L_{p}-Convergence of Orthogonal Polynomial Expansions for Exponential Weights

Ryozi Sakai
Department of Mathematics, Meijo University, Tenpaku-ku Nagoya 468-8502, Japan
Email: ryozi@crest.ocn.ne.jp

Abstract

Let $\mathbb{R}=(-\infty, \infty)$, and let $Q \in \mathbf{C}^{\mathbf{1}}(\mathbb{R}): \mathbb{R} \rightarrow[0, \infty)$ be an even function which is an exponent. We consider the weight $w(x)=e^{-Q(x)}, \quad x \in \mathbb{R}$. Let us denote the partial sum of Fourier series for a function f by $s_{n}(f ; x):=s_{n}\left(f ; w^{2} ; x\right)$, and the de la Vallée Poussin mean of f by $v_{n}(f):=v_{n}\left(f ; w^{2}\right)$. Then we investigate the convergences of $s_{n}(f)$ and $v_{n}(f)$ with $w(x)$.

Keywords: orthogonal polynomial expansions

1 Introduction

Let $\mathbb{R}=(-\infty, \infty)$, and let $Q \in \mathbf{C}^{\mathbf{1}}(\mathbb{R}): \mathbb{R} \rightarrow[0, \infty)$ be an even function. We consider the weight $w(x)$;

$$
w(x):=\exp (-Q(x)), \quad x \in \mathbb{R}
$$

Then we suppose that $\int_{0}^{\infty} x^{n} w^{2}(x) d x<\infty$ for all $n=0,1,2, \ldots$.
Now we can construct the orthonormal polynomials $p_{n}(x)=p_{n}\left(w^{2} ; x\right)$ of degree n for $w^{2}(x)$, that is,

$$
\int_{-\infty}^{\infty} p_{n}(x) p_{m}(x) w^{2}(x) d x=\delta_{m n} \quad(\text { Kronecker delta }) .
$$

For the weight w we define the partial sum of Fourier series of f by

$$
s_{n}(f)(x):=\sum_{k=0}^{n-1} b_{k}(f) p_{k}(x), \quad b_{k}(f)=\int_{\mathbb{R}} f(t) p_{k}(t) w^{2}(t) d t
$$

for $n \in \mathbb{N}$. Then we also the de la Vallée Poussin mean $v_{n}(f)$ of f is defined by

$$
v_{n}(f)(x):=\frac{1}{n} \sum_{j=n+1}^{2 n} s_{j}(f)(x)
$$

We say that $f: \mathbb{R} \rightarrow[0, \infty)$ is quasi-increasing if there exists $C>0$ such that $f(x) \leqslant C f(y)$ for $0<x<y$.

First we need the following definition from [5].
Definition 1.1. The weight $w(x)=\exp (-Q(x))$ satisfies the following. Let $Q: \mathbb{R} \rightarrow[0, \infty)$ be a continuous and an even function, and satisfy the following properties:
(a) $Q^{\prime}(x)$ is continuous in \mathbb{R}, with $Q(0)=0$.
(b) $Q^{\prime \prime}(x)$ exists and is positive in $\mathbb{R} \backslash\{0\}$.
(c)

$$
\lim _{x \rightarrow \infty} Q(x)=\infty
$$

(d) The function

$$
\begin{equation*}
T(x):=T_{w}(x):=\frac{x Q^{\prime}(x)}{Q(x)}, \quad x \neq 0 \tag{1.1}
\end{equation*}
$$

is quasi-increasing in $(0, \infty)$, with

$$
\begin{equation*}
T(x) \geqslant \Lambda>1, \quad x \in \mathbb{R} \backslash\{0\} \tag{1.2}
\end{equation*}
$$

(e) There exists $C_{1}>0$ such that

$$
\begin{equation*}
\frac{Q^{\prime \prime}(x)}{\left|Q^{\prime}(x)\right|} \leqslant C_{1} \frac{\left|Q^{\prime}(x)\right|}{Q(x)}, \text { a.e. } x \in \mathbb{R} \backslash\{0\} \tag{1.3}
\end{equation*}
$$

Then we write $w=\exp (-Q) \in \mathcal{F}\left(C^{2}\right)$. If there also exists a compact subinterval $J(\ni 0)$ of \mathbb{R}, and $C_{2}>0$ such that

$$
\begin{equation*}
\frac{Q^{\prime \prime}(x)}{\left|Q^{\prime}(x)\right|} \geqslant C_{2} \frac{\left|Q^{\prime}(x)\right|}{Q(x)}, \text { a.e. } x \in \mathbb{R} \backslash J \tag{1.4}
\end{equation*}
$$

then we write $w=\exp (-Q) \in \mathcal{F}\left(C^{2}+\right)$.
Example 1.2. (1) If an exponential $Q(x)$ satisfies

$$
1<\Lambda_{1} \leqslant \frac{\left(x Q^{\prime}(x)\right)^{\prime}}{Q^{\prime}(x)} \leqslant \Lambda_{2}
$$

where $\Lambda_{i}, i=1,2$ are constants, then we call $w=\exp (-Q(x))$ the Freud weight. The class $\mathcal{F}\left(C^{2}+\right)$ contains the Freud-type weights.
(2) For $\alpha>1, r \geqslant 1$ we define

$$
Q(x)=Q_{r, \alpha}(x)=\exp _{r}\left(|x|^{\alpha}\right)-\exp _{r}(0),
$$

where $\exp _{r}(x)=\exp (\exp (\exp \ldots \exp x) \ldots)(r$ times $)$. Moreover, we define

$$
Q_{r, \alpha, m}(x)=|x|^{m}\left\{\exp _{r}\left(|x|^{\alpha}\right)-\alpha^{*} \exp _{r}(0)\right\}, \quad \alpha+m>1, m \geqslant 0, \alpha \geqslant 0
$$

where $\alpha^{*}=0$ if $\alpha=0$, and otherwise $\alpha^{*}=1$.
(3) We define

$$
Q_{\alpha}(x)=(1+|x|)^{|x|^{\alpha}}-1, \quad \alpha>1
$$

If $T(x)$ is bounded, then we call w the Freud-type weight, and if $T(x)$ is unbounded, then we call w the Erdös-type weight.
Definition 1.3. Let $w=\exp (-Q) \in \mathcal{F}\left(C^{2}+\right), 1<\lambda<\frac{m+2}{m+1}$ and $m \geqslant 1$ be an integer. Then we write $w \in \mathcal{F}_{\lambda}\left(C^{m+2}+\right)$ if $Q \in C^{m+2}(\mathbb{R})$ and there exist constants $C \geqslant 1$ and $K \geqslant 1$ such that for all $|x| \geqslant K$

$$
\begin{equation*}
\frac{\left|Q^{\prime}(x)\right|}{Q(x)^{\lambda}} \leqslant C \text { and }\left|\frac{Q^{\prime \prime}(x)}{Q^{\prime}(x)}\right| \sim\left|\frac{Q^{(k+1)}(x)}{Q^{(k)}(x)}\right| \tag{1.5}
\end{equation*}
$$

for every $k=1, \ldots, m$ and also

$$
\begin{equation*}
\left.\left|\frac{Q^{(m+2)}(x)}{Q^{(m+1)}(x)}\right| \leqslant \frac{Q^{(m+1)}(x)}{Q^{(m)}(x)} \right\rvert\, \tag{1.6}
\end{equation*}
$$

In particular, $w \in \mathcal{F}_{\lambda}\left(C^{3}+\right)$ means that $Q \in C^{3}(\mathbb{R})$ and

$$
\begin{equation*}
\frac{\left|Q^{\prime}(x)\right|}{Q(x)^{\lambda}} \leqslant C(1<\lambda<3 / 2) \text { and }\left|\frac{Q^{\prime \prime \prime}(x)}{Q^{\prime \prime}(x)}\right| \leqslant C\left|\frac{Q^{\prime \prime}(x)}{Q^{\prime}(x)}\right| \tag{1.7}
\end{equation*}
$$

hold for $|x| \geq K>0$.
In [3] we obtain the following result.
Theorem 1. ([3, Theorem 1.1]) Let $w \in \mathcal{F}_{\lambda}\left(C^{3}+\right)$ with $0<\lambda<3 / 2$. Suppose that f is continuous and has a bounded variation on any compact interval of \mathbb{R}. If f satisfies

$$
\int_{-\infty}^{\infty} w(x)|d f(x)|<\infty,
$$

then

$$
\lim _{n \rightarrow \infty}\left\|\left(f-s_{n}(f)\right) \frac{w}{T^{1 / 4}}\right\|_{L_{\infty}(\mathbb{R})}=0
$$

