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Abstract We describe the periodic dilution rate and periodic mortality of a stochastic chemostat
model with the response of the Monond function. We consider that both nutrient’s input concentra-
tion and the death rate of microbe are simultaneously influenced by white noise. For this chemostat,
we have found sufficient conditions which have a stationary distribution and stochastic nontrivial
positive periodic solution.
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1 Introduction

The chemostat is a continuous culture device that manages to keep the flow rate of culture medium
constant and the growth rate of microorganism is always lower than its growth rate [1]. Experimenters
usually use the appropriate device to limit the concentration of nutrients in the medium or to adjust the
growth rate of microorganisms according to the rate of addition. The chemostat plays an important role
in fermentation engineering, such as the development and production of proteins, vaccines, etc. Hence,
the study of the chemostat has attracted the attention of a large number of laboratory technologists,
biologists and mathematicians at home and abroad [2,3,4,5], based on its important value in theory and
practice. The following deterministic system was studied in [6],

{
S′(t) = D(S0 − S(t)) − 1

δ
mS
a+S x(t),

x′(t) = −Dx(t) + mS
a+S x(t). (1)

here S(t),x(t) express concentrations of nutrients and microorganisms at time t. And all parameters are
positive. S0 represents the input concentration of nutrient; D is the dilution rate. In the microbial popu-
lation, this term δ means conversion rate of nutrient. a is assumed to be the half saturation constant; m
stands for the maximum uptake rate of nutrients by microorganisms. [7] has studied the global dynamics
of a chemostat model which has multi-competing species and the general functions of describing nutrient
uptake. We can obtain the results on multiple competing microbial species in [8,9,10], and results show
that the principle of competitive exclusion establishes in the model of competitive chemostat. Based on
system (1), we further consider the death of microorganisms in the chemostat, resulting in the following
system

{
S′(t) = D(S0 − S(t)) − 1

δ
mS
a+S x(t),

x′(t) = ( mS
a+S − D − D1)x(t). (2)

here D1 is the death of microorganisms. The system (2) always has a extinction equilibrium point
E0 = (S0, 0). And when D + D1 ≥ mS0

a+S0 , E0 is global asymptotic stability; when D + D1 < mS0

a+S0 , this
system has a positive equilibrium point of global asymptotic stability E∗ = (S∗, x∗), where

S∗ = a(D + D1)
m − (D + D1)

,

x∗ = δD

D + D1
(S0 − a(D + D1)

m − (D + D1)
).
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In addition, biological populations are always affected by periodic fluctuations. However, the previous
chemostat models rarely take into account the environmental noises that may be encountered during
microbial culture. For example, the laboratory condition control is not strict enough, there are random
interference and data measurement errors in the process of information transmission. These stochastic
factors will certainly have some influence on the process of microbial culture. In recent, lots of stochastic
biological models have been researched and become one of the most important hot spots [11,12,13,14,15].
There are two ways to consider the influence of random factors. One is to assume that the influence of
random factors on the system is reflected in the influence on some parameters [16]. The other is to assume
that the influence of random factors is expressed in the ratio of the deviation from the equilibrium state
of the corresponding deterministic system [17]. We will assume that the effects of stochastic factors in the
system (2) are shown in the effects on the concentration of nutrients and the mortality of microorganisms,
i.e.

S0 → S0 + αḂ1(t), D1 → D1 + βḂ2(t),
we will have {

dS(t) = [D(S0 − S(t)) − 1
δ

mS
a+S x(t)]dt + αD(t)dB1(t),

dx(t) = [−(D + D1) + mS
a+S ]x(t)dt − βx(t)dB2(t). (3)

In the traditional chemostat equations, S0, D, D1 can be under the control of the experimenter.
People can use the chemostat to industrial engineering and sewage disposal processes, so it is reasonable
to change the dilution rate D and the death of microorganisms D1 with time. Moreover, because of the
change of seasons, etc, other parameters can also exhibit change periodically. Hence we will obtain that

{
dS(t) = [D(t)(S0 − S(t)) − 1

δ
mS
a+S x(t)]dt + α(t)D(t)dB1(t),

dx(t) = [−(D(t) + D1(t)) + mS
a+S ]x(t)dt − β(t)x(t)dB2(t). (4)

We always assume that (Ω,z, {zt}t≥0, P) is a complete probability space, and {zt} satisfies the
general conditions (i.e. it is right continuous and z0 contains all P-null sets) in this paper. Where
Bi(t)(i = 1, 2) stand for standard Brownian motions for mutual independence, which define on this
space.And D(t), D1(t), α(t), β(t) > 0 are all continuous θ-periodic functions. In this paper, we will prove
that the system (3) has unique stationary distribution and ergodic by constructing an appropriate lya-
punov function that does not depend on the existence and stability of positive equilibrium. Another
purpose of this paper is to obtain the existence of periodic solutions of system (4) according to Khas’
minskii[18] theory.

