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Abstract Given a Calabi-Yau manifold and considering the B-branes on it as objects in the derived
category of coherent sheaves, we identify the vertex operators for strings between two branes with
elements of the cohomology groups of Ext sheaves. We define the correlation functions for these
general vertex operators. Strings stretching between two coherent sheaves are studied as homological
extensions of the corresponding branes. In this context, we relate strings between different pairs of
branes when there are maps between these pairs. We also interpret some strings with ghost number
k as obstructions for lifts or extensions of strings with ghost number k − 1.
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1 Introduction

In the nonlinear sigma B-model on a Calabi-Yau manifold X, the local operators are defined by differential
forms of type (0, q) with coefficients in the vector bundles

∧p
TX, where TX is the holomorphic

tangent bundle of X [21]. The BRST operator in this theory is the Dolbeault operator ∂̄; so, the spaces
Hq

∂̄
(X,

∧p
TX) are the groups of the BRST cohomology of the B-model.

The coupling of that system to gauge fields is carried out through Chan-Paton factors [20]. In this
way, given two holomorphic vector bundles V1 → X and V2 → X, an open string vertex operator for
a string stretching from V1 to V2 is given by a ∂̄-closed (0, q)-form with values in the vector bundle
Hom(V1, V2). More precisely, the vertex operators for strings between the B-branes defined by V1 and V2
are the elements of the cohomology groups (see [1, Sect. 3.2.2], [2, page 207])

H0,q
∂̄

(X, Hom(V1, V2)). (1)

In this note, we will deal with D-branes of type B in a compact n-dimensional Kähler manifold X and
with other objects related to them. Such a brane can be considered as an object of D(X), the bounded
derived category of coherent sheaves on X (see monograph [2], which includes an exhaustive list of specific
references). Particular B-branes are the holomorphic vector bundles on X, and (1) gives the spaces of
local operators for strings stretching between two of these particular branes.

Obviously, (1) makes non sense for strings between general branes. One of the purposes of this article
is to “extend” that formula to the case of strings stretching between two arbitrary branes; that is, to give
a general definition of the spaces of vertex operators which coincides with (1) when the branes are locally
free sheaves.

In Section 2, we carry out the mentioned “extension”. Firstly, we recall the identification of the space
(1) with the qth group of cohomology of X with coefficients in the sheaf of holomorphic sections of
Hom(V1, V2). On the other hand, if F and G are B-branes, i.e., objects of the category D(X), an open
string between F and G with ghost number k is an element of the Ext group Extk(F , G) [1, Sect. 5.2]. As
Hom = Ext0, the strings in Hom(V1, V2) have ghost number 0. So, the vertex operators considered in the
space (1) are for strings with zero ghost number, and we do not have a definition of local operators for
strings between general branes with arbitrary ghost number.

When one considers two general branes F and G and strings with ghost number k, as a direct
generalization of formula (1), we propose⊕

q

Hq
(
X, Extk(F , G)

)
,

Journal of Advances in Applied Mathematics, Vol. 2, No. 2, April 2017 
https://dx.doi.org/10.22606/jaam.2017.22001 71

Copyright © 2017 Isaac Scientific Publishing JAAM



for the corresponding space of vertex operators (see (13)). In this way, the vertex operators are regarded
as elements of sheaf cohomology groups.

These spaces of vertex operators for strings from a locally free sheaf E to a coherent sheaf G are specially
simple: the local operators corresponding to strings with ghost number k > 0 are trivial (Proposition 2.5).
Moreover, the strings with ghost number k from E to G can be identified with vertex operators for strings
with ghost number 0 stretching from E to G (Proposition 2.6).

When X is a Calabi-Yau manifold of dimension n, there is a holomorphic volume form which permits
to identify the space

∧n
TX with the space of holomorphic n-forms. Thus, in the sigma B-model,

the correlation functions corresponding to local operators can be calculated by integration on X of
corresponding differential forms.

In our case, when X is a projective Calabi-Yau variety, using the Serre duality in the derived category
D(X), the holomorphic volume form and the Yoneda product, we will define the correlation functions
for the local operators introduced above (see (16)). In Proposition 2.9, we prove that this definition
generalizes the one given in [2, page 208] for operators of strings between holomorphic vector bundles.

We denote with Coh(X) the category of coherent sheaves on X. The category D(X), as derived
category of Coh(X), is triangulated [13, Sect 1.5]. Hence, we can consider distinguished triangles in D(X)

B u→ C v→ D +1→ B[1]. (2)

In physical terms, this triangle can be interpreted as a possible binding of the branes B and D to form
the brane C [2, page 368]. In general, a string from B to a brane G does not admit a lift to a string from
the binding brane C to G. Dually, not all the strings stretching from F to D can be extended to strings to
C. The obstructions for these lifts and extensions are described in Proposition 2.1.

In Proposition 2.4, we relate the vertex operators for strings ending on the brane C and the cohomology
of other objects of D(X) determined by the triangle. Under additional hypotheses, the result stated in
Proposition 2.4 adopts the simpler form which appears in Proposition 2.7.

Section 3 concerns branes defined by coherent sheaves. As the category Coh(X) is abelian, it is possible
to define in Coh(X) the homological concept of extension of an object by other [15]. This fact allows us
to study the groups of strings between two coherent sheaves F and G in terms of extensions, without
resorting to injective resolutions of G. By interpreting the strings as extensions:

(i) We can show easily the definition of the bifunctors Extk( . , . ) on morphisms between coherent
sheaves. The corresponding group homomorphisms give relations among different string spaces.

(ii) We can describe some strings of ghost number k + 1 as obstructions on strings with k ghost
number.

To illustrate item (i), let us consider locally free sheaves Fi, i = 1, 2, 3, with Fi the sheaf of homolorphic
sections of the vector bundle Vi → X. Then, by Proposition 2.6, Extk(F1, F2) is the kth cohomology
group of X with coefficients in the vector bundle Hom(V1, V2). So, given a gauge transformation V2 → V3,
it induces an obvious homomorphism Extk(F1, F2)→ Extk(F1, F3). However, when the Fi are general
coherent sheaves the homomorphism between the corresponding Ext groups is not so evident. Nevertheless,
in terms of extensions, the passage from Extk(F1, F2) to Extk(F1, F3) reduces to the construction of a
fibred coproduct.