First, we extend Theorem 1 to L_{p}-space. To do so we need to define a new weight class.
Definition 1.4. For a weight $w=\exp (-Q)$, we set

$$
\lambda_{w}:=\lim \sup _{x \rightarrow \infty} \frac{Q^{\prime \prime}(x) Q(x)}{Q^{\prime}(x)^{2}} \text { and } \mu_{w}:=\lim \inf _{x \rightarrow \infty} \frac{Q^{\prime \prime}(x) Q(x)}{Q^{\prime}(x)^{2}} .
$$

If $\lambda_{w}=\mu_{w}$ holds, then we say that a weight w is regular.
All the weights in Example 1.2 are regular.
The Mhaskar-Rakhmanov-Saff number (MRS number) a_{t} is defined by

$$
t=\frac{2}{\pi} \int_{0}^{1} \frac{a_{t} u Q^{\prime}\left(a_{t} u\right)}{\left(1-u^{2}\right)^{1 / 2}} d u, t>0
$$

Lemma 1.5. ([9, Corollary 5.5]) Let w be a regular weight. Then for any $\delta>0$ there exists a constant $C>0$ such that

$$
T\left(a_{t}\right) \leqslant C t^{\delta}, \quad t \geqslant C
$$

Now, we can extend Theorem 1 to L_{p}-space.
Theorem 2. Let $w=\exp (-Q)$ be a regular weight and $w \in \mathcal{F}_{\lambda}\left(C^{3}+\right)$ with $1<\lambda<3 / 2$. Suppose that f is continuous and has a bounded variation on any compact interval of \mathbb{R}. Let $1 \leqslant p<\infty$. We suppose that f satisfies

$$
\int_{-\infty}^{\infty} w(x)|d f(x)|<\infty
$$

If w is an Erdös-type weight, then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(f-s_{n}(f)\right) \frac{w}{T^{1 / 4}}\right\|_{L_{p}(\mathbb{R})}=0 \tag{1.8}
\end{equation*}
$$

and if w is a Freud-type weight, then for $2 / \Lambda \leqslant p<\infty$, where Λ is defined by Definition 1.1 (d), we have (1.8).

For $f \in C(\mathbb{R})$, the degree of weighted polynomial approximation is defined by

$$
E_{p, n}(w ; f):=\inf _{P \in \mathcal{P}_{n}}\|w(f-P)\|_{L_{p}(\mathbb{R})}, \quad \text { where } \quad 1 \leqslant p \leqslant \infty
$$

Especially, if $p=\infty$, then we write $E_{n}(w ; f):=E_{\infty, n}(w ; f)$.
With respect to $v_{n}(f)$, we have the following convergence theorem.
Theorem 3. We suppose $w \in \mathcal{F}_{\lambda}\left(C^{4}+\right)$ with $1<\lambda<4 / 3$, furthermore we assume $T\left(a_{n}\right) \leqslant C\left(\frac{n}{a_{n}}\right)^{2 / 3}$. Let $\nu \geqslant 0$ be an integer, and let $1 \leqslant p \leqslant \infty$. We suppose that $f \in C^{\nu}(\mathbb{R})$ with $\left\|T^{(2 \nu+1) / 4} f^{(\nu)} w\right\|_{L_{\infty}(\mathbb{R})}<\infty$. Then we have for $\beta>1$ and $0 \leqslant j \leqslant \nu$,

$$
\begin{align*}
& \left\|\left(f^{(j)}(x)-v_{n}^{(j)}(f ; x)\right) w(x)(1+|x|)^{\beta / p}\right\|_{L_{p}(\mathbb{R})} \\
& \leqslant C_{\nu}\left(\frac{a_{n}}{n}\right)^{\nu-j} T\left(a_{n}\right)^{* 1 / 4} E_{n-\nu}\left(T^{(2 \nu+1) / 4} w ; f^{(\nu)}\right), \tag{1.9}
\end{align*}
$$

where

$$
T\left(a_{n}\right)^{* 1 / 4}=\left\{\begin{array}{lr}
1, & 0 \leqslant j \leqslant \nu-1 \\
T\left(a_{n}\right)^{1 / 4}, & j=\nu
\end{array}\right.
$$

Remark 1.6. Let $1 \leqslant p \leqslant \infty$.
(1) For $0 \leqslant j \leqslant \nu-1$, (1.9) means

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(f^{(j)}(x)-v_{n}^{(j)}(f ; x)\right) w(x)(1+|x|)^{\beta / p}\right\|_{L_{p}(\mathbb{R})}=0 \tag{1.10}
\end{equation*}
$$

(2) We consider (1.9) for $j=\nu$. We suppose that $T^{(2 \nu+1) / 4} f^{(\nu)} w$ is continuous and

$$
\lim _{|x| \rightarrow \infty} T^{(2 \nu+1) / 4}(x) f^{(\nu)}(x) w(x)=0
$$

If w is a Freud-type weight, then we also have (1.10) for $j=\nu$. If w is an Erdös-type weight, then we further suppose that w is a regular weight and

$$
E_{n-\nu}\left(T^{(2 \nu-1) / 4} w ; f^{(\nu)}\right) \leqslant C n^{-\beta}
$$

for some $\beta>0$. Under these conditions we have (1.10) with $j=\nu$.
Throughout this paper, $c, C, C_{1}, C_{2}, \ldots$ denote positive constants independent of n, x, t or polynomials $P_{n}(x)$.

2 Proof of Theorem 2

In this section we prove Theorem 2. To prove the theorem we need some lemmas.
Lemma 2.1. ([2, Corollary 14]) We obtained the following result: Let $1 \leqslant p \leqslant \infty$. We assume that $w \in \mathcal{F}\left(C^{2}+\right)$ satisfies

$$
\begin{equation*}
T\left(a_{n}\right) \leqslant C\left(\frac{n}{a_{n}}\right)^{2 / 3} \tag{2.1}
\end{equation*}
$$

Then there exists a constant $C=C(w, p)>0$ such that, for every $n \in \mathbb{N}$ and every $w f \in L_{p}(\mathbb{R})$,

$$
\begin{equation*}
\left\|\left(f-v_{n}(f)\right) \frac{w}{T^{1 / 4}}\right\|_{L_{p}(\mathbb{R})} \leqslant C E_{p, n}(w ; f) \tag{2.2}
\end{equation*}
$$

and when $T^{1 / 4} w f \in L_{p}(\mathbb{R})$, we have

$$
\begin{equation*}
\left\|\left(f-v_{n}(f)\right) w\right\|_{L_{p}(\mathbb{R})} \leqslant C E_{p, n}\left(T^{1 / 4} w ; f\right) \tag{2.3}
\end{equation*}
$$

Remark 2.2. Let $w \in \mathcal{F}_{\lambda}\left(C^{3}+\right)$ with $0<\lambda<3 / 2$, then (2.1) holds true (see [2, Remark 16]).
Lemma 2.3. Let $\Lambda>1$ be defined in Definition 1.1 (d) and $a_{n}>1$. Then we have

$$
\begin{equation*}
a_{n} \leqslant C n^{1 / \Lambda} \tag{2.4}
\end{equation*}
$$

Especially, if w is an Erdös-type weight, then for any $\eta>0$ there exists $C_{\eta}>0$ depending only on η such that

$$
\begin{equation*}
a_{n} \leqslant C_{\eta} n^{\eta} \tag{2.5}
\end{equation*}
$$

(see [9, Lemma 3.2 (3.6)]).
Proof of (2.4). Let $x \geqslant 1$. From (d) in Definition 1.1, we have

$$
\int_{1}^{x} \frac{Q^{\prime}(t)}{Q(t)} d t \geqslant \Lambda \int_{1}^{x} \frac{1}{t} d t
$$

Hence we see

$$
\frac{Q(x)}{Q(1)} \geqslant x^{\Lambda}
$$

so for $a_{n}>1$ we have

$$
\frac{Q\left(a_{n}\right)}{Q(1)} \geqslant a_{n}^{\Lambda}
$$

By [5, Lemma 3.4 (3.18)] we see

$$
n \geqslant c \frac{n}{Q(1) \sqrt{T\left(a_{n}\right)}} \geqslant c a_{n}^{\Lambda}
$$

