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Abstract In this paper we discuss two approaches to bring a balance between effectiveness and
efficiency while solving a multiobjective programming problem with fuzzy objective functions. To
convert the original fuzzy optimization problem into deterministic terms, the first approach makes
use of the Nearest Interval Approximation Operator (Approximation approach) for fuzzy numbers
and the second one takes advantage of an Embedding Theorem for fuzzy numbers (Equivalence
approach). The resulting optimization problem related to the first approach is handled via Karush-
Kuhn-Tucker like conditions for Pareto Optimality obtained for the resulting interval optimization
problem. A Galerkin like scheme is used to tackle the deterministic counterpart associated to the
second approach. Our approaches enable both faithful representation of reality and computational
tractability. They are thus in sharp contrast with many existing methods that are either effective
or efficient but not both. Numerical examples are also supplemented for the sake of illustration.

Keywords: multiobjective programming, fuzzy numbers, nearest interval approximation, embed-
ding theorem.

Introduction

A Multiobjective programming problem with fuzzy objective functions is a difficult optimization problem
which arises in a wide array of useful applications in engineering [1], economics [2], finance [3], ecology
[4], etc. Designing algorithms for this problem is therefore a relevant issue that has attracted intensive
research activities (see e.g.[5] [6] [7]). A close look at the literature reveals that existing methods are
either computationally tractable (efficient) or faithful in representing reality (effective) but not both. In
this paper we present two approaches that care about both accuracy in representation of reality and
tractability of the resulting problem. The first method approximates the original fuzzy problem using
the Nearest Interval Approximation (NIA) Operator. It yields a tractable resulting interval Optimization
problem for which we propose a technical solution through Karush-Kuhn-Tucker (KKT) like conditions
for Pareto Optimality. These conditions have been obtained by making use of gH-differentiability [8].
The second method turns the original fuzzy problem into an equivalent deterministic one via an Em-
bedding Theorem for fuzzy numbers [9]. The price to pay to pursue this equivalence avenue is high as
the resulting optimization problem has infinite objective functions. We then resort to a Galerkin like
scheme to solve this complex optimization problem. The paper is organized as follows: in Section 1 we
present mathematical preliminaries that are needed in the sequel. In Section 2, we clearly formulate the
optimization problem at hand. In Section 3, we discuss the approximation approach. Section 4 is devoted
to the description of the equivalence approach. Finally in Section 5 we present some concluding remarks
along with further developments in this field.

1 Preliminaries

1.1 gH-Differentiability of Interval Valued Functions

We denote by KC the family of all bounded closed intervals in R. For A, B ∈ KC . The generalized
Hukuhara difference (gH-difference) denoted by AΘgHB is defined by:

AΘgHB = C iff
{

either A = B + C
or B = A + (−1)C
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The following are the two main order relations defined on KC .
If A = [aL, aU ] and B = [bL, bU ] then we have:

A ≤LU B if and only if aL ≤ bL and aU ≤ bU (1)

A ≤LS B if and only if aL ≤ bL and aS ≤ bS (2)

where aS = aU − aL and bS = bU − bL.

Proposition 1.1
A ≤LS B implies A ≤LU B

Consider a real interval T . The gH-derivative of an interval-valued function F : T −→ KC at t0 is
defined as:

F ′(t0) = lim
h→0

F (t0 + h)ΘgHF (t0)
h

. (3)

If F ′(t0) ∈ KC satisfying (1) exists. We say that F is gH-differentiable at t0. If F is gH-differentiable at
each point t ∈ T . We say that F is gH-differentiable on T . The generalization of the above definition of
gH-derivative to interval-valued function defined on Rn is straightforward (see e.g. [10]).

1.2 Nearest Interval Approximation of Fuzzy Number

For the notion of fuzzy number, we refer the reader to Reference [9]. Let =(R) be the space of fuzzy
numbers. An interval approximation of a fuzzy number is an operator

C : =(R) −→ KC

such that for ã ∈ =(R) :

(i) C(ã) ⊂ Supp ã

(ii) Core(ã) ⊂ C(ã)
(iii) ∀ϵ > 0, ∃δ > 0, d=(R)(ã, b̃) < δ =⇒ H(C(ã), C(b̃)) < ϵ

where Supp stands for support; d=(R) and H are the metrics on =(R) and KC respectively.
A Nearest Interval Approximation (NIA) of a fuzzy number ã with respect to a metric d=(R), is an

interval approximation of ã, Cd(ã) such that:

d=(R)(Cd(ã), ã) ≤ d=(R)(C(ã), ã);

for all interval approximation operator C.