With respect to item (ii), given the subsheaf B ⊂ C, an object G of Coh(X) and a string R with ghost
number p between B and G, we construct an string of Extp+1(C/B, G) which is the obstruction for an
extension of R to an string stretching between C and G. Dually, some strings in Extp+1(F , B), when F is
a coherent sheaf, can be regarded as obstructions for the lift of elements in Extp(F , C/B) to strings from
F to C (see Proposition 3.3).

If X is an algebraic variety and it has a positive line bundle, then each coherent sheaf admits a global
syzygy. This fact will permit us to describe the spaces of vertex operators as local extensions. More
precisely, given the coherent sheaves F and G, the vertex operators for strings between the branes F and
G are the local extensions of the sheaf G by F (see Theorems 3.4 and 3.5). However, when F and G are
D0 branes the local extensions of G by F are, in fact, global; in other words, the spaces of local operators
are isomorphic with the corresponding spaces of strings (see Example after Theorem 3.5).

To summarize, we enumerate some novel points we deal in this paper, which have not been considered
hitherto in the literature.
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1. The introduction of the spaces of vertex operators for strings with ghost number different from 0.
2. The application of cohomological methods for the interpretation of spaces of strings as obstructions

to extensions or liftings.
3. The definition of the correlation functions for cohomological vertex operators.
4. The interpretation of the vertex operators as local extensions.

2 Vertex Operators

We will denote by O the sheaf of germs of holomorphic functions on X, and we will put Ap,q for the sheaf
of germs of differential forms on X of type (p, q). By the Poincaré lemma relative to the operator ∂̄, one
has the following well-known resolution of the sheaf O

0→ O → A0,0 ∂̄→ A0,1 ∂̄→ A0,2 → . . . (3)

Let V1 and V2 be holomorphic vector bundles on X. We denote by V the holomorphic vector bundle
Hom(V1, V2), and by O(V ) the sheaf of germs of holomorphic sections of V . We have also the corresponding
sheaves of V -valued elements

A0,q(V ) = O(V )⊗O A0,q.

As the sheaf O(V ) is locally free, the tensor product of O(V ) by the resolution (3) gives the resolution

0→ O(V )−→A0,0(V ) 1⊗∂̄−→ A0,1(V ) 1⊗∂̄−→ A0,2(V )−→ . . . (4)

We put Ap,q(V ) := Γ (X, Ap,q(V )) for the space of sections of the corresponding sheaf. As (4) is a
fine resolution of O(V ), one has

Hq(X, O(V )) = hq(A0,•(V )). (5)

That is,
Hq(X, O(Hom(V1, V2))) = hq(A0,•(Hom(V1, V2))), (6)

where the right hand side is the qth cohomology object of the complex A0,•(Hom(V1, V2)); in other words,
the space of vertex operators (1).

Thus, the elements of Hq(X, O(Hom(V1, V2))) can be considered as local operators, and the space of
vertex operators for a string between V1 and V2 is the following direct sum of cohomology groups [2, page
207] ⊕

q

Hq
(
X, O(Hom(V1, V2))

)
. (7)

We will write the space (7) in other equivalent form, which admits a natural generalization to branes
which are not locally free sheaves. For this purpose, we recall some properties of the functor Ext. We set
Hom( . , . ) for the sheaf functor Hom (see [13, page 87])

Hom( . , . ) : Coh(X)op × Coh(X)→ Sh,

where Sh is the category of sheaves of C-vector spaces on X. It is easy to check that

Hom
(
O(V1), O(V2)

)
= O(Hom(V1, V2)). (8)

As we said, the bounded derived category of Coh(X) will be denoted by D(X), thus one has the
derived functor

RHom( . , . ) : D(X)op ×D(X)→ D(Sh),

where D(Sh) is the derived category of Sh. By definition Extk(F , G) = HkRHom(F , G)).
On the other hand, we set Hom for the corresponding Hom functor of the category Coh(X); so,

denoting with Vec the category of C-vector spaces,

Hom( . , . ) : Coh(X)op × Coh(X)→ Vec. (9)
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Its derived functor
RHom( . , . ) : D(X)op ×D(X)→ D(Vec),

determines the Ext groups [7, page 194]

Extk(F , G) = HkRHom(F , G). (10)

This is the space of strings with ghost number k between the branes F and G. Since

HkRHom(F , G) = HomD(X)(F , G[k]), (11)

where G[k] is the complex G shifted by k to the left, the strings between two branes can be considered as
morphisms of the derived category D(X).

Obviously, the O(Vi) are objects of D(X). The equality

Hom
(
O(V1), O(V2)

)
= Ext0(O(V1), O(V2)),

together with (8), allows us to write (7) as⊕
q

Hq
(
X, Ext0(O(V1), O(V2))

)
. (12)

To sum up, this is space of local operators for strings in

Hom(O(V1), O(V2)) = Ext0(O(V1), O(V2)).

Therefore, the natural generalization of (7) for the space of vertex operators for strings with ghost
number k stretching between the branes F and G is⊕

q

Hq
(
X, Extk(F , G)

)
. (13)

In particular, for a string with ghost number 0 stretching from O to G = O(
∧p

TX), one has the
space of local operators

Hq(X, Ext0(O, G)).

As Hom(O, . ) is the identity functor, this space coincides with BRST cohomology group of the sigma
B-model mentioned in Section 1.

A consequence of the Grothendieck spectral sequence [19, page 403] [7, page 207] is the known
Local-to-Global Ext spectral sequence, which allows to determine the Ext groups from the sheaves Ext.
That is, given the objects F and G in D(X), the spectral sequence

Ep,q2 = Hp(X, Extq(F , G)) (14)

abuts to Extk(F , G). Thus, the spaces of strings Extk(F , G) are the limit of the spectral sequence
determined by the space of vertex operators for strings between F and G.

