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Abstract In this paper, by introducing a Fritz-John type result for mathematical program with
vanishing constraints (MPVC), we present some new constraint qualifications which are strictly
weaker than the MPVC-Mangasarian Fromovitz constraint qualification (MPVC-MFCQ). We show
that the MPVC-tailored penalty function which was introduced in [1] is still exact for MPVC under
the MPVC-generalized pseudonormality. Our exact penalty result improves the one in [1].
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1. Introduction

We consider the following constrained optimization problem

min f(x)
s.t. gi(x) ≤ 0, i = 1, 2, · · · , p;

hj(x) = 0, j = 1, 2, · · · , l;
Hi(x) ≥ 0, i = 1, 2, · · · ,m;
Gi(x)Hi(x) ≤ 0, i = 1, 2, · · · ,m

(1.1)

that we call a mathematical program with vanishing constraints, where f : Rn → R, g : Rn → Rp, h :
Rn → Rl and G,H : Rn → Rm are all continuously differentiable functions. Throughout this paper, X
denotes the feasible region of Problem (1.1).

The MPVC originated from optimization problem of topology of mechanical structures, and it plays
an important role in some other fields such as a robot path-finding problem with logic communication
constraints in robot motion planning [18], scheduling problems with disjoint feasible regions in power
generation dispatch [19] and mixed-integer nonlinear optimal control problems [20]. The major difficulty
in solving problem (1.1) is that it does not satisfy most of the standard constraint qualifications, including
linearly independent constraint qualification (LICQ) and MFCQ, at any feasible point of interest. The
MPVC has attracted much attention in the recent years. Several theoretical properties and different
numerical approaches for MPVC can be found in ( [1]- [11]). In [1], a new MPVC-tailored penalty function
for MPVC has been developed, i.e.,

P 0
α(x) = f(x) + α[

p∑
i=1

dist(−∞,0](gi(x)) +
l∑
i=1

dist{0}(hi(x)) +
m∑
i=1

distC(Gi(x), Hi(x))],

where distA(x) = inf{‖y − x‖ : y ∈ A}, C = {(a, b) : b ≥ 0, ab ≤ 0}, α > 0 is a penalty parameter. This
new penalty function P 0

α(x) is shown to be exact under the MPVC-MFCQ. A natural question is whether
this penalty function is exact under the mild condition which is weaker than the MPVC-MFCQ.

In this paper, we give a positive answer to the question. Firstly, we prove a Fritz-John type result
for MPVC by exploiting the special structure of the vanishing constraints. Based on the Fritz-John
type condition, we introduce some new constraint qualifications which are strictly weaker than the
MPVC-MFCQ. We show that the MPVC-tailored penalty function P 0

α(x) which was introduced in [1]
is still exact for MPVC under the MPVC-generalized pseudonormality. Our exact penalty result is an
improved version of the one in [1].
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2. Some Constraint Qualifications for MPVC

Motivated by similar ideas for the standard nonlinear programs and the MPEC from [12, 13], we can
obtain the following Fritz-Johns type result for the MPVC.

Theorem 2.1 Let x∗ be a local minimum of the MPVC. Then, there are multipliers α, λ, µ, γ, ν such
that:
(i) α∇f(x∗) +

p∑
i=1

λi∇gi(x∗) +
l∑
i=1

µi∇hi(x∗)−
m∑
i=1

γi∇Hi(x∗) +
m∑
i=1

νi∇Gi(x∗) = 0.

(ii)α ≥ 0, λi ≥ 0 for all i ∈ Ig(x∗), λi = 0 for all i /∈ Ig(x∗), γi = 0 for all i ∈ I+(x∗), γi ≥ 0 for all
i ∈ I0−(x∗), γi is free for all i ∈ I0+(x∗)∪ I00(x∗), νi = 0 for all i ∈ I+−(x∗)∪ I0−(x∗)∪ I0+(x∗), νi ≥ 0
for all i ∈ I+0(x∗) ∪ I00(x∗), γiνi = 0 for all i ∈ I00(x∗).
(iii) α, λ, µ, γ, ν are not all equal to zero.
(iv) If λ, µ, γ, ν are not all equal to zero, then there is a sequence {xk} → x∗ such that for all k:
f(xk) < f(x∗),
if λi > 0, then λigi(xk) > 0, if µi 6= 0, then µihi(xk) > 0,
if γi > 0, then γiHi(xk) < 0, if νi > 0, then νiGi(xk) > 0.

The technique of proof for the above theorem follows the one of Theorem 3.1 in [13], and is omitted.
Based on Theorem 3.1 and the related discussions in [12, 13], we now define some new constraint

qualifications for MPVC as follows.