Proposition 1.2 If
fL : [0, 1] −→ R

α 7−→ fL(α) = ãL
α and

fU : [0, 1] −→ R
α 7−→ fU (α) = ãU

α ,

then

Cd(ã) =
[∫ 1

0
fL(α)dα,

∫ 1

0
fU (α)dα

]
.

For the proof of this proposition we refer the reader to [11].
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1.3 Embedding Theorem for Fuzzy Numbers

In the sequel we assume that Fcc(R) is the space of fuzzy numbers with compact support and C̃[0, 1] is
the space of real-valued functions on [0, 1] such that:

– f is left continuous for any t ∈ [0, 1] and right continuous at 0.
– f has a right limit for any t ∈ [0, 1]

It is worth noting that in this paper, Fcc(R) is endowed with the following order: for ã, b̃ ∈ FC , ã ≤ b̃
iff ãα ≤ b̃α for all α, where m̃α is the α-level set of m̃.

Theorem 1.3 [9]
The following map is isomorphic and isometric.

Π : Fcc(R) −→ C̃([0, 1]) × C̃([0, 1])
ã −→ (ãL(α), ãU (α))

where ãL(α) = ãL
α, and ãL

α, ãU
α are the lower and upper endpoints of ãα (the α-level of ã) respectively.

2 Problem Formulation

The problem under consideration in this paper is the optimizing several fuzzy objective functions under
crisp constraints. Without loss of generality to restrict ourselves to deterministic constraints as the
literature is rich of approaches for converting fuzzy constraints into deterministic ones (see e.g[12]). More
formally we consider a problem of the type:

(P1)
{

max(f̃1(x), f̃2(x), · · · , f̃k(x))
x ∈ X = {x ∈ Rn/gj(x) ≤ 0 , j = 1, · · · m}

where f̃i(x), i = 1, 2, · · · , k are fuzzy number valued functions in Rn. This problem is of common
occurrence in many real-life applications, including scheduling nursing resources, evaluation of urban
policy, forest management, corporate financial management, portfolio selection etc.

3 Approximation Approach for Dealing with (P 1)

This approach has been presented in [16]. We present it here in a way to motivate its coupling with the
approach based by considering an equivalent determinist problem.

3.1 Deterministic Surrogate of (P 1)

To find a solution of (P1), we find its approximation by the following interval multiobjective program:

(P2)
{

min(F1(x), F2(x), · · · , Fk(x))
x ∈ X

where Fi(x) = [fL
i (x), fU

i (x)], i = 1, 2, · · · , k stands for the nearest interval approximation (NIA) of
f̃i(x).

3.2 Solutions Concept

Definition 3.1 x∗ ∈ X is said to be a LU Pareto optimal solution of (P2) if there is no x ∈ X such that
Fi(x) ≤LU Fi(x∗), ∀i with at least one l ∈ 1, 2, · · · k such that Fl(x) <LS Fl(x∗). If ≤LS is considered
instead of ≤LU then x∗ is an LS-Pareto optimal solution of (P2).

Proposition 3.2 [4]
If x∗ is LU-Pareto optimal solution of (P2) then x∗ is LS-Pareto optimal solution of (P2).
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Proof
Suppose that x∗ is LU-Pareto optimal solution of (P2) and not LS-Pareto optimal solution of (P2). Then
there is x ∈ X such that Fi(x) ≤LS Fi(x∗) ∀i with at least one l ∈ 1, 2, · · · k such that Fl(x) ≤LS Fl(x∗).
By Proposition 2.1, we can say that there exists x ∈ X such that Fi(x) ≤LU Fi(x∗) ∀i and Fl(x) <LU

Fl(x∗) for some l. But this contradicts the fact that x∗ is LU-Pareto optimal solution of (P2) and we are
done.

3.3 Karush-Kuhn-Tucker Type Pareto Optimality Conditions for (P2)

In this section we present some Karush-Kuhn-Tucker type Pareto optimality conditions for problem (P2).
The conditions are based on gH-differentiability of interval-valued functions.