Therefore, we have (2.4). \#
Lemma 2.4. ([7, Lemma 3.6]) Let $w \in \mathcal{F}\left(C^{2}+\right), P \in \mathcal{P}_{n}$, and let $1 \leqslant p, q \leqslant \infty$. Then for $q \leqslant p$,

$$
\begin{equation*}
\|w P\|_{L_{q}(\mathbb{R})} \leqslant C a_{n}^{\frac{1}{q}-\frac{1}{p}}\|w P\|_{L_{p}(\mathbb{R})} \tag{2.6}
\end{equation*}
$$

and for $p<q$,

$$
\begin{equation*}
\left\|\frac{w}{\sqrt{T}} P\right\|_{L_{q}(\mathbb{R})} \leqslant C\left(\frac{n}{a_{n}}\right)^{\frac{1}{p}-\frac{1}{q}}\|w P\|_{L_{p}(\mathbb{R})} \tag{2.7}
\end{equation*}
$$

Lemma 2.5. ([3, Proof of Theorem 1.1 (5.3)])

$$
\left\|\left(v_{n}(f)-s_{n}(f)\right) w\right\|_{L_{2}(\mathbb{R})}=o(1) \sqrt{\frac{a_{n}}{n}}
$$

Lemma 2.6. ([9, Theorem 4.1 and (4.11)]) Let $1<\lambda<3 / 2$ and $\alpha \in \mathbb{R}$. Then for $w=\exp (-Q) \in \mathcal{F}\left(C^{3}+\right)$ we can construct a new weight $w_{\alpha}=\exp (-Q) \in \mathcal{F}\left(C^{2}+\right)$ such that

$$
T(x)^{\alpha} w(x) \sim w_{\alpha}(x)
$$

on \mathbb{R} and

$$
a_{n / C_{0}} \leqslant a_{n}\left(w_{\alpha}\right) \leqslant a_{C_{0} n}
$$

Lemma 2.7. ([5, Theorem 1.9 (a)]) $w \in \mathcal{F}\left(C^{2}+\right), 0<p \leqslant \infty$ and $P \in \mathcal{P}_{n}(n \geqslant 1)$. Then

$$
\|P w\|_{L_{p}(\mathbb{R})} \leqslant 2\|P w\|_{L_{p}\left(|x| \leqslant a_{n}\right)}
$$

Proof of Theorem 2. Let w be an Erdös-type weight. We see

$$
\begin{aligned}
& \left\|\left(f-s_{n}(f)\right) \frac{w}{T^{1 / 4}}\right\|_{L_{p}(\mathbb{R})} \\
& \leqslant\left\|\left(f-v_{n}(f)\right) \frac{w}{T^{1 / 4}}\right\|_{L_{p}(\mathbb{R})}+\left\|\left(v_{n}(f)-s_{n}(f)\right) \frac{w}{T^{1 / 4}}\right\|_{L_{p}(\mathbb{R})} \\
& \leqslant\left\|\left(f-v_{n}(f)\right) \frac{w}{T^{1 / 4}}\right\|_{L_{p}(\mathbb{R})}+2\left\|\left(v_{n}(f)-s_{n}(f)\right) \frac{w}{T^{1 / 4}}\right\|_{L_{p}\left(|x| \leqslant a_{2 n}\right)}
\end{aligned}
$$

by Lemma 2.7 with $\frac{w}{T^{1 / 4}} \sim w_{-1 / 4} \in \mathcal{F}\left(C^{2}+\right)$

$$
\leqslant C E_{p, n}(w ; f)+C T\left(a_{n}\right)^{1 / 4}\left\|\left(v_{n}(f)-s_{n}(f)\right) \frac{w}{T^{1 / 2}}\right\|_{L_{p}(\mathbb{R})}
$$

by Lemma 2.1 (2.2) (we note that (2.1) holds)

$$
\begin{equation*}
=o(1)+C T\left(a_{n}\right)^{1 / 4}\left\|\left(v_{n}(f)-s_{n}(f)\right) \frac{w}{T^{1 / 2}}\right\|_{L_{p}(\mathbb{R})} \tag{2.8}
\end{equation*}
$$

(see [6, Theorem 1.4 and 1.6] about $E_{p, n}(w ; f) \rightarrow 0$ as $\left.n \rightarrow \infty\right)$. From Lemma 2.4 (2.7) and Lemma 2.5 we see

$$
\begin{aligned}
& T\left(a_{n}\right)^{1 / 4}\left\|\left(v_{n}(f)-s_{n}(f)\right) \frac{w}{T^{1 / 2}}\right\|_{L_{p}(\mathbb{R})} \leqslant C T\left(a_{n}\right)^{1 / 4}\left(\frac{n}{a_{n}}\right)^{\frac{1}{2}-\frac{1}{p}}\left\|\left(v_{n}(f)-s_{n}(f)\right) w\right\|_{L_{2}(\mathbb{R})} \\
& \leqslant C T\left(a_{n}\right)^{1 / 4}\left(\frac{n}{a_{n}}\right)^{\frac{1}{2}-\frac{1}{p}} o(1) \sqrt{\frac{a_{n}}{n}}=o(1) T\left(a_{n}\right)^{1 / 4}\left(\frac{a_{n}}{n}\right)^{1 / p}=o(1)
\end{aligned}
$$

by Lemma 1.5. Therefore, (2.8) means

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\left(f-s_{n}(f)\right) \frac{w}{T^{1 / 4}}\right\|_{L_{p}(\mathbb{R})}=0 \tag{2.9}
\end{equation*}
$$

Let w be a Freud-type weight. If $2<p<\infty$, then as above we have (2.9) because of $T(x) \sim 1$. Let $2 / \Lambda \leqslant p \leqslant 2$. Then by Lemma 2.4 (2.6), Lemma 2.5 and Lemma 2.3 (2.4) we see

$$
\begin{align*}
& \left\|\left(v_{n}(f)-s_{n}(f)\right) \frac{w}{T^{1 / 2}}\right\|_{L_{p}(\mathbb{R})} \leqslant C a_{n}^{\frac{1}{p}-\frac{1}{2}}\left\|\left(v_{n}(f)-s_{n}(f)\right) w\right\|_{L_{2}(\mathbb{R})} \\
& =o(1) a_{n}^{\frac{1}{p}-\frac{1}{2}} \sqrt{\frac{a_{n}}{n}}=o(1) a_{n}^{1 / p} \sqrt{\frac{1}{n}}=o(1) n^{1 / p \Lambda} \sqrt{\frac{1}{n}}=o(1) \tag{2.10}
\end{align*}
$$

because of $p \Lambda \geqslant 2$. Consequently, from (2.8)-(2.10) we have the result. \#

3 Proof of Theorem 3

To prove the theorem we need some lemmas.
Lemma 3.1. ([1, Theorem 1.2]) Let $\nu \geqslant 0$. We suppose that $w \in \mathcal{F}_{\lambda}\left(C^{4}+\right), 1<\lambda<(\nu+4) /(\nu+3)$. Let $\left\|T^{(2 \nu+1) / 4} f w\right\|_{L_{\infty}(\mathbb{R})}<\infty$ with an integer $\nu \geqslant 0$. Then there is a constant $C>1$ such that for $0 \leqslant j \leqslant \nu$,

$$
\begin{equation*}
\left\|v_{n}^{(j)}(f) w\right\|_{L_{\infty}(\mathbf{R})} \leqslant C\left(\frac{n}{a_{n}}\right)^{j}\left\|T^{(2 j+1) / 4} f w\right\|_{L_{\infty}(\mathbf{R})} \tag{3.1}
\end{equation*}
$$

holds for all $n \in \mathbb{N}$.
Lemma 3.2. (cf. [4, Theorem 2.3]) Let $\nu \geqslant 0$ be an integer. Let

$$
\begin{equation*}
w=\exp (-Q) \in \mathcal{F}_{\lambda}\left(C^{4}+\right), 1<\lambda<4 / 3 \tag{3.2}
\end{equation*}
$$

Suppose that $f \in C^{\nu}(\mathbb{R})$ with

$$
\left\|T^{1 / 4} f^{(\nu)} w\right\|_{L_{\infty}(\mathbb{R})}<\infty
$$

Then there exists an absolute constant $C_{\nu}>0$ such that for $0 \leqslant k \leqslant \nu$ and $x \in \mathbb{R}$,

$$
\begin{equation*}
\left|\left(f^{(k)}(x)-P_{n, f, w}^{(k)}(x)\right) w(x)\right| \leqslant C T^{k / 2}(x) E_{n-k}\left(w_{1 / 4}, f^{(k)}\right) \tag{3.3}
\end{equation*}
$$

where $T^{1 / 4}(x) w(x) \sim w_{1 / 4} \in \mathcal{F}\left(C^{2}+\right)$.
Proof. Let $\nu \geqslant 0$. [4, Theorem 2.3] states that under the condition;

$$
\begin{equation*}
w \in \mathcal{F}_{\lambda}\left(C^{\nu+3}+\right), 1<\lambda<(\nu+3) /(\nu+2) \tag{3.4}
\end{equation*}
$$