2.1 Correlation Functions

If X is a projective variety of dimension n, the Serre functor S [4] in the category D(X) is

S = ( . )⊗ ωX [n] : D(X)→ D(X),

where ωX is the canonical sheaf of X and [n] denotes the shifting of the complex by n to the left. Thus,
for any F , H objects of D(X), one has a perfect pairing

HomD(X)(F , H)⊗HomD(X)(H, F ⊗ ωX [n])→ C.
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Since F ⊗ ωX [n] = (F ⊗ ωX)[n], the above pairing when H = F [n] gives

F : Extn(F , F)⊗HomD(X)(F , F ⊗ ωX)→ C.

When X is a Calabi-Yau variety, as the canonical bundle of X is trivial, there is an n-holomorphic
form Ω which vanishes nowhere. Ω is unique up to multiplicative constant, and it can be fixed imposing∫

X

Ω ∧ Ω̄ = 1.

On the other hand, given an open subset U of X, we put

ε(U) : s ∈ F(U) 7→ s⊗Ω|U ∈ F(U)⊗O(U) ωX(U).

Then the maps ε(U) determine a morphism ε : F → F ⊗ ωX , which in turn defines an element ε of
HomD(X)(F , F ⊗ ωX). So, we have the map

t : Extn(F , F)→ C, (15)

where t(σ) is F (σ ⊗ ε).
The element Eq,p∞ corresponding to the spectral sequence (14) is a subquotient of Eq,p2 . That is, there

exists a tower of subspaces

0 = Bp,q1 ⊂ Bp,q2 ⊂ · · · ⊂ Zp,q2 ⊂ Zp,q1 = Ep,q2 ,

and
Ep,q∞ = Zp,q∞ /Bp,q∞ ; Zp,q∞ = ∩rZp,qr , Bp,q∞ = ∪rBp,qr .

Given the local operator a ∈ Hq(X, Extp(F , G)), we define

α =
{

[a] ∈ Ep,q∞ , if a ∈ Zp,q∞
0 ∈ Ep,q∞ , otherwise.

As the sequence (14) converges to Extq+p(F , G), the element α is a string with ghost number p + q
stretching between F and G; α ∈ Extq+p(F , G).

In particular, given the local operators aj ∈ Hqj (X, Extpj (Fj−1, Fj)) for j = 1, . . . , k, satisfying∑
j(qj + pj) = n and Fk = F0, then the Yoneda composite of the respective αj

α1 ? · · · ? αk ∈ Extn(F0, F0).

The k-correlation function for the local operators a1, . . . , ak can be defined as the complex number

〈a1 . . . ak〉 := t(α1 ? · · · ? αk). (16)

2.2 Distinguished Triangles and Obstructions

Given the distinguished triangle (2), as the functors HomD(X)(F , . ) and HomD(X)( . ,G) are cohomological
functors, the triangle (2) gives rise to the long exact sequences of groups

· · · → Extp(F , B)→ Extp(F , C)→ Extp(F , D)→ Extp+1(F , B)→ . . . (17)
· · · → Extp(D, G)→ Extp(C, G)→ Extp(B, G)→ Extp+1(D, G)→ . . . (18)

where F and G are objects of D(X). Thus, we have the following proposition.

Proposition 2.1. Let us assume that the brane C can decay into the branes B and D, according to (2).

1. If τ is a string between F and D with ghost number p, then Extp+1(F , τ) is the obstruction for a lift
of τ to a string stretching from F to C.
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2. If ρ is a string in Extp(B, G), then Extp+1(ρ, G) is the obstruction for an extension of ρ to a string
between C and G.

Roughly speaking, Extp+1(D, G) computes the strings from B to G, with ghost number p, which can
not be “extended” to strings between C and G. Dually, Extp+1(F , B) computes the strings stretching
from F to D, with ghost number p, which can not be “lifted” to strings between F and C.

Given the distinguished triangle (2) in D(X) and an object F of this category, we will show that the
spaces of vertex operators {Hq(X, Extk(F , C))}q (with k fixed) can be included in a long exact sequence
with other spaces of local operators determined by the vertices of the triangle.

To deduce that exact sequence, we will prove that the functor RHom(F , . ) : D(X) → D(Sh) is
t-exact, i.e., it transforms distinguished triangles into distinguished triangles [7, page 285].

Returning to the triangle (2), if P is a complex in the category of O-modules quasi-isomorphic to F
with Pi a projective object, then

Extk(F , B) = hk(Hom•(P, B)),

where Hom•(P, B) is the complex of O-modules, defined by

Homn(P, B) =
∏
i

Hom(Pi, Bi+n). (19)

(Dually, we could take an injective resolution of B, such injective resolutions always exist in the
category of O-modules).

Let C denote the category of complexes of O-modules. With respect to the triangle (2), it is not
restrictive to assume that C and D are the mappings cylinder and cone of some morphism g of C with
domain B; that is,

C = Cyl(g), D = Con(g), (20)

and the morphisms u and v are the natural ones (see Proposition 8 in page 256 of [7]).
In the Appendix, we will prove the following proposition.

Proposition 2.2. Let U be an open subset of X, then

Hom•(P, Con(g))(U) = Con(ĝ)(U), Hom•(P, Cyl(g))(U) = Cyl(ĝ)(U),

ĝ being Hom•(P, g).

Applying the functor Hom•(P, . ) to the triangle (2) and taking into account (20), one obtains the
sequence

Hom•(P, B)→ Hom•(P, Cyl(g))→ Hom•(P, Con(g))→
→ Hom•(P, B[1]).

By Proposition 2.2, for any open U , we have

Hom•(P, B)(U)→ Cyl(ĝ)(U)→ Con(ĝ)(U)→
Hom•(P, B[1])(U) = Hom•(P, B)[1](U).

Hence, one has the following distinguished triangle in the category D(X)

Hom•(P, B)→ Cyl(ĝ)→ Con(ĝ)→ Hom•(P, B)[1].

We have proved the following proposition.