Definition 2.1 A vector x∗ ∈ X is said to satisfy the MPVC-generalized MFCQ, if there is no multiplier
(λ, µ, γ, ν) 6= 0 such that
(i)

p∑
i=1

λi∇gi(x∗) +
l∑
i=1

µi∇hi(x∗)−
m∑
i=1

γi∇Hi(x∗) +
m∑
i=1

νi∇Gi(x∗) = 0.

(ii)λi ≥ 0 for all i ∈ Ig(x∗), λi = 0 for all i /∈ Ig(x∗), γi = 0 for all i ∈ I+(x∗), γi ≥ 0 for all i ∈ I0−(x∗),
γi is free for all i ∈ I0+(x∗) ∪ I00(x∗), νi = 0 for all i ∈ I+−(x∗) ∪ I0−(x∗) ∪ I0+(x∗), νi ≥ 0 for all
i ∈ I+0(x∗) ∪ I00(x∗), γiνi = 0 for all i ∈ I00(x∗).

Definition 2.2 A vector x∗ ∈ X is said to satisfy the MPVC-generalized pseudonormality, if there is no
multiplier (λ, µ, γ, ν) such that
(i) and (ii) hold in Definition 3.1.
(iii)there is a sequence {xk} → x∗ such that the following is true for all k:

p∑
i=1

λigi(xk) +
l∑
i=1

µihi(xk)−
m∑
i=1

γiHi(xk) +
m∑
i=1

νiGi(xk) > 0.

Definition 2.3 A vector x∗ ∈ X is said to satisfy the MPVC-generalized quasinormality, if there is no
multiplier (λ, µ, γ, ν) such that
(i) and (ii) hold in Definition 3.1.
(iii)(λ, µ, γ, ν) 6= (0, 0, 0, 0).
(iv)there is a sequence {xk} → x∗ such that the following is true for all k: for all λi > 0, λigi(xk) > 0,
for all µi 6= 0, µihi(xk) > 0, for all γi > 0, γiHi(xk) < 0, for all νi > 0, νiGi(xk) > 0.

Subsequently, we give some properties about the three constraint qualifications.

Proposition 2.1 MPVC-MFCQ ⇒ MPVC-generalized MFCQ ⇒ MPVC-generalized pseudonormality
⇒ MPVC-generalized quasinormality.

The proof of the above property is obvious, and is omitted.
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Remark 2.1 In fact, the MPVC-generalized MFCQ is strictly weaker than the MPVC-MFCQ. This can
be illustrated by the following example. Consider the following 2-dimension example with linear constraints

min f(x) = x2
1 + x2

2
s.t. g(x) = x2 ≤ 0,

H(x) = x1 + x2 ≥ 0,
G(x)H(x) = x1(x1 + x2) ≤ 0,

x∗ = (0, 0) is a local minimum for the above problem. Obviously, the MPVC-MFCQ is violated at x∗ by
using Lemma 2.1. On the other hand, it is easy to see that the MPVC-generalized MFCQ is satisfied from
Definition 3.1.

3. An Improved Exact Penalty Result for MPVC

In order to derive the exact penalty result, let us first rewrite our MPVC equivalently as

min f(x)
s.t. F (x) ∈ ∧, (3.2)

where F (x) =


gi(x)i=1,2,··· ,p
hi(x)i=1,2,··· ,l(
Gi(x)
Hi(x)

)
i=1,2,··· ,m

 , ∧ =

 (−∞, 0]p
{0}l
Cm

 , where C is given by

C = {(a, b) ∈ R2|b ≥ 0, ab ≤ 0}. (3.3)

The penalty function associated to (3.2) is Pα(x) = f(x) + αdist∧(F (x)), where dist∧(F (x)) =
inf{‖y − F (x)‖ : y ∈ ∧}. In this paper, we will restrict ourselves to the l1-norm. In this case, Pα(x) is of
the form

Pα(x) = f(x) + α[
p∑
i=1

dist(−∞,0](gi(x)) +
l∑
i=1

dist{0}(hi(x)) +
m∑
i=1

distC(Gi(x), Hi(x))].

Our next goal is to prove that the penalty function Pα(x) is exact at a local minimum x∗ of (1.1)
satisfying a suitable constraint qualification, i.e., that there is a ᾱ ≥ 0 such that x∗ is a local minimum of
Pα(x) for any α ≥ ᾱ.

Firstly, we give the following auxiliary results.

Lemma 3.1 [1] Let C be given by (3.3). Then for a, b ∈ R, we have

dist(−∞,0](a) = max{a, 0}, dist{0}(a) = |a|,

distC(a, b) = max{0,−b,min{a, b}} =

min{a, b}, if a,b≥ 0;
0, if a≤ 0, b≥ 0;
−b, if b≤ 0.

By using Lemma 4.1 and Lemma 5.1 in [1], similar to the proof of Lemma 4.2 in [13], we can get the
following lemma.