The remaining sections are arranged as follows. In Section 2, we will propose some symbols and
auxiliary results. In Section 3, we will prove the system (3) has a unique stationary distribution and
achieve appropriate conditions to ensure the existence of a unique θ-periodic solution of system (4). In
Section 4, we make numerical simulation to support our results.

2 Preliminary

We will often use the following notes. Supposing f(t) is an integrable function t ∈ [0, ∞), denote ⟨f⟩t =
1
t

∫ t

0 f(s) ds. Supposing function f(t) is a bounded on the interval [0, ∞), express fu = supt∈[0,∞)f(t),
f l = inft∈[0,∞)f(t).

Next, we will introduce some preliminaries used in the following sections.
Definition 2.1[18] A stochastic process X(t) (−∞ < t < +∞) is known as periodic with period

θ if for every finite sequence of the numbers t1, t2, · · · , tn, the joint distribution of random variables
X1, X2, . . . , Xn is independent of h, where h = kθ(k = ±1, ±2, . . .).

Remark 2.1[18] Khasminskii has verified that a Markov process X(t) is θ-periodic if and only if
its transition probability function is θ-periodic and the function P0(t, A) = P{X(t) ∈ A} satisfies the
equation

P0(t, A) =
∫
Rl

P0(s, dx)P (s, x, s + θ) ≡ P0(s + θ, A),
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for every A ∈ B.
Lemma 2.1[18] Suppose there is a bounded domain U ⊂ Rl with regular boundary Γ , which satisfies

the two conditions:
(H1)F is uniformly elliptical in the domain U and some neighborhood thereof, where Fu = b(X)ux +

tr(A(X))uxx
2 .

(H2)There has a non-negative C2-function V (X) and a positive constant C such that LV (X) ≤ −C,
for any X ∈ Rl \ U .

Then there is a unique stationary distribution µ(·) of the Markov process X(t), and for any integrable
function f(·) with respect to the measure µ, we can obtain that

p( lim
x→∞

1
t

∫ t

0
f(X(t)) ds =

∫
Rl

f(x)µ(dx)) = 1

Take the equation into account

X(t) = X(t0) +
∫ t

t0

b(s, X(s)) ds +
k∑

r=1

∫ t

t0

σr(s, X(s)) dB(s), X ∈ Rl. (5)

where the vector b(s, X), σ1(s, X), · · · , σk(s, X)(s ∈ (t0, t), X ∈ Rl) are continuous functions of (s, X)
satisfying the conditions:

|b(s, x) − b(s, y)| +
k∑

r=1
|σr(s, x) − σr(s, y)| ≤ B|x − y|,

|b(s, x)| +
k∑

r=1
|σr(s, x)| ≤ B(1 + |x|), (6)

here B is a constant. Make U be a given open set in Rl and E = I ×Rl. Let C2 denoted the kind of the
functions on E which are twice continuously differentiable with respect to x1, · · · , xk and continuously
differentiable with respect to t.

Lemma 2.2[18] If the coefficients of (5) are θ-periodic in t and satisfy condition (6) in every cylinder
I ×U . Assume further that there exists a function V (t, x) ∈ C2 in E which is θ-periodic in t, and satisfies
the two conditions:

inf
|x|>R

V (t, x) → ∞ as R → ∞, (7)

LV ≤ −1 outside some compact set, (8)

here we give the operator L

L = ∂

∂t
+

l∑
i=1

bi(t, x) ∂

∂xi
+ 1

2

l∑
i,j=1

aij(t, x) ∂2

∂xiyj
, aij =

l∑
r=1

σi
r(t, x)σj

r(t, x).

Then (5) has a solution ofθ-periodic Markov process.