(3.3) holds (see Appendix; Theorem C). In [Appendix; Theorem D] we will show that the assumption (3.4) is reduced to the assumption (3.2). \#

Lemma 3.3. [8, Theorem 1 and Corollary 8] Let $w \in \mathcal{F}\left(C^{2}+\right)$. Let f be $s-1$ times continuously differentiable for some integer $s \geqslant 0$, and let $f^{(s-1)}(x)$ be absolutely continuous in each compact interval (Here we omit this condition if $s=0$). Let $w f^{(s)} \in L_{\infty}(\mathbb{R})$. Then we have

$$
E_{n}(w ; f) \leqslant C\left(\frac{a_{n}}{n}\right)^{s}\left\|w f^{(s)}\right\|_{L_{\infty}(\mathbb{R})}
$$

equivalently,

$$
E_{n}(w ; f) \leqslant C\left(\frac{a_{n}}{n}\right)^{s} E_{n-s}\left(w ; f^{(s)}\right)
$$

Proof of Theorem 3 . Let $1 \leqslant p<\infty$ and $0 \leqslant j \leqslant \nu$. We easily see that by $\beta>1$,

$$
\begin{aligned}
& \left\|\left(f^{(j)}(x)-v_{n}^{(j)}(f ; x)\right) w(x)(1+|x|)^{\beta / p}\right\|_{L_{p}(\mathbb{R})} \\
& \leqslant\left\|\left(f^{(j)}(x)-v_{n}^{(j)}(f ; x)\right) w(x)\right\|_{L_{\infty}(\mathbb{R})}\left\|(1+|x|)^{\beta / p}\right\|_{L_{p}(\mathbb{R})} \\
& \leqslant C\left\|\left(f^{(j)}(x)-v_{n}^{(j)}(f ; x)\right) w(x)\right\|_{L_{\infty}(\mathbb{R})} .
\end{aligned}
$$

Therefore, for $T^{(2 \nu+1) / 4} w \sim w_{(2 \nu+1) / 4} \in \mathcal{F}\left(C^{2}+\right)$ we may show

$$
\begin{equation*}
\left\|\left(f^{(j)}-v_{n}^{(j)}(f)\right) w\right\|_{L_{\infty}(\mathbb{R})} \leqslant C_{\nu}\left(\frac{a_{n}}{n}\right)^{\nu-j} T\left(a_{n}\right)^{* 1 / 4} E_{n-\nu}\left(w_{(2 \nu+1) / 4} ; f^{(\nu)}\right) \tag{3.5}
\end{equation*}
$$

Let $P_{n, f, w_{\nu / 2}} \in \mathcal{P}_{n}$ be the best approximation polynomial for f with respect to the weight $w_{\nu / 2}$. First, we rewrite (3.3) as follows. Using $w_{\nu / 2}$, we have

$$
\begin{equation*}
\left|\left(f^{(j)}(x)-P_{n, f, w_{\nu / 2}}^{(j)}(x)\right) w_{\nu / 2}(x)\right| \leqslant C T^{j / 2}(x) E_{n-j}\left(w_{(2 \nu+1) / 4} ; f^{(j)}\right) \tag{3.6}
\end{equation*}
$$

Hence, we see

$$
\begin{align*}
& \left|\left(f^{(j)}(x)-P_{n, f, w_{\nu / 2}}^{(j)}(x)\right) w(x)\right| \leqslant\left|\left(f^{(j)}(x)-P_{f, w_{\nu / 2}}^{(j)}(x)\right) w_{(\nu-j) / 2}(x)\right| \\
& \leqslant C T(x)^{-j / 2}\left|\left(f^{(j)}(x)-P_{n, f, w_{\nu / 2}}^{(j)}(x)\right) w_{\nu / 2}(x)\right| \\
& \leqslant C E_{n-j}\left(w_{(2 \nu+1) / 4} ; f^{(j)}\right) . \tag{3.7}
\end{align*}
$$

For $j \leqslant \nu-1$ we see

$$
\begin{aligned}
& \left|\left(f^{(j)}(x)-v_{n}^{(j)}(f ; x)\right) w(x)\right| \\
& =\mid\left(f^{(j)}(x)-P_{n, f, w_{\nu / 2}}^{(j)}(x)-v_{n}^{(j)}\left(f-P_{n, f, w_{\nu / 2}}(x)\right) w(x) \mid\right. \\
& \leqslant\left|\left(f^{(j)}(x)-P_{n, f, w_{\nu / 2}}^{(j)}\right)(x) w(x)\right|+\left\|v_{n}^{(j)}\left(f-P_{n, f, w_{\nu / 2}}\right) w\right\|_{L_{\infty}(\mathbb{R})} \\
& \leqslant C E_{n-j}\left(w_{(2 \nu+1) / 4} ; f^{(j)}\right)+C\left(\frac{n}{a_{n}}\right)^{j}\left\|\left(f-P_{n, f, w_{\nu / 2}}\right) w_{(2 j+1) / 4}\right\|_{L_{\infty}(\mathbb{R})}
\end{aligned}
$$

by (3.7) and (3.1)

$$
\begin{aligned}
& \leqslant C E_{n-j}\left(w_{(2 \nu+1) / 4} ; f^{(j)}\right)+C\left(\frac{n}{a_{n}}\right)^{j}\left\|\left(f-P_{n, f, w_{\nu / 2}}\right) w_{\nu / 2}\right\|_{L_{\infty}(\mathbb{R})} \\
& \leqslant C E_{n-j}\left(w_{(2 \nu+1) / 4} ; f^{(j)}\right)+C\left(\frac{n}{a_{n}}\right)^{j} E_{n}\left(w_{\nu / 2} ; f\right) \\
& \leqslant C E_{n-j}\left(w_{(2 \nu+1) / 4} ; f^{(j)}\right)+C E_{n-j}\left(w_{\nu / 2} ; f^{(j)}\right) \\
& \leqslant C\left(\frac{a_{n}}{n}\right)^{\nu-j} E_{n-\nu}\left(w_{(2 \nu+1) / 4} ; f^{(\nu)}\right)
\end{aligned}
$$

by Lemma 3.3. Let $j=\nu$. As above we have

$$
\begin{aligned}
& \left|\left(f^{(\nu)}(x)-v_{n}^{(\nu)}(f ; x)\right) w(x)\right| \\
& =\left|\left(f^{(\nu)}(x)-P_{n, f, w_{\nu / 2}}^{(\nu)}(x)-v_{n}^{(\nu)}\left(f-P_{n, f, w_{\nu / 2}} ; x\right)\right) w(x)\right| \\
& \leqslant T(x)^{-\nu / 2}\left|\left(f^{(\nu)}(x)-P_{n, f, w_{\nu / 2}}^{(\nu)}(x)\right) w_{\nu / 2}(x)\right| \\
& \quad+\left\|v_{n}^{(\nu)}\left(f-P_{n, f, w_{\nu / 2}}\right) w\right\|_{L_{\infty}(\mathbf{R})} \\
& \leqslant C E_{n-\nu}\left(w_{(2 \nu+1) / 4} ; f^{(\nu)}\right)+C\left(\frac{n}{a_{n}}\right)^{\nu}\left\|\left(f-P_{n, f, w_{\nu / 2}}\right) w_{(2 \nu+1) / 4}\right\|_{L_{\infty}(\mathbb{R})}
\end{aligned}
$$

by (3.6) with $j=\nu$ and (3.1)