Lemma 3.2 Let C be given by (3.3). Then for a, b ∈ R we have

∂dist(−∞,0](a) =

{0}, if a<0;
[0,1], if a=0;
{1}, if a>0.

∂dist{0}(a) =

{−1}, if a<0;
[-1,1], if a=0;
{1}, if a>0.
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∂distC(a, b) =



{(0,−1)T }, if b<0
{(0, 1)T }, if a>b>0;
{(1, 0)T }, if b>a>0;
{(0, 1)T } ∪ {(1, 0)T }, if a=b>0;
{(0, 0)T }, if b>0,a<0;
conv{(0, 0)T , (1, 0)T }, if b>0, a=0;
conv{(0,−1)T , (0, 1)T }, if b=0, a>0;
conv{(0,−1)T , (0, 0)T }, if b=0, a<0;
conv{(0,−1)T , (0, 1)T } ∪ conv{(0, 0)T , (1, 0)T }, if a=b=0,

where the convex hull of a set X, denoted by conv(X), is the set of all convex combinations of elements
of X.

The following result is very important for the proof of Theorem 4.1.

Lemma 3.3 If x∗ ∈ X is MPVC-generalized pseudonormal, then all feasible points in a neighborhood of
x∗ are MPVC-generalized pseudonormal.

Combining the proof techniques of Lemma 1 in [14], Lemma 2 in [15] and Lemma 3.1 in [16], we can give
the proof of the above lemma. We omit the proof here.

Based on Lemma 4.1, Lemma 4.2 and Lemma 4.3, by using a different and elementary proof technique,
we can prove the following exact result under the MPVC-generalized pseudonormality.

Theorem 3.1 Let x∗ be a local minimizer of (1.1). If the MPVC-generalized pseudonormality holds at
x∗ and f is locally Lipschitz continuous around x∗, then the penalty function Pα(x) is exact at x∗.

Proof. Assume that the conclusion is not correct, i.e., there exists a positive number sequence {αk} →
+∞(k → +∞), such that x∗ is not a local minimum of the function

Pαk
(x) = f(x) + αk[

p∑
i=1

dist(−∞,0](gi(x)) +
l∑
i=1

dist{0}(hi(x)) +
m∑
i=1

distC(Gi(x), Hi(x))].

Let ε > 0 be sufficiently small such that

f(x∗) ≤ f(x), ∀x ∈ X, ‖x− x∗‖ ≤ ε. (3.4)

Taking into account the continuity of Pαk
(x), we can assume that xk minimizes Pαk

(x) over the set
satisfying ‖x− x∗‖ ≤ ε. Since x∗ is not a local minimum of Pαk

(x), then we must have that xk 6= x∗.
The following object is to show that xk is infeasible for (1.1). Actually, assume that xk is feasible

for (1.1), then Pαk
(xk) = f(xk). Taking into account that xk ∈ X and ‖xk − x∗‖ ≤ ε, from (3.4), we

can get f(x∗) ≤ f(xk). In view of that ‖x∗ − x∗‖ ≤ ε, one gets that Pαk
(xk) ≤ Pαk

(x∗). Noting that
Pαk

(x∗) = f(x∗), we obtain that Pαk
(xk) = Pαk

(x∗). Obviously, this contradicts the fact that x∗ is not a
local minimum of Pαk

(x) over the set satisfying ‖x− x∗‖ ≤ ε.
Hence, xk is infeasible for (1.1), i.e.,

p∑
i=1

dist(−∞,0](gi(xk)) +
l∑
i=1

dist{0}(hi(xk)) +
m∑
i=1

distC(Gi(xk), Hi(xk)) > 0.

In view of that x∗ is not a local minimum of Pαk
(x), we have

Pαk
(xk) = f(xk) + αk[

p∑
i=1

dist(−∞,0](gi(xk)) +
l∑
i=1

dist{0}(hi(xk))

+
m∑
i=1

distC(Gi(xk), Hi(xk))] ≤ f(x∗).
(3.5)

Noting that {f(x)} and {Pαk
(x)} are all bounded over the set of satisfying ‖x− x∗‖ ≤ ε, (3.5) implies

that
lim
k→∞

dist(−∞,0](gi(xk)) = 0,∀i = 1, · · · , p, lim
k→∞

dist{0}(hi(xk)) = 0,∀i = 1, · · · , l,
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lim
k→∞

distC(Gi(xk), Hi(xk)) = 0,∀i = 1, · · · ,m.