3 Main Results

In this section, firstly, We will prove the system (4) has a unique global solution by using the comparison
theorem. Then, we will prove the system (3) has a unique stationary distribution by constructing a
Lyapunov function. Finally, we will find the sufficient conditions to prove that system (4) has a non-
trivial positive periodic solutions.
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Theorem 3.1 There exists a unique global positive solution (S(t), x(t)) ∈ R2
+ of system (4) on t ≥ 0

for any initial value (S(0), x(0)) ∈ R2
+.

Proof. Because the coefficients of system (4) meet the local Lipschitz conditions, system (4) has a
unique local solution (S(t), x(t)) on t ∈ [0, τe), here t ∈ [0, τe) is the explosion time, for any initial value.
We just should testify τe = ∞ to prove that this solution is global. Because of (S(t), x(t)) ∈ R2

+, we have

dS(t) ≤ Du(S0 − S(t))dt + αuDudB1(t)

and
dx(t) ≤ (m − Dl

1 − Dl)x(t)dt − βlx(t)dB1(t)

We let Ψ(t) and Φ(t) be solutions of the following equations, respectively.{
Ψ(t) = Du(S0 − Ψ(t))dt + αuDudB1(t),
Ψ(0) = S(0) = S0.

(9)

{
Φ(t) = (m − Dl

1 − Dl)Φ(t)dt − βlx(t)dB1(t),
Φ(0) = x(0). (10)

According to the comparison theorem, we have S(t) ≤ Ψ(t), x(t) ≤ Φ(t), t ∈ [0, τe) a.s. Analogously,
we can obtain that

dS(t) ≥ −DlS(t)dt + αlDldB1(t)

and
dx(t) ≥ −(Du

1 + Du)x(t)dt − βux(t)dB1(t)

We let φ(t) and ϕ(t) be solutions of the following equations, respectively.{
φ(t) = −DlS(t)dt + αlDldB1(t),
φ(0) = S(0) = S0.

(11)

{
ϕ(t) = −(Du

1 + Du)x(t)dt − βux(t)dB1(t),
Φ(0) = x(0). (12)

In the same way, we have S(t) ≥ φ(t), x(t) ≥ ϕ(t), t ∈ [0, τe)a.s. From what has been discussed above,
we have

φ(t) ≤ S(t) ≤ Ψ(t), ϕ(t) ≤ x(t) ≤ Φ(t), t ∈ [0, τe) a.s.

Furthermore,there has unique global positive solutions of the equations [9,10,11,12]. In other words,
for any t ∈ [0, ∞), Ψ(t), Φ(t), φ(t), ϕ(t) are true, so τe = ∞. That is the proof.

Theorem 3.2 Suppose DS0 > (αD)2

2 , D + D1 > mS0

a+S0 , D + D1 + 2β2 > m. Then for any initial value,
the system (3) has a unique stationary distribution µ(·), and it has ergodic property.

Proof. For any initial value (S(0), x(0)) ∈ R2
+, there has a unique solution of system (3). From Lemma

2.1, in order to prove Theorem 3.2, we should find a C2-function V (t, x) and a bounded domain U ∈ R2
+

that make conditions (H1) and (H2) true. Firstly, we construct a Lyapunov function V : R2
+ → R+

V (S, x) = −S0 log S

S0 + S + f(x) − S0 − f(
√

δ)

where f(x) = 1
δ x − 2√

δ
log x − 1

x .
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We can get the following inequality by the Itô’s formula,

LV = D(S0 − S) − 1
δ

mS

a + S
x − S0

S
D(S0 − S) + S0

S

1
δ

mS

a + S
x + S0(αD)2

2S2

+ 1
δ

mS

a + S
x − 1

δ
(D + D1)x − 2√

δ
( mS

a + S
− D − D1) + 1

x
( mS

a + S
− D − D1 − 2β2) + 2√

δ
β2

≤ −DS − S0

S
(DS0 − (αD)2

2
) + S0

δ

m

a + S
x + 2DS0 − 1

δ
(D + D1)x − 2√

δ
( mS

a + S
− D − D1)

+ 1
x

(m − D − D1 − 2β2) + 2√
δ

β2

Here we define p1(S) = mS
a+S and p2(S) = m

a+S . Since pi(S)(i = 1, 2) is continuously differentiable and
pi(0) = 0, pi(S) > 0(i = 1, 2) for S > 0, we have

p′
1(S) = ma

(a + S)2 > 0, p′
2(S) = − m

(a + S)2 < 0 forS > 0.