Theorem 3.3 Consider (P2) and assume that the functions

Fi : Fn
cc −→ Kc (i = 1, · · · , k)

are continuously gH-differentiable at x∗.
If fL

i + fU
i (i = 1, · · · , k) are convex functions and if there are λi > 0, (i = 1, · · · , k) and such that

µ∗
j ≥ 0, j = 0, · · · , m:

(i)
k∑
i

λ∗
i ∇(fL

i + fU
i )(x∗) + µ∗

j ∇gj(x∗) = 0

(ii) µ∗
j gj(x∗) = 0, ∀j = 0, · · · m

then x∗ is an LU-Pareto optimal solution for (P2) .

Proof
We define the real-valued functions hi(x) = λ∗

i [fL
i + fU

i ](x); i = 1, · · · , m.
Since by hypothesis, Fi(x), i = 1, · · · , k are convex functions we have that fL

i and fU
i are convex for

all i and then fL
i + fU

i are also convex for all i. Therefore hi (i = 1, · · · , m) are convex functions.
Since Fi(x), i = 1, · · · , m are gH-differentiable at x∗, we have hi, i = 1, · · · k are differentiable at x∗

(see [8]).
As ∇hi(x∗) = λ∗

i ∇(fL
i + fU

i )(x∗), we have from (i) and (ii) that:

k∑
i=1

∇hi(x∗) +
k∑

i=1
µ∗

j ∇gj(x∗) = 0

and
µ∗

j ∇gj(x∗) = 0 for all j ∈ {0, 1, · · · , m} .

By Karush-Khun-Tucker for multiobjective (real valued) functions, x∗ is Pareto optimal for the multiob-
jective program:

(P3)
{

min(h1(x), h2(x), · · · , hk(x))
x ∈ X

.

Suppose now that x∗ is not an LU-Pareto optimal solution for (P2). Then there is x ∈ X such that:

F1(x) ≤LU F1(x∗)
...

Fk(x) ≤LU Fk(x∗)

with Fl(x) 6= Fl(x∗) for some l ∈ {1, 2, · · · , k}.
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This is tantamount to say that there is x ∈ X such that for all i, we have either:{
fL

i (x) < fL
i (x∗)

fU
i (x) ≤ fU

i (x∗)

or {
fL

i (x) ≤ fL
i (x∗)

fU
i (x) < fU

i (x∗)
or {

fL
i (x) < fL

i (x∗)
fU

i (x) < fU
i (x∗) .

Therefore we have that for all i

hi(x) < hi(x∗).

This means that x∗ is not Pareto optimal solution for (P3). This is a contradiction. Hence x∗ is an
LU-Pareto optimal solution for (P2).

Corollaire 3.4 If the assumptions of Theorem 3.3 hold then x∗ is an LS-Pareto optimal solution for
(P2).

Proof
This comes from Proposition 3.2 and Theorem 3.3.

Definition 3.5 An LU (or LS)-Pareto optimal solution of (P2) is called satisficing solution of (P1).

3.4 Algorithm for Finding a Satisficing Solution of (P 1)

From the above discussion we can derive the following algorithm for finding a satisficing solution of (P1)
Algorithme 1

– Start
– input: k,m

objectives functions:f̃1(x), · · · , f̃k(x)
– Constraint functions: g1(x), · · · , gm(x)

1. Finding nearest interval approximation of : f̃1(x), · · · , f̃k(x)
(a) Put l = 1
(b) Repeat until break
If l ≤ k
Write NIA of f̃l(x) = Cd(f̃l(x)); where Cd(ã) is obtained as in Proposition 1.2.
Else, break and go to (c).

2. Finding a satisficing solution of (P1)
(c) Fix λ∗

i > 0, (i = 1, . . . , m)
(d) Choose µ∗

j ≥ 0 (j = 0, · · · , m) such that the system (S) is compatible

(S)


k∑

i=1
λ∗

k∇
(
fL

i + fU
i

)
(x) + µ∗

j ∇gj(x∗) = 0

µ∗
j gj(x) = 0, j = {1, . . . , m}

(e) Solve (S), if the solution exits, let x∗ be its solution, then go to (g) else go to (f)
(f) If such

{
µ∗

j

}
j
, defined in (d), cannot be found go to (h)

(g) Print : << x∗ is a satisficing solution of (P1) >> Go to (i).
(h) Print : << There is not satisficing solution for (P1) >>
(i) Stop.
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3.5 Numerical Example

In this section we illustrate the proposed method in a numerical example. Consider the following multi-
objective program:

(P4)


min

(
c̃1

1x1 + c̃1
2x2, c̃2

1x1 + c̃2
2x2

)
subject to

−x1 − x2 ≤ −6
−2x1 − x2 ≤ −9
x1, x2 ≥ 0

where c̃k
j (k = 1, 2; j = 1, 2) are fuzzy numbers with the membership functions given below:

µc̃1
1
(x) =

 2x − 1 for x ∈ [0.5, 1]
−2x + 3 for x ∈ [1, 1.5]
0 elsewhere

µc̃1
2
(x) =

5x − 9 for x ∈ [1.8, 2]
−x + 3 for x ∈ [2, 3]
0 elsewhere

µc̃2
1
(x) =


1
2 x for x ∈ [0, 2]
−x + 3 for x ∈ [2, 3]
0 elsewhere

µc̃2
2
(x) =

x for x ∈ [0, 1]
− 1

2 x + 3
2 for x ∈ [1, 3]

0 elsewhere

Using Proposition 1.2, we obtain the near interval approximations of these fuzzy numbers as follows.
c̃1

1, c̃1
2, c̃2

1, c̃2
2:

cd

[
c̃1

1
]

=
[∫ 1

0

(α + 1)
2

dα,

∫ 1

0

(3 − α)
2

dα

]
= [0.75, 1.25]

cd

[
c̃1

2
]

=
[∫ 1

0

(α + 9)
5

dα,

∫ 1

0
(3 − α)dα

]
= [1.9, 2.5]

cd

[
c̃2

1
]

=
[∫ 1

0
2αdα,

∫ 1

0
(3 − α)dα

]
= [1, 2.5]

cd

[
c̃2

2
]

=
[∫ 1

0
αdα,

∫ 1

0
(3 − 2α)dα

]
= [0.5, 2]

These intervals contain the core and are included in the support of the corresponding fuzzy number.
The counterpart of the system (S) for (P4) is as follows:

(§)


λ1

[(
0.75
1.9

)
+

(
1.25
25

)]
+ λ2

[(
1

0.5

)
+

(
2.5
2

)]
+ µ1

(
−1
−2

)
− µ2 = 0

µ1 (−x1 − x2 + 6) = 0
µ2 (−2x1 − x2 + 9) = 0
λ1 > 0, λ2 > 0, µ1 ≥ 0, µ2 ≥ 0.
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So if we find λ∗
1 > 0, λ∗

2 > 0, µ∗
1 ≥ 0, µ∗

2 ≥ 0 and x∗ = (x∗
1, x∗

2) such that (λ∗
1, λ∗

2, µ∗
1, µ∗

2, x∗
1, x∗

2) verifies
the above system, then (x∗

1, x∗
2) is a satisficing solution of (P4). For λ∗

1 = λ∗
2 = 1, the first equation of (§)

reads {
µ1 + µ2 = 0.75 + 1.25 + 1.0 + 2.5 = 5.5
2µ1 + µ2 = 1.9 + 2.5 + 0.5 + 2 = 6.9.

which yields µ∗
1 = 1.4 > 0, µ∗

2 = 4.1 > 0.
As x∗ = (3, 3) is the solution of the Cramerian system{

x1 + x2 = 6
2x1 + x2 = 9

We see that the vector (1, 1, 1.4, 4.1, 3, 3) is a solution of (§).
Therefore x∗ = (3, 3) is a satisficing solution of (P4).

4 Approach Based on Considering an Equivalent Deterministic Counterpart

4.1 Equivalent Deterministic Counterpart of (P 1)

Consider the map Π (see Theorem 1.3) and replace (P1) by:

(P1)′
{

max(Π(f1(x), f2(x), · · · , fk(x)))
x ∈ X

The following result, bridges (as expected) the gap between (P1) and (P1)′.

Theorem 4.1 x∗ ∈ X is a Pareto optimal solution for (P1) if and only if it is a Pareto optimal solution
for (P1)′.