Proposition 2.3. The functor RHom(F , . ) is t-exact.
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Similarly, the functor RHom( . , F) are t-exact.
As the functor H0 is cohomological in any triangulated category [7, page 283], from the distinguished

triangle (2) in D(X), by Proposition 2.3, one obtains the exact sequence

· · · → Extk(F , B) α→ Extk(F , C) β→ Extk(F , D) γ→ Extk+1(F , B)→ . . . (21)

in the category Sh of sheaves of C-vector spaces on X.
The following proposition yields the mentioned exact sequence, in which the space of vertex operators

{Hq(X, Extk(F , C))}q are involved.

Proposition 2.4. Given the distinguished triangle (2), the following cohomology sequence is exact

. . .→ Hq(X, Ker(β))→ Hq(X, Extk(F , C))→ Hq(X, Im(β))→ (22)
→ Hq+1(X, Ker(β))→ . . . .

where β : Extk(F , C)→Extk(F , D) is the morphism induced by the arrow v of (2).

Proof. From (21), one deduces the short exact sequence of sheaves

0→ Ker(β)→ Extk(F , C)→ Im(β)→ 0.

The sequence (22) is the corresponding long exact cohomology sequence.

2.3 Vertex Operators for Strings between Locally Free Sheaves

If E is a locally free O-module, then one has the following locally free resolution E• of E , where Ei = 0 for
i 6= 0 and E0 = E ,

· · · → 0→ 0→ E → E → 0, (23)

which can be used to construct the sheaves Extk(E , G), with G any coherent O-module (see Proposition
6.5 in page 234 of [9]). Hence,

Extp(E , G) = hp(Hom(E•, G)) = 0, for p > 0.

So, we have the proposition.

Proposition 2.5. Let E be a locally free O-module and G an arbitrary coherent O-module. Then, the
space (13) of vertex operators for a string of Extk(E , G) is zero, when k > 0.

Thus, by the proposition, to get nontrivial local operators for strings with ghost number k > 0, it is
necessary to consider more general branes, for instance coherent not locally free sheaves on X. Among
those are the quotient O/I of O by an ideal sheaf.

Under the hypotheses of the proposition, the Local-to-Global spectral sequence is also trivial. Then,
one has the following result.

Proposition 2.6. Under the hypotheses of Proposition 2.5,

Extk(E , G) = Hk(X, Hom(E , G)).

That is, the strings with ghost number k starting from a locally free O-module are vertex operators
for strings with ghost number 0.
Distinguished triangles. Next, we will consider Proposition 2.4, when in the triangle (2) B, C and D are
O-modules. If E is a locally free sheaf, by Proposition 2.6, the exact sequences (17) and (18) can be
written in terms of vertex operators. Thus, one obtains the following proposition which relates the spaces
of vertex operators for strings which end at the branes B, C, D or begin in these branes.
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Proposition 2.7. Let B → C → D +1→ B[1] be a distinguished triangle consisting of O-modules, and E a
locally free O-module. Then the following sequences of vertex operators are exact

. . .→ Hq(X, Hom(E , B))→ Hq(X,Hom(E , C))→
→ Hq(X, Hom(E , D))→ Hq+1(X, Hom(E , B))→ . . .

and

. . .→ Hq(X, Hom(D, E))→ Hq(X,Hom(C, E))→
→ Hq(X, Hom(B, E))→ Hq+1(X, Hom(D, E))→ . . .

Correlation functions. Next, we will deduce the form adopted by the correlation function (16) for strings
between locally free O-modules. For this deduction, the following lemma will be useful.

Lemma 2.8. Let V be a holomorphic vector bundle on X and F = O(V ), then the map t defined in (15)
reduces to

t(σ) =
∫
X

tr(σ) ∧Ω,

σ ∈ H0,n
∂̄

(X, End(V )).

Proof. If V is a holomorphic vector bundle on X, then the Serre duality gives the pairing

Hq(X, V )⊗Hn−q(X, ωX ⊗ V ∗)→ C, α⊗ β 7→
∫
X

α ∧ β,

where in α ∧ β the tautological paring on Vx ⊗ V ∗x is involved; i.e., the trace on End(Vx). Thus, by
Proposition 2.6 together with (6) the map t in this case takes the form

σ ∈ H0,n
∂̄

(X, End(V )) = Extn(O(V ), O(V )) 7→
∫
X

tr(σ) ∧Ω.

Let Vi, i = 1, . . . , k be holomorphic vector bundles on X, we put Fj = O(Vj). By Proposition 2.6
together with (6)

H0,q
∂̄

(X, Hom(Vi, Vj)) = Extq(Fi, Fj). (24)

The composition pairing between the holomorphic vector bundles

Hom(Vi, Vj)⊗O Hom(Vj , Vr)→ Hom(Vi, Vr)

gives rise to the Yoneda pairing [8, page 707], which, by (24), adopts the following form

H0,p
∂̄

(X, Hom(Vi, Vj))⊗O H0,q
∂̄

(X, Hom(Vj , Vr))
?−→

H0,p+q
∂̄

(X, Hom(Vi, Vr)).

The cup product and the composition of homomorphisms are involved in the definition of ?.
By Proposition 2.5, to have nonzero local operators

aj ∈ Hqj (X, Extpj (Fj−1, Fj)), (25)

it is necessary that pj = 0. And according to Proposition 2.6, the αj ’s in (16) are identical to the aj ’s.
Thus, given αi ∈ Extqi(Fi−1, Fi), if V0 = Vk and

∑
qi = n, then

α1 ? · · · ? αk ∈ Extn(F0, F0) = H0,n
∂̄

(X, Hom(V0, V0)).
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Proposition 2.9. Given the locally free sheaves {Fi = O(Vi)}i=1,...,k, with V0 = Vk and the vertex
operators aj ∈ Hqj (X, Ext0(Fj−1, Fj)), such that

∑
qj = n. Then the correlation function

〈a1 . . . ak〉 =
∫
X

tr(α1 ∧ · · · ∧ αk) ∧Ω.

Proof. It is a direct consequence of the definition (16) and Lemma 2.8.

Therefore, the correlation function defined in (16) generalizes the one given in [2, page 208] for vertex
operators which are elements in spaces of the form (6).