Then,

p1(S) > p1(S0) = mS0

a + S0 , p2(S) < p2(S0) = m

a + So
:= c0.

Therefore,

LV ≤ −DS − S0

S
(DS0 − (αD)2

2
) + S0

δ

m

a + S0 x + 2DS0 − 1
δ

(D + D1)x

− 2√
δ

( mS0

a + S0 − D − D1) + 1
x

(m − D − D1 − 2β2) + 2√
δ

β2

= λ − DS − S0

S
(DS0 − (αD)2

2
) − 1

δ
(D + D1 − mS0

a + S0 )x − 1
x

(D + D1 + 2β2 − m)

+ 2DS0 − 2√
δ

( mS0

a + S0 − D − D1).

here λ = 2DS0 − 2√
δ
( mS0

a+S0 − D − D1) + 2√
δ
β2

Then we choose sufficiently smallε1, ε2 such that

0 < ε1 < min{ S0

λ + 1
(DS0 − (αD)2

2
), D

λ + 1
},

0 < ε2 < min{D + D1 + 2β2 − m

λ + 1
,

D + D1 − mS0

a+S0

λ + 1
}.

Next we discuss the bounded open subset

Dε1,2 = {(S, x)|ε1 < S <
1
ε1

, ε2 < x <
1
ε2

}.

Define
D1

ε1,2
= {(S, x) ∈ R2

+|0 < S < ε1} D2
ε1,2

= {(S, x) ∈ R2
+|S >

1
ε1

},

D3
ε1,2

= {(S, x) ∈ R2
+|0 < x < ε2} D4

ε1,2
= {(S, x) ∈ R2

+|x >
1
ε2

}.

Easily, Dc
ε1,2

= D1
ε1,2 ∪ D2

ε1,2
∪ D3

ε1,2
∪ D4

ε1,2
. When (S, x) ∈ D1

ε1,2
, we can obtain that

LV ≤ λ − S0

s
(DS0 − (αD)2

2
) ≤ λ − S0

ε
(DS0 − (αD)2

2
) < −1.

170 Journal of Advances in Applied Mathematics, Vol. 3, No. 4, October 2018

JAAM Copyright © 2018 Isaac Scientific Publishing



In a similar way, we can find that LV ≤ −1 in D2
ε1,2

, D3
ε1,2

, D4
ε1,2

, respectively. Hence, for any (S, x) ∈
Dc

ε1,2
, we have LV ≤ −1. Then we let U to be a neighborhood of Dc

ε1,2
with U ⊂ R2

+. It is easy to get
LV ≤ −1, for (S, x) ∈ R2

+ \ U . Therefore, the condition (H2) of Lemma 2.1. is true. What’s more, we
take M = min(S,x)∈U {α2D2, β2x2} such that

2∑
i,j=1,2

aij(S, x)ξiξj = α2D2ξ2
1 + β2x2ξ2

2 ≥ M∥ξ∥2, for(S, x) ∈ U, ξ = (ξ1, ξ2) ∈ R2
+.

In other words, the condition (H1) of Lemma 2.1 is true. Hence, we can see that the system (3) has
a unique stationary distribution and ergodic property by Lemma 2.1. That’s the proof.

Theorem 3.3 If ⟨R0⟩θ > 0, system (4) has a nontrivial positive θ-periodic solution. Where R(t) :=
mS0

a+S0 − 2D(t) − D1(t) − 1
2 β2(t)

Proof. For arbitrary initial value (S(0), x(0)) ∈ R2
+, according to Theorem 3.1, system (4) exists a

unique global positive solution. Hence we let R2
+ as the whole space. Obviously, the coefficients of the

system (4) meet (6). As we know from Lemma 2.2, if we want to prove Theorem 3.3, all we have to do is
just seek out a C2-function V (t, x) and a closed set U ∈ R2

+ that make conditions (7) and (8) true. First
of all, we choose a constant c = max

{
(αu)2, (Du

1 )2 + (βu)2}
such that

(A)
Dl − 1

2
− c > 0.

Next, a positive constant M big enough is be taken to make that
(B)

fu − M⟨R⟩θ ≤ −2.

f(S, x) is a function described later in (C).
Denote V1 = − log S

S0 − log x − x, V2 = (S − S0 + 1
δ x)2. Therefore we get a C2-function:

V = M(V1 + ω(t)) + V2, (13)

where function ω(t), t ∈ [0, +∞) satisfies

ω̇(t) = R(t) − ⟨R⟩θ, ω(0) = 0, (14)

It is obvious to see that ω(t) is a θ-periodic function t ∈ [0, +∞) and V (t, S, x) is a θ-periodic in t
which satisfies condition (7). Then we should prove the condition (8).