$$
\begin{aligned}
\leqslant & C E_{n-\nu}\left(w_{(2 \nu+1) / 4} ; f^{(\nu)}\right) \\
& +C\left(\frac{n}{a_{n}}\right)^{\nu}\left\|\left\{f-P_{n, f, w_{(2 \nu+1) / 4}}+\left(P_{f, w_{(2 \nu+1) / 4}}-P_{f, w_{\nu / 2}}\right)\right\} w_{(2 \nu+1) / 4}\right\|_{L_{\infty}(\mathbb{R})} \\
\leqslant & C E_{n-\nu}\left(w_{(2 \nu+1) / 4} ; f^{(\nu)}\right)+\left(\frac{n}{a_{n}}\right)^{\nu}\left\|\left(f-P_{n, f, w_{(2 \nu+1) / 4}}\right) w_{(2 \nu+1) / 4}\right\|_{L_{\infty}(\mathbb{R})} \\
& +C\left(\frac{n}{a_{n}}\right)^{\nu}\left\|\left(P_{n, f, w_{(2 \nu+1) / 4}}-P_{n, f, w_{\nu / 2}}\right) w_{(2 \nu+1) / 4}\right\|_{L_{\infty}\left(|x| \leqslant a_{n}\right)}
\end{aligned}
$$

by Lemma 2.7

$$
\begin{aligned}
\leqslant & \left.C E_{n-\nu}\left(w_{(2 \nu+1) / 4} ; f^{(\nu)}\right)+E_{n-\nu}\left(w_{(2 \nu+1) / 4} ; f^{(\nu)}\right)\right] \\
& +C\left(\frac{n}{a_{n}}\right)^{\nu} T\left(a_{n}\right)^{1 / 4}\left\|\left(P_{n, f, w_{(2 \nu+1) / 4}}-P_{n, f, w_{\nu / 2}}\right) w_{\nu / 2}\right\|_{L_{\infty}\left(|x| \leqslant a_{n}\right)}
\end{aligned}
$$

by Lemma 3.3

$$
\begin{aligned}
= & C E_{n-\nu}\left(w_{(2 \nu+1) / 4} ; f^{(\nu)}\right) \\
& +C\left(\frac{n}{a_{n}}\right)^{\nu} T\left(a_{n}\right)^{1 / 4}\left\|\left(-f+P_{n, f, w_{(2 \nu+1) / 4}}+f-P_{n, f, w_{\nu / 2}}\right) w_{\nu / 2}\right\|_{L_{\infty}(\mathbb{R})} \\
\leqslant & C\left[E_{n-\nu}\left(w_{(2 \nu+1) / 4} ; f^{(\nu)}\right)\right. \\
& \left.+\left(\frac{n}{a_{n}}\right)^{\nu} T\left(a_{n}\right)^{1 / 4}\left\{E_{n}\left(w_{(2 \nu+1) / 4} ; f\right)+E_{n}\left(w_{\nu / 2} ; f\right)\right\}\right] \\
\leqslant & \left.C_{\nu} T\left(a_{n}\right)^{1 / 4} E_{n-\nu}\left(w_{(2 \nu+1) / 4} ; f^{(\nu)}\right)\right]
\end{aligned}
$$

by Lemma 3.3.
Consequently we have (3.5), that is, (1.9). \#

References

1. K. Itoh, R. Sakai and N. Suzuki, An estimation for derivative of the de la Vallée Poussin mean, Math. Journal of Ibaraki University Vol 47, 2015, pp.1-18.
2. K. Itoh, R. Sakai and N. Suzuki, The de la Vallée Poussin mean and polynomial approximation for exponential weight, International Journal of Analysis, Volume 2015, Article ID 76930, 8 pages, http://dx.doi.org/10.1155/2015/706930.
3. K. Itoh, R. Sakai and N. Suzuki, Uniform convergence of orthogonal polynomial expansions for exponential weights, Hokkaido Mathematical Journal, Vol. 48 (2019), pp.263-280.
4. H. S. Jung and R. Sakai, Higher order derivatives of approximation polynomials on \mathbb{R}, Journal of Inequalities and Applications (2015), 2015:268.DOI 10.1186/513660-015-0789-y.
5. A. L. Levin and D. S. Lubinsky, Orthogonal Polynomials for Exponential Weights, Springer, New York, 2001.
6. D. S. Lubinsky, A Survey of Weighted Polynomial Approximation with Exponential Weights, Surveys In Approximation Theory, 3 (2007), 1-105.
7. R. Sakai, Quadrature formulas with exponential-type weight, Pioneer Journal of Mathematics and Mathematical Sciences, Vol. 14, No.1, pp.1-23, 2015.
8. R. Sakai and N. Suzuki, Favard-type inequalities for exponential weights, Pioneer J. of Math. vol 3. No.1, 2011, 1-16.
9. R. Sakai and N. Suzuki, Mollification of exponential weights and its application to the Markov-Bernstein inequality, Pioneer J. of Math., Vol.7, no. 1 (2013) 83-101.

Appendix

In this appendix we prove Lemma 3.2 which is an improvement of [9, Theorem 4.2]. We need to prepare some results.
Theorem A. (cf. [9, Theorem 4.2]) Let

$$
\begin{equation*}
w=\exp (-Q) \in \mathcal{F}_{\lambda}\left(C^{3}+\right), \quad 1<\lambda<3 / 2 \tag{A.1}
\end{equation*}
$$

and let w be an Erdös-type weight. Let $\mu, \nu, \alpha, \beta \in \mathbb{R}$. Then we can construct $w_{\mu, \nu, \alpha, \beta} \in \mathcal{F}\left(C^{2}+\right)$ such that

$$
\begin{equation*}
T_{w}(x)^{\mu}\left(1+x^{2}\right)^{\nu}(1+Q(x))^{\alpha}\left(1+\left|Q^{\prime}(x)\right|\right)^{\beta} w(x) \sim w_{\mu, \nu, \alpha, \beta}(x) \tag{A.2}
\end{equation*}
$$

on \mathbb{R}. And for some $0<c \leqslant C$ we have

$$
\begin{equation*}
a_{c n}(w) \leqslant a_{w_{\mu, \nu, \alpha, \beta}}\left(w_{\mu, \nu, \alpha, \beta}\right) \leqslant a_{C n}(w), \tag{A.3}
\end{equation*}
$$

on \mathbb{N}, and

$$
\begin{equation*}
T_{w_{\mu, \nu, \alpha, \beta}}(x) \sim T_{w}(x) \tag{A.4}
\end{equation*}
$$

on \mathbb{R}. Furthermore, if we suppose $w \in \mathcal{F}_{\lambda}\left(C^{4}+\right), 1<\lambda<4 / 3$, then

$$
\begin{equation*}
w_{\mu, \nu, \alpha, \beta} \in \mathcal{F}_{\lambda}\left(C^{3}+\right) \tag{A.5}
\end{equation*}
$$

Proof. We suppose (A.1). To prove this theorem we apply the method of [9, Proof of Theorem 4.1]. We consider

$$
q_{\mu, \nu, \alpha, \beta}(x):=\mu \log T(x)+\nu \log \left(1+x^{2}\right)+\alpha \log (1+Q(x))+\beta \log \left(1+\left|Q^{\prime}(x)\right|\right) .
$$

For $x \geqslant r$, where $r>0$ large enough, we consider

$$
\begin{align*}
& q_{\mu, \nu, \alpha, \beta}(x) \\
& =\left\{\mu \log x+\nu \log \left(1+x^{2}\right)\right\}+\{-\mu \log Q(x)+\alpha \log (1+Q(x))\} \\
& \quad+\left\{\mu \log Q^{\prime}(x)+\beta \log \left(1+Q^{\prime}(x)\right)\right\}=: s(x)+u(x)+v(x) . \tag{A.6}
\end{align*}
$$

For this formula $q_{\mu, \nu, \alpha, \beta}$ we put the proof into practice as [9, Proof of Theorem 4.1]. We take a polynomial

$$
p_{\mu, \nu, \alpha, \beta}(x)=p_{\mu, \nu, \alpha, \beta, r}(x)=(2 r-x)^{3}\left(a x^{2}+b x+c\right)
$$

such that

$$
p_{\mu, \nu, \alpha, \beta}(r)=q_{\mu, \nu, \alpha, \beta}(r), p_{\mu, \nu, \alpha, \beta}^{\prime}(r)=q^{\prime}{ }_{\mu, \nu, \alpha, \beta}(r), p^{\prime \prime}{ }_{\mu, \nu, \alpha, \beta}(r)=q^{\prime \prime}{ }_{\mu, \nu, \alpha, \beta}(r) .
$$

Now we set

$$
Q_{\mu, \nu, \alpha, \beta}(x):=\left\{\begin{array}{l}
Q(x), \quad \text { if }|x| \leqslant r ; \\
Q(x)-q_{\mu, \nu, \alpha, \beta}(x)+p_{\mu, \nu, \alpha, \beta}(x), \text { if } r<|x| \leqslant 2 r ; \\
Q(x)-q_{\mu, \nu, \alpha, \beta}(x), \quad \text { if } 2 r<|x| .
\end{array}\right.
$$