Remarks. We summarize the most important points considered in this section. We have introduced
the vertex operators on the manifold X as elements of the cohomology groups of objects in the derived
category of sheaves. For the case when X is a projective variety, we have defined the correlation functions
for the new operators, and we have proved that they generalize the usual ones for local operators associated
to strings between locally free sheaves.

When the brane C may decay into the branes B and D, we have proved that strings in Extp+1(F , B)
are the obstructions for the lift of strings from F to D, with ghost number p, to strings between F to C.
Dually, strings in Extp+1(D, G) are the obstructions for the extension of strings from B to G, with ghost
number p, to strings between C to G.

We have also studied the relations between the following sets vertex operators

{Hq(X, Hom(E , B))}q, {Hq(X, Hom(E , C))}q, {Hq(X, Hom(E , D))}q,

when E is a locally free module.

3 Strings between Coherent Sheaves

In this section, we only consider branes which are objects of the category Coh(X), that is, coherent sheaves
on X. The category Coh(X) has enough injectives; hence, the restriction of the functors Extk, defined in
(10), to Coh(X) coincides with the classical derived functors of Hom [19, Corollary 10.7.5]. That is, the
spaces of strings (with a given ghost number) between coherent sheaves can be determined by calculating
the derived functors of Hom without passing to the derived category.

As Coh(X) is an abelian category, the Ext groups can be defined and studied in terms of extensions
[15]. We will adopt this point of view in this section. In Coh(X) it is possible to construct exact sequences,
fibred products and coproducts. These tools will permit us to relate string spaces between different branes
and analyze the obstructions to “extensions” and “lifts” mentioned in the preceding section.

The functor (9) is not exact. That is, if B is a sub-brane of C, there are strings with ghost number 0
between two branes B and G, which do not admit an extension to a string from C to G. Dually, there are
strings with 0 ghost number from F to the quotient C/B which do not admit a lift to a string starting
from F . The “obstructions” to these processes are described by elements of Ext1(C/B, G) in the first
case, and by elements of Ext1(F , B) in the dual case. One can say that the functor Ext1 is the track of
the inexactitude of the functor Hom. Similarly, Ext2 is consequence of the inexactitude of Ext1, etc.

More precisely, the Exti functors as right derived functors of the functor Hom form a δ-functor [9,
page 205]. Thus, given the short exact sequence U in the abelian category Coh(X) of coherent O-modules

U : 0→ B → C → D = C/B → 0, (26)

one has the long exact sequences (17) and (18).

3.1 Extensions of Coherent Sheaves

Here, as we have said, one will consider the spaces of strings between two branes as groups of extensions
of coherent O-modules.
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A length p extension of the coherent O-module G by the coherent sheaf F is an exact sequence of
O-modules [14, page 63]

S : 0→ G → Hp−1 → Hp−2 → · · · → H0 → F → 0. (27)

Given S and S′ two extensions of length 1 of G by F , we say they are equivalent if there exists a
morphism between the exact sequences S and S′ as the one showed in the following diagram

S : 0 // G //

1
��

H //

β

��

F //

1
��

0

S′ : 0 // G // H′ // F // 0 .

It is easy to check that β must be an isomorphism; thus, we have defined an equivalence relation in the
set of extensions of G by F . The corresponding quotient space can be endowed with the structure of
abelian group [14]. This group is denoted by Ext1(F , G) and is called the group of extensions of G by F .
The zero element of this group is defined by the extension

0→ G → G ⊕F → F → 0.

Although Ext1(F , G) and Ext1(F , G) are isomorphic, we will maintain the roman typos for the
constructions of the Ext groups we will carry out in this subsection, and by notational consistency, we
will put Hom for denoting Hom.

Given an 1 extension S of G by F and a morphism γ : F ′ → F , the pullback construction permits to
define an extension Sγ of G by F ′ so that the following diagram is commutative

Sγ : 0 // G //

1
��

• //

��

F ′ //

γ

��

0

S : 0 // G // H // F // 0 ,

where the right hand square is the corresponding cartesian square. We have a group homomorphism

S ∈ Ext1(F , G) −→ Sγ ∈ Ext1(F ′, G). (28)

If F ′, F and H are the sheaves of holomorphic sections of the vector bundles F ′, F and H, respectively,
then the sheaf represented by • in the diagram corresponds to the vector bundle whose fibre at the point
x ∈ X is

{(f ′, h) ∈ F ′x ×Hx | γx(f ′) = χx(h)},

where χ denotes the morphism H → F .
Similarly, given α : G → G′, one can define the extension αS of G′ by F

S : 0 // G //

α

��

H //

��

F //

1
��

0

αS : 0 // G′ // • // F // 0 ,

where the left hand square is the fibered coproduct. One has a group homomorphism

S ∈ Ext1(F , G) −→ αS ∈ Ext1(F , G′). (29)

The maps (28) and (29) show the functorial character of Ext1( . , . ). The above operations are
associative, in the sense that the extensions (αS)γ and α(Sγ) are equivalent. Thus, if the branes are
related by the morphisms α and γ as above, we have the following relation between the corresponding
spaces of strings

S ∈ Ext1(F , G) −→ αSγ ∈ Ext1(F ′, G′).
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On the other hand, with fixed S ∈ Ext1(F , G), the preceding constructions can be regarded as maps

α ∈ Hom(G, G′)→ αS ∈ Ext1(F , G′) (30)
γ ∈ Hom(F ′, F)→ Sγ ∈ Ext1(F ′, G). (31)

Given a sub-brane B of a brane of C, one has the exact sequence U defined in (26). The following
proposition asserts that a morphism ρ : B → G can be extended to a morphisms defined on C if the short
exact sequence ρU splits.

Proposition 3.1. Let B be a sub-brane of C. The obstruction to an extension of the string ρ ∈ Hom(B, G)
to a string stretching from C to G is the string ρU ∈ Ext1(C/B, G).

Proof. From the long exact sequence of Ext goups, one obtains the following exact sequence

Hom(C, G)→ Hom(B, G)→ Ext1(C/B, G), (32)

where the first arrow is the restriction homomorphism. The second map is, by (30), the correspondence
ρ 7→ ρU .