By the Itô’s formula, we have

LV1 = − 1
S

[D(t)(S0 − S) − 1
δ

mS

a + S
x] + 1

2S2 α2(t)D2(t)

− mS

a + S
+ D(t) + D1(t) + 1

2
β2(t) + ( mS

a + S
− D(t) − D1(t))x

= −D(t)S0

S
+ 2D(t) + D1(t) + 1

δ

m

a + S
x + 1

2S2 α2(t)D2(t)

− mS

a + S
+ 1

2
β2(t) + ( mS

a + S
− D(t) − D1(t))x

≤ −DlS0

S
+ (αuDu)2

2S
− mS

a + S
+ 1

δ

m

a + S
x + (m − Dl − Dl

1)x + 2D(t) + D1(t) + 1
2

β2(t)

≤ −DlS0 − (αuDu)2

2S
+ c0

δ
x + (m − Dl − Dl

1)x − [ mS0

a + S0 − 2D(t) − D1(t) − 1
2

β2(t)].

Next,

L(V1 + ω(t)) ≤ −⟨R⟩θ − DlS0 − (αuDu)2

2S
+ c0

δ
x + (m − Dl − Dl

1)x. (15)
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Let us consider the V2, using the Itô’s formula again, we have

LV2 = 2(S − S0 + 1
δ

x)
[
D(t)(S − S0) − 1

δ

mS

a + S
x + 1

δ
x

(
mS

a + S
− D(t) − D1(t)

)]
+ α2(t)D2(t) + 1

δ2 β2(t)x2,

= −2(S − S0)2D(t) − 2(S − S0)1
δ

x(D(t) + D1(t)) − 2
δ

xD(t)(S − S0)

− 2(1
δ

x)2
(

D(t) + D1(t) + α2(t)D2(t) + 1
δ2 β2(t)x2

)
,

= −2D(t)
[
(S − S0)2 + 2

δ
x(S − S0) + (1

δ
x)2

]
− 2(S − S0)1

δ
xD1(t)

− 2(1
δ

x)2D1(t) + α2(t)D2(t) + 1
δ2 β2(t)x2,

= −2D(t)(S − S0 + x

δ
)2 − 2(S − S0 + x

δ
)D1(t)x

δ
+ α2(t)D2(t) + 1

δ2 β2(t)x2.

Using the fact that a2 + b2 ≥ −2ab, for any a, b ∈ R,we can see

LV2 ≤ −2D(t)(S − S0 + x

δ
)2 + (S − S0 + x

δ
)2 + (D1(t)x

δ
)2 + α2(t)D2(t) + 1

δ2 β2(t)x2,

= −2(D(t) − 1
2

)(S − S0 + x

δ
)2 + α2(t)D2(t) + D2

1(t) + β2(t)
δ2 x2,

≤ −2(D(t) − 1
2

)(S − S0 + x

δ
)2 + α2(t)D2(t) + (Du

1 )2 + (βu)2

δ2 x2.

Pay attention to the

(Du
1 )2 + (βu)2

δ2 x2 ≤ (αu)2S2 + (Du
1 )2 + (βu)2

δ2 x2,

≤ (αu)2S2 (Du
1 )2 + (βu)2

δ2 x2,

≤ max
{

(αu)2, (Du
1 )2 + (βu)2}

(S + x

δ
)2,

= c(S + x

δ
)2.

Hence

LV2 ≤ −2(D(t) − 1
2

)(S − S0 + x

δ
)2 + α2(t)D2(t) + c(S + x

δ
)2,

≤ −2(D(t) − 1
2

)(S − S0 + x

δ
)2 + α2(t)D2(t) + c

[
2(S − S0 + x

δ
)2 + 2(S0)2

]
,

= −2(D(t) − 1
2

)(S − S0 + x

δ
)2 + α2(t)D2(t) + 2c(S − S0 + x

δ
)2 + 2c(S0)2,

= −2(D(t) − 1
2

− c)(S − S0 + x

δ
)2 + α2(t)D2(t) + 2c(S0)2,

≤ −2(Dl − 1
2

− c)(S − S0 + x

δ
)2 + (αu)2(Du)2 + 2c(S0)2. (16)