We see

$$
\begin{aligned}
& p_{\mu, \nu, \alpha, \beta}(x)=\frac{1}{2 r^{5}}(2 r-x)^{3}\left[\left\{12 q_{\mu, \nu, \alpha, \beta}(r)+6{q^{\prime}}_{\mu, \nu, \alpha, \beta}(r)+q^{\prime \prime}{ }_{\mu, \nu, \alpha, \beta}(r) r^{2}\right\} x^{2}\right. \\
& \quad-2\left\{9 q_{\mu, \nu, \alpha, \beta}(r)+5{q^{\prime}}^{\mu, \nu, \alpha, \beta}(r)+{q^{\prime \prime}}_{\mu, \nu, \alpha, \beta}(r) r^{2}\right\} r x \\
& \left.\quad+\left\{8 q_{\mu, \nu, \alpha, \beta}(r)+4{q^{\prime}}_{\mu, \nu, \alpha, \beta}(r)+{q^{\prime \prime}}_{\mu, \nu, \alpha, \beta}(r) r^{2}\right\} r^{2}\right],
\end{aligned}
$$

so that for every $x \in[r, 2 r]$

$$
\begin{equation*}
\left|p_{\mu, \nu, \alpha, \beta}(x)\right| \leqslant C\left\{\left|q_{\mu, \nu, \alpha, \beta}(r)\right|+r\left|q^{\prime}{ }_{\mu, \nu, \alpha, \beta}(r)\right|+r^{2}\left|q^{\prime \prime}{ }_{\mu, \nu, \alpha, \beta}(r)\right|\right\}, \tag{A.7}
\end{equation*}
$$

where $C>1$ is a constant independent of r. Similarly we have

$$
\begin{equation*}
\left|p_{\mu, \nu, \alpha, \beta}^{\prime}(x)\right| \leqslant \frac{C}{r}\left\{\left|q_{\mu, \nu, \alpha, \beta}(r)\right|+r\left|q^{\prime}{ }_{\mu, \nu, \alpha, \beta}(r)\right|+r^{2}\left|q^{\prime \prime}{ }_{\mu, \nu, \alpha, \beta}(r)\right|\right\} \tag{A.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|p^{\prime \prime}{ }_{\mu, \nu, \alpha, \beta}(x)\right| \leqslant \frac{C}{r^{2}}\left\{\left|q_{\mu, \nu, \alpha, \beta}(r)\right|+r\left|{q^{\prime}}_{\mu, \nu, \alpha, \beta}(r)\right|+r^{2}\left|q_{\mu, \nu, \alpha, \beta}^{\prime \prime}(r)\right|\right\} . \tag{A.9}
\end{equation*}
$$

We shall show that if we take $r=r_{\mu, \nu, \alpha, \beta}>0$ large enough, then $Q_{\mu, \nu, \alpha, \beta}$ satisfies all conditions in Definition 1.1 and $w_{\mu, \nu, \alpha, \beta}:=\exp \left(-Q_{\mu, \nu, \alpha, \beta}\right)$ is the desired weight.

We begin with estimates of $q_{\mu, \nu, \alpha, \beta}$. For $x \geqslant r$ we estimate $s(x), u(x), v(x)$ in (A.6). Then we use $(1.2),(1.3),(1.4),(1.5)$ and (1.6). We see

$$
\begin{align*}
& s(x) \sim \log x, \quad s^{\prime}(x) \sim \frac{1}{x}, \quad\left|s^{\prime \prime}(x)\right| \sim \frac{1}{x^{2}} \tag{A.10}\\
& u(x) \sim \log Q(x), \quad u^{\prime}(x) \sim \frac{Q(x)}{Q^{\prime}(x)} \leqslant C Q(x)^{\lambda-1}, \quad\left|u^{\prime \prime}(x)\right| \leqslant C\left(\frac{Q^{\prime}(x)}{Q(x)}\right)^{2} \leqslant C Q(x)^{2(\lambda-1)} \tag{A.11}
\end{align*}
$$

and

$$
\begin{align*}
& v(x) \sim \log Q^{\prime}(x) \leqslant C \log Q(x), \quad\left|v^{\prime}(x)\right| \leqslant C \frac{Q^{\prime \prime}(x)}{Q^{\prime}(x)} \leqslant C \frac{Q^{\prime}(x)}{Q(x)} \leqslant C Q(x)^{\lambda-1} \\
& \left|v^{\prime \prime}(x)\right| \leqslant C\left(\frac{Q^{\prime \prime}(x)}{Q^{\prime}(x)}\right)^{2} \leqslant C\left(\frac{Q^{\prime}(x)}{Q(x)}\right)^{2} \leqslant C Q(x)^{2(\lambda-1)} \tag{A.12}
\end{align*}
$$

Therefore, by (A.10), (A.11) and (A.12) we have the followings. Let $x \geqslant r$.

$$
\begin{align*}
& \frac{q_{\mu, \nu, \alpha, \beta}(x)}{Q(x)} \leqslant C \frac{\log Q(x)}{Q(x)}, \frac{q^{\prime}{ }_{\mu, \nu, \alpha, \beta}(x)}{Q(x)} \leqslant C \frac{1}{Q(x)^{2-\lambda}}, \frac{q^{\prime \prime}{ }_{\mu, \nu, \alpha, \beta}(x)}{Q(x)} \leqslant C \frac{1}{Q(x)^{3-2 \lambda}} \tag{A.13}\\
& \frac{q_{\mu, \nu, \alpha, \beta}(x)}{Q^{\prime}(x)} \leqslant C \frac{\log Q(x)}{Q^{\prime}(x)} \leqslant C \frac{x \log Q(x)}{Q(x)}, \frac{q^{\prime}{ }_{\mu, \nu, \alpha, \beta}(x)}{Q^{\prime}(x)} \leqslant C \frac{1}{Q(x)^{2-\lambda}} \\
& \frac{q^{\prime \prime}{ }_{\mu, \nu, \alpha, \beta}(x)}{Q^{\prime}(x)} \leqslant C \frac{Q^{\prime}(x)}{Q(x)^{2}} \leqslant C \frac{1}{Q(x)^{3-\lambda}}, \tag{A.14}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{q_{\mu, \nu, \alpha, \beta}(x)}{Q^{\prime \prime}(x)} \leqslant C \frac{\log Q(x)}{Q^{\prime \prime}(x)} \leqslant C \frac{Q(x) \log Q(x)}{Q^{\prime}(x)^{2}} \leqslant C \frac{x^{2} Q(x) \log Q(x)}{Q(x)^{2}}=C \frac{x^{2} \log Q(x)}{Q(x)}, \\
& \frac{q^{\prime}{ }_{\mu, \nu, \alpha, \beta}(x)}{Q^{\prime \prime}(x)} \leqslant C \frac{Q^{\prime}(x)}{Q(x) Q^{\prime \prime}(x)} \leqslant C \frac{1}{Q^{\prime}(x)} \leqslant C \frac{x}{Q(x)}, \\
& \frac{q^{\prime \prime}{ }_{\mu, \nu, \alpha, \beta}(x)}{Q^{\prime \prime}(x)} \leqslant C \frac{1}{Q^{\prime \prime}(x)}\left(\frac{Q^{\prime}(x)}{Q(x)}\right)^{2} \leqslant C \frac{Q(x)}{Q^{\prime}(x)} \frac{Q(x)}{Q(x)^{2}} \leqslant C \frac{1}{Q(x)} . \tag{A.15}
\end{align*}
$$

Consequently, by (A.13), (A.14), (A.15) and $x^{2} \ll Q(x)$ we have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{q_{\mu, \nu, \alpha, \beta}^{(i)}(x)}{Q^{(j)}(x)}=0, \quad i, j=0,1,2 \tag{A.16}
\end{equation*}
$$