Proof
Assume x∗ is a Pareto optimal solution for (P1). Then there is no x ∈ X such that:

f̃i(x∗) ≤ f̃i(x), for all i ∈ {1, · · · , k}

and
f̃l(x∗) < f̃l(x), for some l ∈ {1, · · · , k}

As Π is order preserving (See Theorem 1.3), it is tantamount to say that there is no x ∈ X such that:

πf̃i(x∗) ≤ πf̃i(x) for all i

and
πf̃l(x∗) < πf̃l(x) for some l

This means that x∗ is a Pareto optimal solution for (P1)′.
By Theorem 5.1 (P1) and (P1)′ are equivalent. Moreover (P1)′ can be written as:

(P1)′′

 max
([

fL
1α(x), fU

1α(x)
]

, · · · ,
[
fL

kα(x), fU
kα(x)

])
for all α ∈ I = (0, 1];

x ∈ X

For simplicity, let us define the real-valued functions giα : i = 1, 2, · · · , 2k as follows

g1α(x) = fL
1α(x) ; g2α(x) = fU

1α(x)
g3α(x) = fL

2α(x) ; g4α(x) = fU
2α(x)

· · · · · · ; · · · · · ·
g2l−1,α(x) = fL

lα(x) ; g2l,α(x) = fU
lα(x)

· · · · · · ; · · · · · ·
g2k−1,α(x) = fk

1α(x) ; g2k,α(x) = fU
2kα(x)
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If we consider the order relation ≤LU , (P1)′′ reads

(P1)′′′
1

 max(fL
1α(x), fU

1α(x), · · · , fL
kα(x), fU

kα(x))
∀α ∈ I = [0, 1] ;
x ∈ X

or

(P1)′′′
2

 max(g1α(x), g2α(x)(x), · · · , g2k−1α(x), g2kα(x))
for all α ∈ [0, 1] = I;

x ∈ X

or
(P1)

′′′

3

{
max(giα(x)) ∀(i, α) ∈ P × I
x ∈ X

where P = {1, 2, · · · , k} and I = [0, 1] .

4.2 An Approximation Method for Dealing with (P 1)′′′
3

Analysis Let us consider a finite subset Im of I = [0, 1] say Im = {α1, α2, · · · , αm}.
Let ω1, ω2, · · · , ωm be real-valued functions on [0, 1] such that:

(i) ωj(α) ≥ 0 for (j, α) ∈ {1, 2, · · · , m} × I

(ii) ωj(αi) = δij =
{

1 if i = j
0 otherwise

Define now an operator that associates to giα, Kgiα : X −→ R given by

Kgiα(x) =
k∑

j=1
ωj(α)giαj

(x)

K is called a positive interpolating operator with modes α1, α2, · · · , αm.
Consider now the following mathematical programs:

(P1)iv
{

max(Kgiα(x)); ∀(i, α) ∈ P × I
x ∈ X

(P1)v
{

max(giαj
(x)); ∀(i, αj) ∈ P × Im

x ∈ X

The following result bridges a gap between (P1)iv and (P1)v in terms of Pareto optimality.

Theorem 4.2 x∗ ∈ X is Pareto optimal for (P1)iv if and only if it is also Pareto optimal for (P1)v.

Proof
(a) Let us first prove the necessary condition.

Assume x∗ is Pareto optimal solution for (P1)iv and not Pareto optimal solution for (P1)v. Then
there is no x ∈ X such that

(Kgiα(x∗)) ≤ (Kgiα(x)) for all (i, α) ∈ P × I (4)

and
(Kglα(x∗)) < (Kglᾱ(x)) for some l ∈ {1, · · · , 2k} and ᾱ ∈ (0, 1] . (5)

In the same time we have, by the fact that x∗ is not efficient for (P1)v, there is x ∈ X such that

giαj
(x∗) ≤ giαj

(x) for all (i, αj) ∈ P × Im (6)

and
giαs(x∗) < giαs(x) for some (l, αs) ∈ P × Im. (7)
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Let us now choose α arbitrarily in (0, 1].
As ωj(α) ≥ 0 and ωj(αi) = δij . We have by (3) and (4) that:

m∑
j=1

ωj(α)
[
giαj

(x∗) − giαj
(x)

]
≤ 0, ∀i ∈ {1, · · · , 2k}.

This means that
m∑

j=1
ωj(α)giαj (x∗) ≤

m∑
j=1

ωj(α)giαj (x), ∀i ∈ {1, · · · , 2k}.

Since α has been chosen arbitrarily, there is x ∈ X such that

(Kgiα)(x∗) ≤ (Kgiα)(x) ∀ (i, α) ∈ P × I

This contradicts (4).
Therefore x∗ should be Pareto optimal solution for (P1)v.

(b) Let us now prove the sufficient condition.
Assume x∗ is Pareto optimal for (P1)v and not Pareto optimal for (P1)iv.
By the Pareto optimality of x∗ for (P1)v, there is no x ∈ X such that :

giαj
(x∗) ≤ giαj

(x), ∀ (i, αj) ∈ P × Im

and
glαs

(x∗) < glαs
(x), for some (l, αs) ∈ P × Im.