This combined with the (15)and (16), showing that

LV ≤ M

[
−⟨R⟩θ − DlS0 − (αuDu)2

2S
+ c0

δ
x + (m − Dl − Dl

1)x
]

− 2(Dl − 1
2

− c)(S − S0 + x

δ
)2 + (αu)2(Du)2,

= f(S, x) + g(x). (17)
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here(C)

{
f(S, x) = −2(Dl − 1

2 − c)(S − S0 + x
δ )2 − M DlS0−(αuDu)2

2S + (αu)2(Du)2 + 2c(S0)2,

g(x) = −M⟨R⟩θ + M(m − Dl − Dl
1 + c0

δ )x.

We can see that
f(+∞, x) + gu → −∞, as S → +∞,

f(S, +∞) + g(+∞) → −∞, as x → +∞,

When DlS0 − (αuDu)2 > 0
f(0+, x) + gu → −∞, as S → 0+.

All of these cases make for LV < −1. From B

f(S, 0+) + g(0+) → fu − M⟨R⟩θ, as x → 0+.

Then we will choose ε small enough to make U = [ε, 1
ε ] × [ε, 1

ε ]. Thus it can be seen that

LV < −1, (S, x) ∈ R2
+ \ U.

That’s the proof.
In proving theorem 3.2 and 3.3, we found that the most difficult problem was to construct Lyapunov

function that satisfies Lemma 2.1 and 2.2 respectively.

4 Numerical Simulations

We will use numerical methods to simulate the results in this section. As shown in the following figures,
the blue lines stand for the solution of stochastic system; the red lines are the solution of the relevant
deterministic system.

Firstly, we choose parameters S0 = 1, m = 2, a = 4, δ = 0.8, D = 1.3, D1 = 0.8, α = 0.016, β = 0.4,
according to Theorem 3.2, there has a stationary distribution of the system (3). The numerical simulations
in Fig. 1.
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Figure 1. The solution of system (3) and its relevant undistributed system with initial conditions (0) =
0.11, x(0) = 0.89.

Next, we will denote D(t) = 1.8+0.2 sin t, D1(t) = 0.6+0.2 cos t, S0 = 1, m = 3, a = 0.2, δ = 0.8, m0 =
0.5, M = 50, c2 = 0.7, α(t) = 0.2 + 0.05 cos t, β(t) = 0.2 + 0.05 cos t.

Journal of Advances in Applied Mathematics, Vol. 3, No. 4, October 2018 173

Copyright © 2018 Isaac Scientific Publishing JAAM



Then ⟨R⟩2π > 0. Thus system (4) has a 2π-periodic solution. The numerical simulations in Fig.
2,3,4 sustain these result distinctly. And in Fig. 4, the noise intensities become smaller, here we choose
α(t) = 0.01 + 0.005 cos t, β(t) = 0.01 + 0.005 cos t.
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Figure 2. The periodic solution of system (4) and its relevant undistributed system with initial conditions
(0) = 0.11, x(0) = 0.89.
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Figure 3. The periodic solution of system (4) and its relevant undistributed system with initial values S(0) =
0.32, x(0) = 0.64.
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Figure 4. The periodic solution of system (4) and its relevant undistributed system with initial values S(0) =
0.32, x(0) = 0.64.

As can be seen from figure 2 and figure 3, for arbitrary initial value, the solution of deterministic
system will go into the periodic orbit after a cycle of time. According to Fig. 3 and 4, the noise intensity
is small enough so that the stochastic system’s solution will fluctuate near the periodic orbit.

5 Conclusion

In this paper, we discuss a kind of stochastic chemostat model with Monod’s functional response, in which
concentration of nutrients and mortality of microorganisms are affected by white noise. We have proven
that system (3) has a unique stationary distribution and it is ergodic, when DS0 > (αD)2

2 , D + D1 >
mS0

a+S0 , D + D1 + 2β2 > m (see in Theorem 3.2.). The presence of a stationary distribution implies some
degree of stochastic stability. By Theorem 3.3., we have obtained that if ⟨R⟩θ > 0, system (4) exists
a unique nontrivial positive θ-periodic solution. When the density of white noise is small enough, the
solutions of stochastic systems are less perturbed. Therefore, if we control the white noise reasonably, we
can make the chemostat achieve the ideal effect.
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