Since {xk} is bounded, if x̄ is any of its accumulation points, we have that x̄ is feasible for (1.1) and
‖x̄ − x∗‖ ≤ ε. Without loss of generality, we assume that {xk} converges to x̄. Taking into account
Proposition 2.4.3 in [17], the fact that xk minimizes Pαk

(x) over the set satisfying ‖x− x∗‖ ≤ ε shows
that for the sufficiently large σ,

0 ∈ ∂[Pαk
(xk) + σdist(−∞,0](‖xk − x∗‖ − ε)],

i.e., there are
ξk ∈ ∂f(xk), λki ∈ ∂dist(−∞,0](gi(xk)), ∀ i = 1, 2, · · · , p,

µki ∈ ∂dist{0}(hi(xk)), ∀ i = 1, 2, · · · , l, ζk ∈ ∂dist(−∞,0](‖xk − x∗‖ − ε),

(νki ,−γki ) ∈ ∂distC(Gi(xk), Hi(xk)), ∀ i = 1, 2, · · · ,m

such that

ξk + αk[
p∑
i=1

λki∇gi(xk) +
l∑
i=1

µki∇hi(xk)−
m∑
i=1

γki ∇Hi(xk) +
m∑
i=1

νki ∇Gi(xk)] + σζk
xk − x∗

‖xk − x∗‖
= 0.

For the sufficiently large k, we let σ = √αk. From the above equation, we also can get

1
αk
ξk +

p∑
i=1

λki∇gi(xk) +
l∑
i=1

µki∇hi(xk)−
m∑
i=1

γki ∇Hi(xk) +
m∑
i=1

νki ∇Gi(xk) + 1
√
αk
ζk

xk − x∗

‖xk − x∗‖
= 0.

Noting Lemma 4.2, it is to see that the sequence {(ξk, λk, µk, γk, νk, ζk)} is bounded. Thus, we can
assume without loss of generality that the sequence {(λk, µk, γk, νk)} converges to some limit (λ, µ, γ, ν).
Taking the limit as k →∞ in the above equation, this yields

p∑
i=1

λi∇gi(x̄) +
l∑
i=1

µi∇hi(x̄)−
m∑
i=1

γi∇Hi(x̄) +
m∑
i=1

νi∇Gi(x̄) = 0

from the smoothness of g, h,G,H. Furthermore, we can obtain that from Lemma 4.2

λi ≥ 0, ∀i ∈ Ig(x̄), λi = 0, ∀i /∈ Ig(x̄),

γi = 0, ∀i ∈ I+(x̄), γi ≥ 0, ∀i ∈ I0−(x̄), γi is free, ∀i ∈ I0+(x̄) ∪ I00(x̄),

νi = 0, ∀i ∈ I+−(x̄) ∪ I0−(x̄) ∪ I0+(x̄), νi ≥ 0, ∀i ∈ I+0(x̄) ∪ I00(x̄),

γiνi = 0, ∀i ∈ I00(x̄).

On the other hand, it is easy to see that, for all k,

λigi(xk) ≥ 0, ∀i = 1, 2, · · · , p, µihi(xk) ≥ 0, ∀i = 1, 2, · · · , l,

−γiHi(xk) ≥ 0, ∀i = 1, 2, · · · ,m, νiGi(xk) ≥ 0, ∀i = 1, 2, · · · ,m.

Because xk is infeasible for (1.1) for all k, at least one constraint for (1.1) has to be violated infinitely
many times. If gi(xk) ≤ 0 is violated infinitely many times, we have λigi(xk) > 0 for those k. If hi(xk) = 0
is violated infinitely many times, we have µihi(xk) > 0 for those k. If Hi(xk) ≥ 0 and Gi(xk)Hi(xk) ≤ 0
are violated infinitely many times, from Lemma 4.1 and Lemma 4.2, we have −γiHi(xk) + νiGi(xk) > 0
for those k. This yields

p∑
i=1

λigi(xk) +
l∑
i=1

µihi(xk)−
m∑
i=1

γiHi(xk) +
m∑
i=1

νiGi(xk) > 0
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at least on a subsequence K. However, this implies that the MPVC-generalized pseudonormality does not
hold at x̄. This contradicts Lemma 4.3. The proof is complete. �

In order to show the feasibility and effectiveness of proposed result, we can provide the following
example.
Example 1. Consider the two-dimensional MPVC problem

min f(x) = x2
1 + x2

2
s.t. H1(x) = x1 + x2 ≥ 0;

G1(x)H1(x) = −(x1 + x2)(x1 + x2) ≤ 0,

x∗ = (0, 0)T is a minimizer of the above MPVC. Obviously, we can see that the MPVC-MFCQ at x∗ does
not hold. However, by Definition 2.1, we can conclude that the MPVC-generalized MFCQ at x∗ holds. In
view of Proposition 2.1, this implies that the MPVC-generalized pseudonormality at x∗ holds. On the
other hand, it is easy to see that x∗ is a global minimizer of the following penalty function for any α > 0:

Pα(x) = x2
1 + x2

2 + αdistC(−(x1 + x2), x1 + x2] = x2
1 + x2

2.

This example shows that the penalty function Pα is exact at x∗ under the MPVC-generalized pseudonor-
mality which is strictly weaker than the MPVC-MFCQ.
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