Furthermore, by (A.7), (A.8) and (A.9), we also see that $x \in[r, 2 r]$, then we have

$$
\begin{aligned}
&\left|\frac{p_{\mu, \nu, \alpha, \beta}^{(j)}(x)}{Q(x)}\right| \leqslant \frac{C}{r^{j}}\left[\frac{\log Q(r)}{Q(r)}+\frac{r}{Q(r)^{2-\lambda}}+\frac{r^{2}}{Q(r)^{3-2 \lambda}}\right], \\
&\left|\frac{p_{\mu, \nu, \alpha, \beta}^{(j)}(x)}{Q^{\prime}(x)}\right| \leqslant \frac{C}{r^{j}}\left[\frac{r \log Q(r)}{Q(r)}+\frac{r}{Q(r)}+\frac{r^{2}}{Q(r)^{2-\lambda}}\right], \\
&\left|\frac{p_{\mu, \nu, \alpha, \beta}^{(j)}(x)}{Q^{\prime \prime}(x)}\right| \leqslant \frac{C}{r^{j}}\left[\frac{r^{2} \log Q(r)}{Q(r)}+\frac{r^{2}}{Q(r)}+\frac{r^{2}}{Q(r)}\right]
\end{aligned}
$$

for $j=0,1,2$. For $\Lambda>1$ in (1.2), we take $\varepsilon>0$ sufficiently small such that

$$
\begin{equation*}
\Lambda^{\prime}:=\Lambda(1-\varepsilon) /(1+\varepsilon)>1 \tag{A.17}
\end{equation*}
$$

By above estimates there exists $r=r_{\mu, \nu, \alpha, \beta}>0$ such that $|x| \geqslant r, Q^{\prime \prime}(x)>0$ and

$$
\begin{equation*}
1-\varepsilon \leqslant \frac{Q_{\mu, \nu, \alpha, \beta}(x)}{Q(x)}, \quad \frac{Q^{\prime}{ }_{\mu, \nu, \alpha, \beta}(x)}{Q^{\prime}(x)}, \quad \frac{Q^{\prime \prime}{ }_{\mu, \nu, \alpha, \beta}(x)}{Q^{\prime \prime}(x)} \leqslant 1+\varepsilon . \tag{A.18}
\end{equation*}
$$

The inequality (A.18) means $w_{\mu, \nu, \alpha, \beta} \in \mathcal{F}\left(C^{2}+\right.$). We see that (A.3) and (A.4) follow as [9, pp.94-95].
Under the condition $w \in \mathcal{F}_{\lambda}\left(C^{4}+\right)$ we will show (A.5). We see

$$
\left|s^{\prime \prime \prime}(x) \leqslant C \frac{1}{x^{3}}, \quad\right| u^{\prime \prime \prime}(x)| | \leqslant C\left|\frac{Q^{\prime}(x)}{Q(x)}\right|^{3}, \quad\left|v^{\prime \prime \prime}(x)\right| \leqslant C\left|\frac{Q^{\prime}(x)}{Q(x)}\right|^{3} .
$$

Hence we have

$$
\begin{aligned}
& \frac{\left|q^{\prime \prime \prime}(x)\right|}{Q(x)} \leqslant C \frac{1}{Q(x)^{4-3 \lambda}}, \frac{\left|q^{\prime \prime \prime}(x)\right|}{Q^{\prime}(x)} \leqslant C \frac{1}{Q(x)^{3-2 \lambda}}, \frac{\left|q^{\prime \prime \prime}(x)\right|}{Q^{\prime \prime}(x)} \leqslant C \frac{1}{Q(x)^{2-\lambda}}, \\
& \frac{\left|q^{\prime \prime \prime}(x)\right|}{Q^{\prime \prime \prime}(x)} \leqslant C \frac{1}{Q(x)} .
\end{aligned}
$$

Now, we take a polynomial

$$
p_{\mu, \nu, \alpha, \beta}(x)=p_{\mu, \nu, \alpha, \beta, r}(x)=(2 r-x)^{4}\left(a x^{3}+b x^{2}+c x+d\right)
$$

such that

$$
\begin{aligned}
& p_{\mu, \nu, \alpha, \beta}(r)=q_{\mu, \nu, \alpha, \beta}(r),{p^{\prime}}_{\mu, \nu, \alpha, \beta}(r)=q^{\prime}{ }_{\mu, \nu, \alpha, \beta}(r), \\
& p^{\prime \prime}{ }_{\mu, \nu, \alpha, \beta}(r)={q^{\prime \prime}}^{\mu, \nu, \alpha, \beta}{ }^{\prime \prime}(r), p^{\prime \prime \prime}{ }_{\mu, \nu, \alpha, \beta}(r)=q^{\prime \prime \prime}{ }_{\mu, \nu, \alpha, \beta}(r) .
\end{aligned}
$$

Now we set

$$
Q_{\mu, \nu, \alpha, \beta}(x):=\left\{\begin{array}{l}
Q(x), \quad \text { if }|x| \leqslant r ; \\
Q(x)-q_{\mu, \nu, \alpha, \beta}(x)+p_{\mu, \nu, \alpha, \beta}(x), \text { if } r<|x| \leqslant 2 r \\
Q(x)-q_{\mu, \nu, \alpha, \beta}(x), \\
\text { if } 2 r<|x|
\end{array}\right.
$$

We also see that $x \in[r, 2 r]$, then we have

$$
\begin{aligned}
\left|\frac{p_{\mu, \nu, \alpha, \beta}^{(j)}(x)}{Q(x)}\right| & \leqslant \frac{C}{r^{j}}\left[\frac{\log Q(r)}{Q(r)}+\frac{r}{Q(r)^{2-\lambda}}+\frac{r^{2}}{Q(r)^{3-2 \lambda}}+\frac{r^{3}}{Q(r)^{4-3 \lambda}}\right] \\
\left|\frac{p_{\mu, \nu, \alpha, \beta}^{(j)}(x)}{Q^{\prime}(x)}\right| & \leqslant \frac{C}{r^{j}}\left[\frac{r \log Q(r)}{Q(r)}+\frac{r}{Q(r)}+\frac{r^{2}}{Q(r)^{2-\lambda}}+\frac{r^{3}}{Q(r)^{3-2 \lambda}}\right] \\
\left|\frac{p_{\mu, \nu, \alpha, \beta}^{(j)}(x)}{Q^{\prime \prime}(x)}\right| & \leqslant \frac{C}{r^{j}}\left[\frac{r^{2} \log Q(r)}{Q(r)}+\frac{r^{2}}{Q(r)}+\frac{r^{2}}{Q(r)}+\frac{r^{2}}{Q(r)}\right]
\end{aligned}
$$

for $j=0,1,2,3$. Therefore, there exists $r=r_{\mu, \nu, \alpha, \beta}>0$ such that $|x| \geqslant r$, and

$$
\begin{equation*}
1-\varepsilon \leqslant \frac{Q_{\mu, \nu, \alpha, \beta}(x)}{Q(x)}, \quad \frac{Q^{\prime}{ }_{\mu \nu, \alpha, \beta}(x)}{Q^{\prime}(x)}, \quad \frac{Q^{\prime \prime}{ }_{\mu, \nu, \alpha, \beta}(x)}{Q^{\prime \prime}(x)}, \frac{Q^{\prime \prime \prime}{ }_{\mu \nu, \alpha, \beta}(x)}{Q^{\prime \prime \prime}(x)} \leqslant 1+\varepsilon . \tag{A.19}
\end{equation*}
$$

Consequently, we have (A.5). \#
Theorem B. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{R}$ and let $w \in \mathcal{F}_{\lambda}\left(C^{4}+\right), 1<\lambda<4 / 3$. Then we have

$$
\begin{equation*}
T^{\alpha_{1}} w \sim w_{\alpha_{1}} \in \mathcal{F}\left(C^{3}+\right) \tag{A.20}
\end{equation*}
$$

and

$$
T^{\alpha_{2}} w_{\alpha_{1}} \sim w_{\alpha_{1}, \alpha_{2}} \sim w_{\alpha_{1}+\alpha_{2}} \in \mathcal{F}\left(C^{3}+\right)
$$

generally, for $j=0,1, \ldots, k-1$

$$
T^{\alpha_{k+1}} w_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}} \sim w_{\alpha_{1}+\alpha_{2}+\ldots+\alpha_{k+1}} \in \mathcal{F}\left(C^{3}+\right)
$$

Proof. If $w \in \mathcal{F}_{\lambda}\left(C^{4}+\right)$, then we have $w_{\alpha_{1}} \in \mathcal{F}_{\lambda}\left(C^{3}+\right)$ by (A.5), and so

$$
T^{-\alpha_{1}} w_{\alpha_{1}} \sim T^{-\alpha_{1}} T^{\alpha_{1}} w \sim w \in \mathcal{F}_{\lambda}\left(C^{3}+\right)
$$