This means that:
giαj (x∗) − giαj (x) > 0, ∀x ∈ X, ∀ (i, αj) ∈ P × Im (8)

and
glαs

(x∗) − glαs
(x) ≥ 0, ∀x ∈ X. (9)

Now by virtue of the non Pareto optimality of x∗ for (P1)iv, there is x ∈ X such that

(Kgiα)(x∗) ≤ (Kgiα)(x) for all (i, α) ∈ P × Im. (10)

and
(Kglᾱ)(x∗) < (Kglᾱ)(x) for some (l, ᾱ) ∈ P × Im. (11)

We take α arbitrarily in I.
Since ωj(α) ≥ 0, ∀ (j, α) ∈ P × I, by (8) and (9), for all x ∈ X we have:

m∑
j=1

ωj(α)
[
giαj (x) − giαj (x∗)

]
=

∑
j/ωj(α) 6=0

[
giαj (x) − giαj (x∗)

]
< 0

∀ x ∈ X, ∀(i, α) ∈ P × I.

So
m∑

j=1
ωj(α)

[
giαj (x) − giαj (x∗)

]
< 0 ∀ x ∈ X, ∀(i, α) ∈ P × I.

This means that, we have
m∑

j=1
ωj(α)giαj

(x) <

m∑
j=1

ωj(α)giαj
(x∗) ∀x ∈ X, ∀(i, α) ∈ P × I.

i.e.
(Kgiα)(x) < (Kgiα)(x∗) ∀x ∈ X, ∀(i, α) ∈ P × I.

This is in contradiction with (10) thus x∗ should be Pareto optimal solution for (P1)iv, and that completes
the proof.
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Remark Theorem 5.2 tells us that solving the optimization problem (P1)v, with a finite number of
objective functions, is equivalent to solving the problem that interests us: (P1)′′′ (having infinitely ob-
jective functions) where giα(x) is replaced by (Kgiα)(x). This algorithm focus on a finite multi objective
programming problem (P1)v while dealing with an optimization problem with infinitely many objective
function.

Caution should be exercised in keeping |(Kgiα)(x) − giα(x)| small, in a way to minimize the approx-
imation errors.

This is done by keeping the roughness of the grid as small as possible [17].
In what follows, li stands for the number of points in the grid at ith discretization.
We start with two points 0 and 1.
The sequence {li}i≥2 is obtained by:

li = li−1 + 2i−2; i ≥ 2

We stop when h = 1
2(li−1) < ϵ, where ϵ is the upper bound fixed for the roughness of the grid h.

Description of an Algorithm for Solving (P 1)′′′
3

Step 1 Fix an acceptable upper bound for the roughness of the grid h say ϵ > 0.
Step 2 Read data of (P1)′′′

3 .
Step 3 Put i = 1, li = 2, αli1 = 0, αli2 = 1, Sli1 = {αli1 , αli2}
Step 4 Compute

h = max
α∈I

min
1≤j≤S

|α − αlij
|,

where S is such that αlij
= 1.

Step 5 Check whether h ≤ ϵ.
If yes go to Step 6 otherwise take a finer dicretization of I, Sl+1. Put li = li+1 and go to Step 9.

Step 6 Write (P1)v

Step 7 Find a Pareto optimal solution of (P1)v

Step 8 Print x∗ is a satisficing solution of (P1)′′′

3
Step 9 Stop

5 Numerical Example

Consider the following multiobjective optimization problem:
max(c̃1 x, c̃2 x)
subject to

−x1 + 2x2 ≤ 4
x1 + x2 ≤ 6
x1, x2 ≥ 0

where c̃1 = (c̃1
1 , c̃1

2) and c̃2 = (c̃2
1 , c̃2

2) , c̃i
j ∈ {1, 2} are triangular fuzzy numbers with the following

membership functions.

