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Abstract. We study the existence and uniqueness of solutions for a class of integer order differential 
equations with non-instantaneous. Firstly, the differential boundary value problem is transformed 
into an equivalent integral equation problem, and then the existence results of the solution and the 
sufficient conditions for the existence of the solutions are obtained by using Schauder fixed point 
theory. The uniqueness theorem of the solution is established by using contraction mapping principle. 
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1   Introduction 

Impulsive differential equations are a generalization of differential equations. With the development of 
differential equations, differential equations have been widely used in the modeling of different physical 
and natural science fields such as fluid mechanics, chemistry, control systems, and heat conduction. 
Many practical problems are under development. There are rapid changes in certain stages of the 
process, which are called impulses. There are two main types of pulses, one is instantaneous impulses, 
and the other is non- instantaneous impulses. 

In instantaneous impulses, the duration of change is negligible compared to the duration of the entire 
evolution (such as shocks and natural disasters). Professor Mil’man and Professor Myshkis first proposed 
the transient pulse differential equation in the 1960s. Since then, many mathematicians have devoted 
themselves to the research of instantaneous differential equations, and have obtained the profound 
conclusions about the existence, uniqueness and stability of the solutions of instantaneous impulsive 
differential equations, branch theory, and dynamic systems with impulses. There are many literatures 
and works on the study of the boundary value problem of instantaneous impulsive differential equations, 
see literature [1]-[3], and the theoretical results are also increasingly perfect. 

In non-instantaneous impulses, the duration of change stays within a limited time interval. This 
phenomenon is common in all fields of modern science and technology. For example, in clinical 
treatment, the process of injecting a drug into the body can be regarded as a non-instantaneous pulse 
therapy behavior. Drug absorption and action in the human body is a continuous and gradual process, 
which can be expressed by a differential equation. After the drug is absorbed and metabolized in the 
human body, the body's own metabolic changes can be determined by another function. Control, 
because this phenomenon can more deeply and accurately reflect the changing rules of things, it has 
attracted extensive attention from a large number of scholars, which has led mathematicians to study 
non-instantaneous impulsive differential equations, see references [4]-[9].Non-transient impulsive 
differential equation is a very good mathematical model that comes from both practice and practice, so 
it has very important theoretical basis and practical value. This paper studies a class of integer order 
differential equations with non-instantaneous impulses boundary value problems: 
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Definition 2.1 Let ( , )u PC J  , if u meet various conditions in (1), then we call it a solution to the 
boundary value problem (1). 
Lemma 2.1 For any given ( ) [0,1]y t C , ( ) [0,1]h t C , the following boundary value problem 
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Above all, when , [0,1]t s  , 1( , ) 2( 1)W t s m  , 2( , ) 2W t s m . 
Lemma 2.2 The operator : ( , ) ( , )T PC J PC J   is completely continuous. 
Proof. Firstly, we proof that T is an continuous operator. 
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Secondly, we proof that T is a compact operator. 
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Above all, we have T is a completely operator. 

3   Existence and Uniqueness of Solutions to Boundary Value Problems 
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Lemma 3.3 If (H2), and 1 2 3 40 2( 1) 2 2 2 1m L mL mL mL      , Then the boundary value problem 
(1) has a unique solution on ( , )PC J  .
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Since 1 2 3 40 2( 1) 2 2 2 1m L mL mL mL      , we have T is the compression map and the boundary 
value problem (1) has a unique solution on ( , )PC J  . 
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