Here we note that there exists $r_{1}>0$ such that for $|x| \geqslant 2 r_{1}$

$$
w_{\alpha_{1}}(x)=\exp \left(-Q(x)+\alpha_{1} \log T(x)\right)
$$

and for some $r_{2} \geqslant 2 r_{1}$, if $|x| \geqslant 2 r_{2}$, then we have

$$
T^{-\alpha_{1}}(x) w_{\alpha_{1}}(x)=\exp \left(-Q(x)+\alpha_{1} \log T(x)-\alpha_{1} T(x)\right)=\exp (-Q(x))
$$

Consequently, we see

$$
T^{\alpha_{2}} w_{\alpha_{1}}=T^{\alpha_{1}+\alpha_{2}} T^{-\alpha_{1}} w_{\alpha_{1}} \sim T^{\alpha_{1}+\alpha_{2}} w \sim w_{\alpha_{1}+\alpha_{2}} \in \mathcal{F}\left(C^{3}+\right)
$$

We continue this method inductively, then we have

$$
\begin{aligned}
& T^{\alpha_{k+1}} w_{\alpha_{1}+\ldots+\alpha_{k}}=T^{\alpha_{1}+\ldots+\alpha_{k+1}} T^{-\left(\alpha_{1}+\ldots+\alpha_{k}\right)} w_{\alpha_{1}+\ldots+\alpha_{k}} \\
& \sim T^{\alpha_{1}+\ldots+\alpha_{k+1}} w \sim w_{\alpha_{1}+\ldots+\alpha_{k+1}} \in \mathcal{F}\left(C^{3}+\right) . \quad \#
\end{aligned}
$$

We have the following.
Theorem C. ([4, Theorem 2.3]) Let $\nu \geqslant 0$ be an integer. Let $w=\exp (-Q) \in \mathcal{F}_{\lambda}\left(C^{\nu+3}+\right)$, where $0<\lambda<(\nu+3) /(\nu+2)$. Suppose that $f \in C^{\nu}(\mathbb{R})$ with

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} T^{1 / 4}(x) f^{(\nu)}(x) w(x)=0 \tag{A.21}
\end{equation*}
$$

Then there exists an absolute constant $C_{\nu}>0$ which depends only on ν such that for $0 \leqslant k \leqslant \nu$ and $x \in \mathbb{R}$,

$$
\begin{aligned}
& \left|\left(f^{(k)}(x)-P_{n, f, w}^{(k)}(x)\right) w(x)\right| \leqslant C T^{k / 2}(x) E_{n-k}\left(w_{1 / 4}, f^{(k)}\right) \\
& \quad \leqslant C_{\nu} T^{k / 2}(x)\left(\frac{a_{n}}{n}\right)^{r-k} E_{n-k}\left(w_{1 / 4}, f^{(\nu)}\right),
\end{aligned}
$$

where $T^{1 / 4}(x) w(x) \sim w_{1 / 4} \in \mathcal{F}\left(C^{2}+\right)$.
Now we can improve Theorem C.
Theorem D. Let $\nu \geqslant 0$ be an integer. Let

$$
\begin{equation*}
w=\exp (-Q) \in \mathcal{F}_{\lambda}\left(C^{4}+\right), \quad 0<\lambda<4 / 3 . \tag{A.22}
\end{equation*}
$$

Suppose that $f \in C^{\nu}(\mathbb{R})$ with

$$
\begin{equation*}
\left\|T^{1 / 4} f^{(\nu)} w\right\|_{L_{\infty}(\mathbb{R})}<\infty \tag{A.23}
\end{equation*}
$$

Then there exists an absolute constant $C_{\nu}>0$ which depends only on ν such that for $0 \leqslant k \leqslant \nu$ and $x \in \mathbb{R}$,

$$
\begin{aligned}
& \left|\left(f^{(k)}(x)-P_{n, f, w}^{(k)}(x)\right) w(x)\right| \leqslant C T^{k / 2}(x) E_{n-k}\left(w_{1 / 4}, f^{(k)}\right) \\
& \quad \leqslant C_{\nu} T^{k / 2}(x)\left(\frac{a_{n}}{n}\right)^{\nu-k} E_{n-\nu}\left(w_{1 / 4}, f^{(\nu)}\right)
\end{aligned}
$$

where $T^{1 / 4}(x) w(x) \sim w_{1 / 4} \in \mathcal{F}\left(C^{2}+\right)$.
To prove Theorem C we have used the following theorem (see [4, Proof of Theorem 2.3]).
Theorem E. ([9, Corollary 6.2]) Let $\nu \geqslant 0$ be an integer, $1 \leqslant p \leqslant \infty$ and

$$
\begin{equation*}
w \in \mathcal{F}_{\lambda}\left(C^{\nu+3}+\right), 1<\lambda<\frac{\nu+3}{\nu+2} \tag{A.24}
\end{equation*}
$$

Then there exists a constant $C>0$ such that for any $0 \leqslant k \leqslant \nu$, any integer $n \geqslant 1$ and any polynomial $P \in \mathcal{P}_{n}$,

$$
\begin{equation*}
\left\|P^{(k)} w\right\|_{L_{p}(\mathbb{R})} \leqslant C\left(\frac{n}{a_{n}}\right)^{k}\left\|T^{k / 2} P w\right\|_{L_{p}(\mathbb{R})} \tag{A.25}
\end{equation*}
$$

If in Theorem E we can reduce the assumption (A.24) to the assumption (A.26), then we have the following.

Theorem F. Let $1 \leqslant p \leqslant \infty$ and

$$
\begin{equation*}
w \in \mathcal{F}_{\lambda}\left(C^{4}+\right), 1<\lambda<\frac{4}{3} \tag{A.26}
\end{equation*}
$$

Then there exists a constant $C>0$ such that for any $0 \leqslant k \leqslant \nu$, any integer $n \geqslant 1$ and any polynomial $P \in \mathcal{P}_{n}$,

$$
\begin{equation*}
\left\|P^{(k)} w\right\|_{L_{p}(\mathbb{R})} \leqslant C\left(\frac{n}{a_{n}}\right)^{k}\left\|T^{k / 2} P w\right\|_{L_{p}(\mathbb{R})} \tag{A.27}
\end{equation*}
$$

Proof. In Theorem E we consider the case of $\nu=2$, then we have the following.
Theorem G. ([9, Theorem 1.1]) Let $1 \leqslant p \leqslant \infty$, and let

$$
\begin{equation*}
w \in \mathcal{F}_{\lambda}\left(C^{4}+\right), 1<\lambda<\frac{4}{3} \tag{A.28}
\end{equation*}
$$

Then there exists a constant $C>0$ such that for any $0 \leqslant k \leqslant 2$, any integer $n \geqslant 1$ and any polynomial $P \in \mathcal{P}_{n}$,

$$
\begin{equation*}
\left\|P^{(k)} w\right\|_{L_{p}(\mathbb{R})} \leqslant C\left(\frac{n}{a_{n}}\right)^{k}\left\|T^{k / 2} P w\right\|_{L_{p}(\mathbb{R})} \tag{A.29}
\end{equation*}
$$

In the proof of Theorem G, for $k=1, w \in \mathcal{F}_{\lambda}\left(C^{4}+\right.$) we use $T^{1 / 2} w \sim w_{1 / 2} \in \mathcal{F}_{\lambda}\left(C^{3}+\right.$) (see (A.5)), and $k=2, w \in \mathcal{F}_{\lambda}\left(C^{4}+\right)$ we use $T^{1 / 2} w_{1 / 2} \sim w_{1} \in \mathcal{F}_{\lambda}\left(C^{3}+\right.$) (see (A.5)). If we consider the cases of $k=3,4, \ldots$, then with respect to w our assumption leaves $w \in \mathcal{F}_{\lambda}\left(C^{4}+\right.$), then $T^{1 / 2} w_{(k-1) / 2} \sim w_{k / 2} \in \mathcal{F}_{\lambda}\left(C^{3}+\right.$) (see (A.5)). In fact, Theorem B guarantees it.

Therefore, under the condition (A.28) we have the result for $k=1,2$ by Theorem G , and for $k \geqslant 3$ we see

$$
T^{k / 2}(x) w(x) \sim w_{k / 2} \in \mathcal{F}\left(C^{3}+\right), \quad k=3,4, \ldots
$$

by Theorem B. Consequently, we have Theorem F. \#
Now we show Lemma 3.2, that is, Theorem D.
Proof of Lemma 3.2. Using the method of the proof of Theorem C, we can prove Theorem D applying Theorem F (see [4, Proof of Theorem 2.3]). Consequently, we have Lemma 3.2. \#