µc̃1
1
(x) =

2x − 1 if x ∈ [0.5, 1]
−2x + 3 if x ∈ [1, 1.5]
0 elsewhere

µc̃1
2
(x) =

 5x − 9 if x ∈ [1.8, 2]
−x + 3 if x ∈ [2, 3]
0 elsewhere

µc̃2
1
(x) =


1
2 x if x ∈ [0, 2]
−x + 3 for x ∈ [2, 3]
0 elsewhere

24 Journal of Advances in Applied Mathematics, Vol. 6, No. 1, January 2021

JAAM Copyright © 2021 Isaac Scientific Publishing



We have to find a Pareto optimal solution of the counterpart of (P1)v corresponding to (P2) . That is
we have to find a Pareto optimal solution of the following multi objective program:

(P1)′


max(g1αj

(x), g2αj
(x), · · · , g4αj

(x)), ∀αj ∈ Sl3

−x1 + 2x2 ≤ 4
x1 + x2 ≤ 6
x1, x2 ≥ 0

where 
g1αj (x) = c̃1 L

1 αj
x1 + c̃1 L

2 αj
x2

g2αj
(x) = c̃1 U

1 αj
x1 + c̃1 U

2 αj
x2

g3αj (x) = c̃2 L
1 αj

x1 + c̃2 L
2 αj

x2
g4αj

(x) = c̃2 U
1 αj

x1 + c̃2 U
2 αj

x2

where Sl3 = (0, 0.25, 0.5, 0.75, 1)
The below table give us objective functions of (P2)v

Table 1. Objective functions of the discretized problem

αj/fiαj g1αj g2αj g3αj g4αj

0 0.5x1 + 1.8x2 1.5x1 + 3x2 - 3x1 + 3x2
0.25 0.625x1 + 1.8x2 1.375x1 + 2.75x2 0.5x1 + 0.5x2 2.75x1 + 2.5x2
0.5 0.75x1 + 1.9x2 1.25x1 + 2.5x2 x1 + 0.5x2 -
0.75 0.875x1 + 1.95x2 1.125x1 + 2.25x2 1.5x1 + 0.75x2 2.25x1 + 1.5x2

1 x1 + 2x2 - 2x1 + x2 -

After having removed redundant objective functions, we can solve the following single objective opti-
mization problem to obtain a Pareto optimal solution of (P2)v

(P3)


max

∑
i

∑
j λijgiαj (x)

−x1 + 2x2 ≤ 4
x1 + x2 ≤ 6
x1, x2 ≥ 0

Taking λij = 1
16 ∀(i, j) corresponding to a non zero and non redundant objective function, and solving

(P3) using LINGO software, we obtain x∗ = (2.6, 3.3) the approximate Pareto optimal solution for the
equivalent deterministic program of the original fuzzy multi objective program (P2).

6 Concluding Remarks

Fuzzy multi objective programming problems are encountered in a wide spectrum of applications in
engineering, economic and finance [10],[13],[14]. Neither the option of squeezing arbitrarily conflictual
objective functions into a single one, nor that of replacing blindly imprecise data by fixed ones, is
appropriate in this context. Such strategies would leave no other option to the model but to produce
meaningless outcomes.

In this paper, we have proposed two approaches that help to strike a balance between faithful repre-
sentation of reality and computational tractability in a lower case for fuzzy. This is in stark contrast with
real deffuzification approaches [13] or possibility, necessity based approaches [14]. These approaches are
respectively efficient but not effective, and effective but not efficient. Our first approach makes use of the
nearest interval approximation operator to approximate the original problem by interval optimization
program. We have derived some Karush-Kuhn-Tucker like conditions for Pareto optimality based on
gH-differentiability, that helped us solve the above mentioned interval program.

The main idea behind our second approach is to take advantage of an Embedding Theorem for fuzzy
numbers in a way to put the original problem into equivalent deterministic terms. The price for this
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effectiveness is quite high as the resulting deterministic program is computationally demanding. We then
described a Galerkin like scheme for tackling this complex deterministic optimization problem. Kirby
[15] argued that the main objections against Operations Research (OR) techniques are as follows:

1. OR techniques ignore managerial needs (pervesion criticism).
2. OR methods have already been used wherever they were needed (obsolescence criticism).
3. Management needs have evolved and are more complex than those which OR caters for (inadequacy

criticism).
4. OR’s practice has been misguided and has undermined the confidence managers had in it (coun-ter-

performance criticism).

In this paper, we have made a modest contribution towards remedying to some extent the above
mentioned perversion and inadequacy objections. In the future, we will explore the possibility of combin-
ing the best features of the two approaches discussed in this paper within a Decision Support System.
Another line for further developments in this field is the of design Intelligent Hybrid Algorithms for
tackling situations where randomness and fuzziness co-occur in a multi objective programming setting.
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