Example. If C = O and B is an ideal sheaf I of O. Then Z := Supp(O/I) is an analytic subvariety of X
and we put OZ for the coherent sheaf O/I.

Let G be a coherent O-module, then Hom(O, G) = G. By Proposition 2.6,

Ext1(O, G) = H1(X, G).

Obviously, the restriction of an element of Hom(O, G) = Γ (X, G) determines a string from I to G with
ghost number 0.

If H1(X, G) = 0, then a part of the long exact sequence of Ext is

Hom(O, G)→ Hom(I, G)→ Ext1(OZ , G)→ 0.

Thus,
Ext1(OZ , G) = Hom(I, G)/Hom(O,G).

Roughly speaking, in Ext1(OZ , G) one computes the morphisms from I to G (i.e. strings stretching from
I to G with 0 ghost number) that do not admit an extension to morphisms from O to G, i. e. which are
not defined by global sections of G.

The result stated in Proposition 3.1 has the corresponding dual.

Proposition 3.2. Let B be a sub-brane of C. The obstruction to a lift of the string τ ∈ Hom(F , C/B) to
a string stretching from F to C is the string Uτ ∈ Ext1(F , B).

Given the short exact sequences

R : 0→ G → H1 → K → 0, R′ : 0→ K → H0 → F → 0,

the following exact sequence is called the Yoneda composite of R and R′

R ? R′ : 0→ G → H1 → H0 → F → 0.

If S and S′ are short exact sequences and β a morphism such that the the Yoneda composite (Sβ) ?S′
is defined, then there is a morphism of exact sequences

(Sβ) ? S′ → S ? (βS′), (33)

which in general is not an isomorphism.
The long exact sequence (27) can be written as a composition of short exact sequences

S = Sp ? Sp−1 ? · · · ? S1,
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by decomposing the maps of (27) in product of a monomorphism and an epimorphism.
One says that the sequences

S = Sp ? · · · ? S1, S′ = S′p ? · · · ? S′1,

are equivalent if one can be obtained from the other through switches of the form (33). The quotient by
this equivalence of the set of p fold extensions of G by F can be endowed with structure of abelian group
and is denoted Extp(F , G). As it is known, the groups Extp(F , G) are isomorphic to the values taken
at (F , G) by the corresponding derived functors Extp defined in (10). So, the short exact sequence (26)
gives rise to long exact sequences of Exti groups as in (17)-(18). Next, we will construct the morphisms
of these exact sequences from operations with extensions.

Let α : G → G′ and γ : F ′ → F be the above morphisms of branes. If S is the extension (27), then
one defines

αS := (αSp) ? · · · ? S1 ∈ Extp(F , G′), Sγ := Sp ? · · · ? (S1γ) ∈ Extp(F ′, G).

Thus, the pair (γ, α) determines the following relation between the corresponding string spaces

S ∈ Extp(F , G) 7→ α(Sγ) ∈ Extp(F ′, G′). (34)

On the other hand, given the following extension of G by B

R : 0→ G → Ep−1 → Ep−2 → · · · → E0 → B → 0, (35)

composing (35) with (26) one obtaines the exact sequence

R ? U : 0→ G → Ep−1 → · · · → E0 → C → D → 0,

which determines an element of Extp+1(D, G). The group homomorphism induced by the map R 7→ R ?U
is the connecting homomorphism in the long exact sequence associated to (26)

· · · → Extp(D, G)→ Extp(C, G)→ Extp(B, G)→ Extp+1(D, G)→ . . .

Analogously, the composition of U with a p extension of D by F gives the connecting homomorphisms
in the long exact sequence

· · · → Extp(F , B)→ Extp(F , C)→ Extp(F , D)→ Extp+1(F , B)→ . . .

Propositions 3.1 and 3.2 admit the following generalization.

Proposition 3.3. Let B be a sub-brane of C and U the exact sequence (26).

1. The obstruction to an extension of the string R ∈ Extp(B, G) to a string stretching from C to G is
the string

R ? U ∈ Extp+1(C/B, G).
2. The obstruction to a lift of the string T ∈ Extp(F , C/B) to a string stretching from F to C is the

string
U ?T ∈ Extp+1(F , B).

3.2 Vertex Operators and Local Extensions

From now on in this subsection, we assume that X is an n-dimensional algebraic variety and there exists
a positive line bundle on X. So, each coherent sheaf F on X admits a resolution consisting of locally free
sheaves [5,18]

0→ En
∂→ . . .

∂→ E1
∂→ E0 → F → 0. (36)

Given F and G two coherent O-modules, then the sheaf Extk(F , G) is the cohomology object
hk(Hom(E•, G)) (by the proposition of [9] in page 234 above mentioned). We use these sheaves for
determining the space (13) of the vertex operators for an open string in the group Extk(F , G).

82 Journal of Advances in Applied Mathematics, Vol. 2, No. 2, April 2017

JAAM Copyright © 2017 Isaac Scientific Publishing



The exact sequence (36) gives rise to the short exact sequence

0→ Kp → Ep−1 → Kp−1 → 0,

where Kp is the kernel of Ep−1 → Ep−2, or equivalently the cokernel of Ep+1 → Ep.
As Extp(F , G) is the p-th cohomology of the complex Hom(E•, G), then Extp(F , G) is the sheaf

associated to the presheaf
U 7→ hp

(
Γ (U, Hom(E•, G))

)
,

where
Γ (U, Hom(E•, G)) = HomO|U (E•|U , G|U ).

Given a fine enough open covering U = {Uα} of X and

f ∈ H0(X, Extp(F , G)),

a global section of Extp(F , G), they determine an element of

hp(Γ (Uα, Hom(E•, G))),

which in turn is the cohomology class of a cocycle

fα ∈ HomO|Uα(Ep|Uα , G|Uα), (37)

i.e. satisfying fα ◦ ∂|Uα = 0. Hence, fα admits a unique factorization through the cokernel of

∂|Uα : Ep+1|Uα → Ep|Uα .

