get (3.81). O
Choosing two positive constants Cy and Cs such that
~ 1 . 9
Ca [ |30+ rod (3) +70¢ L2, dx+03/ (L62— puv) da
R |2 v —1 0 2 2v (3.101)
1~ Lo is (Y R 55 (0 70 .2 C3/M2 '
Z Z & (Y Tt Gd Jo H°
>202/R {Qw + RO (U) + 0 (9) + 022 det = [ Egtar,
. 1.
Cy — 0302 — 03 > 702, (3102)
G [ 20,0):2d0 — cy))2 > L2 G 20 o (6)22dx, (3.103)
2 Ju 4 2 Je 8
and 5 -
Gy [ Lo2da — Callgel > G5 | Lo2da. (3.104)
R 20 R 49
Let
& 02/ [ b +Raq§< )+Réq3<1?> +%z2] da
R 71 0 2
X " (3.105)
2 12 2, N 2
0 [ (20 m)dH/R(Zwﬁ O CR x)dx,
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and

L -
Dy == 2/ B2 e B0 )02 4 2002 g 03/ L g2da
4 R \V v v r 40

8 4 (3.106)
Boo Ko 9@)m o Ay, '
— — dx.
Then, it follows from Lemmas 3.3-3.5 and the smallness of § and &y that
Ext + Dy < CH(1+1)""Dy + C6(1 + 1) 2. (3.107)

4 Decay Rates

In this section, we first show the L?-norm decay estimates of the solution z(x,t). From (3.67), there
exists a positive constant Cy such that

d N .
&HZHQJrC4||Z||2+C4IIZmII2 <0. (4.1)

Multiplying (4.1) by eC4t, it is obvious that

d

= (€9 1212) + Cue® 1z < 0. (4.2)

Integrating (4.2) with respect to ¢ over [0, ¢] yields
412 + G [ O lylPde < O] 43
R

By combining Lemmas 3.1-3.5, we get the time-decay rates of the solution to the nonlinear problem.

Proposition 4.1. Under the assumptions of Theorem 1.1, it holds that
16,9, Qllz~ <CAL+ 17T and 2]z~ < Ce™ . (4.4)

Proof. Tt follows from (3.38), (3.107) and (4.3) that

-1
(51 —|—€2)t—|—D1—|—D2 S(Co(s—Fz)(l—Ft)il (51 +(€2) (4 5)

+ Cod(1+1)"% + Co(1 + t)e S5t 22,

for some positive constant Cy. Multiplying (4.5) by (1 + t)’COg’% and using the Gronwall inequality, we
get ~ )
E1+ & < C(E1(0) + E5(0) + 6 + ||20]/?) (1 + 1), (4.6)

and
/O (Dy + Dy) dt < C(E1(0) + E2(0) + 8 + || 20]12) (1 +1)2, (4.7)

if Cod < 1. Since &1 + & > Cyl|(@, ¥, W)||? from some positive constant Cy, it is obvious that (4.6)
implies that - )
12,2, W)[|* < C(£1(0) + €2(0) + 6 + [[z0]*) (1 + )7 (4.8)

On the other hand, multiplying (3.107) by 1 + ¢, we have
(14 8)&), < CODy + E + CO(1 +1)"% <Dy + Do+ Co(1 +1)" 3. (4.9)

Integrating (4.9) with respect to ¢ over [0,¢] and using (4.7) yields

& < CE1(0) +E(0)g + 6 + ||20]>) (1 + )72, (4.10)
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where we have used the fact that

&y <C||(¢, 4., 2) |7
<C(|12,2,W)a|* + 1212 + (6, .0, 2)a 1) + CO(1 + 1) 72
<OD; +CD;y + Co(1 + 1) %,

Noticing the definition of £, we have that there exists a positive constant Cj such that

52 ZO5||(¢7 1/’7 m, Z)”?{l
>Cs([(2, 9, W)a|® + |27 + (&, ¥, 2)al|?) = C56(1 + )72,

By the Sobolev inequality, (4.3) and (4.12), we have

(¢, 9, Ol o <CII(B, 80,7, 2|2 (1(6, 80,75 ) |12
<CE <O(E+8) 1 +1) 1,

and
1 1
2]l <Cll2]|% || 22|
1 Cyt 1 1
<Cllzol|ze” 2 &F (1 + )%
<C(® + 5)%e_%t.

Thus, we get (4.4).

Remark 4.1. It follows from the Sobolev inequality, (4.8), (4.10) and (4.12) that

(@, 7, W)l <Cl(@,%, W)|2[|(Pa, T, Wa) || 2
<C(E1(0) + £2(0) +6 + || 0]*) 2,

which and W = L;(W —a¥) imply
(@, 2, W)l < C(E1(0) + £(0) +5 + [|20]*)*.
By (4.10), (4.12) and (4.15), we have

(@, 0, W) || 1o + (6,0, ¢, 2) || i1 < C(e? +8)%,

131

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

which implies that the a priori assumption (3.10) is verified. Therefore the proof of Theorem 1.1 is

completed.
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