In this way, fα determines a unique morphism

f̂α : Kp|Uα → G|Uα . (38)

The pushout, i.e. the fibered coproduct, of the morphisms Kp|Uα → Ep−1|Uα and f̂α gives rise to the
following commutative diagram in the category of O|Uα -modules, where the short sequences are exact

0 // Kp|Uα

f̂α
��

// Ep−1|Uα
//

��

Kp−1|Uα
//

1
��

0

0 // G|Uα // Hαp−1
// Kp−1|Uα

// 0 .

(39)

The sequence at the bottom in this diagram can be jointed with the exact sequence

0→ Kp−1 → Ep−2 → Ep−3 → · · · → E0 → F → 0

restricted to Uα and we obtain a p-extension of G|Uα by F|Uα ; i. e. the following exact sequence

0→ G|Uα → H
α
p−1 → Ep−2|Uα → · · · → E0|Uα → F|Uα → 0. (40)

If Uαβ := Uα ∩ Uβ 6= ∅, the obvious restrictions give rise to the following commutative diagram

0 // G|Uα //

��

Hαp−1
//

��

. . . // F|Uα //

��

0

0 // G|Uαβ // Hαp−1|Uαβ
// . . . // F|Uαβ // 0 .

Since the restrictions of f̂α and f̂β to Uαβ patch together, one has isomorphisms

ξβα : Hαp−1|Uαβ → H
β
p−1|Uαβ .

In general, ξαβ ◦ ξβγ 6= ξαγ . Thus, the local extensions (40) do not define a global extension of G by F .
We can state the following theorem.
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Theorem 3.4. Let U = {Uα} be a sufficiently fine open covering of X, F and G coherent O-modules.
Each local operator of H0(X, Extp(F , G)), with p > 0 determines a p extension of G|Uα by F|Uα , for all
α.

Remark 1. The local character of spaces H0(X, Extp(F , G)) appears clearer when they are compared with
the Ext groups. For example, an element of Ext1(F , G) is given by a cocycle of the hypercohomology
H1(U, Hom(E•, G)). This cocycle is a pair (f = {fα}, h = {hαβ}) with

fα ∈ Γ (Uα, Hom(E1, G)), hαβ ∈ Γ (Uαβ , Hom(E0, G))

satisfying
∂∗f = 0, δf = ∂∗h, δh = 0, (41)

where δ denotes the Čech coboundary operator and ∂∗ the one induced by ∂ on Hom(E•, G).
The condition ∂∗f = 0 implies fα ◦ ∂|Uα = 0. Hence fα factorizes through the cokernel of ∂|Uα . Thus,

it is possible to carry out the preceding pushout construction and we obtain the diagram (39), with p = 1.
The condition δf = ∂∗ implies that the local extensions Hα0 and Hβ0 patch together on Uαβ . Now, from
the condition δh = 0, ones deduces the cocycle condition and the Hα0 s define a global extension of G by F .
Essentially, this is the proof of the fact that Ext1(F , G) is the group of equivalence classes of length 1
extensions of G by F .

The proof of Theorem 3.4 can extended directly to the vertex operators in Hq(X, Extp(F , G)). Thus,
we have the following theorem.

Theorem 3.5. Under the hypotheses of Theorem 3.4, each element of Hq(X, Extp(F , G)), with p > 0
determines a p extension of G|Uα0...αq

by F|Uα0...αq
, where

Uα0...αq =
q⋂
j=0

Uαj .

In the case of strings between two D0 branes the vertex operators define global extensions; in fact,
they coincide with the respective strings. In the following example we consider this point.
Example. Let us assume that I ⊂ O is a sheaf of regular ideals such that Z, the support of O/I, has
dimension 0. We will study the space of strings stretching between O/I and itself. The set Z can be
regarded as a ringed space with structure sheaf OZ = O/I. A free resolution of OZ is the Koszul complex,
that we recall briefly (see [6,8] for details).

If e1, . . . , en is a set of symbols, we put Ep for the free O-module generated by {ei1 ∧ · · · ∧ eip}, with
i1 < · · · < ip. That is, Ep is a free module with dimension r :=

(
n
p

)
.

The operator ∂ : Ep → Ep−1 is defined as follows: If f1, . . . , fn is a regular sequence of functions which
generate the ideal I on an open U , then ∂ restricted to U is defined by

∂(ei1 ∧ · · · ∧ eip) =
p∑
j=1

(−1)j−1fijei1 ∧ . . . êij · · · ∧ eip . (42)

The following exact sequence is a free resolution of OZ

0→ En
∂→ En−1

∂→ . . .
∂→ E0 = O proj.−→ OZ → 0.

Applying the functor Hom( . , OZ), one obtains the complex(
Hom(E•, OZ), ∂∗

)
. (43)

As the sheaf Ep is the direct sum O⊕ r,

Hom(Ep, OZ) =
(
OZ
)⊕ r

. (44)
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Hence, the support of Hom(Ep, OZ) is Z. On the other hand, since the fj vanish on Z, the coboundary
∂∗ operator induces the morphism zero in the stalk of Hom(Ep, OZ) at any point of Z. Thus, the operator
∂∗ is identically zero.

The sheaves Extp(OZ , OZ) are the homology elements of the trivial complex (43). So,

Extp(OZ , OZ) = Hom(Ep, OZ). (45)

As OZ is a skyscraper sheaf,

H0(X, OZ) =
⊕
x∈Z

(
OZ
)
x
' ⊕x∈ZC,

and the other cohomology groups vanish. So, from (45) together with (44), it follows that

Hq(X, Extp(OZ , OZ)) = 0, for q 6= 0.
H0(X, Extp(OZ , OZ)) ' ⊕x∈ZCr.

Therefore, in the second page of the Local-to-Global spectral sequence all the rows are identically zero
unless one. Thus,

Extp(OZ , OZ) = H0(X, Extp(OZ , OZ)).

That is, all the vertex operators for strings from the D0 brane OZ to itself are global extensions.
This result, for the case p = 1, can be also deduced from the observations explained in Remark 1.

Let U be a covering of X. Given f ∈ H0(X, Ext1(OZ , OZ)), it defines fα ∈ Γ (Uα, Hom(E1, OZ)), as
in (37). Assuming that each point of the discrete set Z belongs to only one member of U, then the
spaces Γ (Uαβ , Hom(E0, OZ)) and Γ (Uαβ , Hom(E1, OZ)) are zero, since Uαβ ∩ Z = ∅. Hence taking
h = 0 ∈ Γ (Uαβ , Hom(E0, OZ)), the conditions (41) are trivially satisfied, and f determines an element
of Ext1(OZ , OZ).

4 Final Remarks

We have applied methods and ideas from the cohomology of sheaves and from the theory of categories,
for determining properties of the spaces of strings between general branes, i.e., objects in the derived
category of coherent sheaves. We have also defined the vertex operators for those strings.

That generality had not been considered in the literature. The vertex operators usually considered are
operators for strings stretching between the sheaves defined by the sections of vector bundles. Vertex
operators for some Ext groups between non locally free sheaves are considered only exceptionally; for
example, by studying branes on X that are pushforward of holomorphic vector bundles on a submanifold
of X [12]. The branes usually taken into account are sheaves defined by sections of vector bundles on X
or vector bundles defined on subspaces of X, as the ones that arise from the K-homology of X [3,11,17].
Thus, we present applications of cohomological methods to the study of spaces of vertex operators that
had not yet been considered.

When X is a manifold acted by a Lie group G, it seems natural to define “equivariant” branes, and
it is expected that the spaces of vertex operators for strings stretching between those branes support
representations of G. In the particular case, when X is a flag manifold of the group G and the branes
are locally free equivariant sheaves, perhaps the Borel-Weil-Bott theorem allows us to characterize the
corresponding space of vertex operators. We think that the equivariance in the context of the branes is
an issue worth exploring.

In this article, we used mathematical procedures and results in order to better understand concepts
relative to the B-branes. In this context, the difficulty to derive the results consists in translating the
physical concepts to a mathematical language and then the application of the appropriate mathematical
tools. In general, these mathematical theories are far from the usual scientific background of physicists.

One ambitious different program would be to consider possible suggestions and insights for Mathematics
that can be derived from methods used by studying the physics of the branes. This is an open tremendous
challenge (see [16]).

Journal of Advances in Applied Mathematics, Vol. 2, No. 2, April 2017 85

Copyright © 2017 Isaac Scientific Publishing JAAM



Acknowledgments. I thank E. Sharpe for his useful comments and the referee for his suggestions.

5 Appendix

In this section, we will prove Proposition 2.2.
Let K,L be complexes in an additive category A and f a morphism from K to L. We denote by Con(f)

and Cyl(f) the corresponding mapping cone and mapping cylinder complexes. With a fixed a complex F ,
we put L̂ for denoting the complex of abelian groups Hom•A(F,L), analogously K̂ = Hom•A(F,K) and
f̂ := Hom•A(F, f).

Lemma 5.1.
Con(f̂) = Ĉon(f), Cyl(f̂) = Ĉyl(f).

Proof. By definition
L̂m =

∏
i

HomA(F i, Lm+i),

and coboundary operator
dm
L̂

(si) =
(
dm+i
L ◦ si − (−1)msi+1 ◦ dî

F

)
, (46)

with si ∈ HomA(F i, Lm+i). The complex K̂ and the operator d
K̂

are defined analogously.
As f : K → L is a morphism of complexes, it induces a complex morphism f̂ : K̂ → L̂ by the formula

f̂(ri) = (fm+1+i ◦ ri), (47)

with ri ∈ HomA(F i, Km+1+i).
By definition,

Con(f̂)m = K̂m+1 ⊕ L̂m =
∏
i

(
HomA(F i, Km+1+i)⊕HomA(F i, Lm+i)

)
. (48)

The coboundary operator of this complex is defined by (see [10, page 23])

dCon(f̂) =
(
−d

K̂
0

−f̂ d
L̂

)
. (49)

That is,

dm
Con(f̂)

(
ri
si

)
=
(

−dm+1+i
K ◦ ri − (−1)mri+1 ◦ diF

−fm+1+i ◦ ri + dm+i
L ◦ si − (−1)msi+1 ◦ diF

)
(50)

On the other hand, we consider the complex

Ĉon(f) = Hom•A(F, Con(f)).

Hence,
Ĉon(f)

m
=
∏
i

HomA(F i, Con(f)m+i) =
∏
i

HomA(F i, Km+1+i ⊕ Lm+i).

From (48), it follows Ĉon(f)
m

= Con(f̂)m.
According to (46), the coboundary operator of Ĉon(f) is defined by

dm
Ĉon(f)

(ri, si) = dm+i
Con(f) ◦ (ri, si)− (−1)m(ri+1, si+1) ◦ diF .

That is,

dm
Ĉon(f)

(
ri
si

)
=
(
−dK 0
−f dL

)(
ri
si

)
− (−1)m

(
ri+1
si+1

)
◦ diF .
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This expression coincides with (50). So, we have the equality of the complexes

(
Ĉon(f), dĈon(f)

)
=
(
Con(f̂), dCon(f̂)

)
.

The proof of the property relative to the cylinder is similar.

In general, if l :M→N is a morphism in the category C of complexes of O-modules and U an open
subset of X, then

Con(l|U ) =M|U [1]⊕N|U =
(
M[1]⊕N

)
|U = Con(l)|U . (51)

A similar relation holds for the mapping cylinder.

Let P, B, A objects of the category C, g : B → A a morphism in this category, and U an open subset
of X. Then g|U : B|U → A|U is a morphism in the category of complexes of O|U -modules.

We put
ĝ = Hom•(P, g) : Hom•(P, B)→ Hom•(P, A).

Analogously,

ĝ|U := Hom•O|U
(P|U , g|U ) : Hom•O|U

(P|U , B|U )→ Hom•O|U
(P|U , A|U ). (52)

Lemma 5.2.
Con(ĝ)(U) = Con(ĝ|U ), Cyl(ĝ)(U) = Cyl(ĝ|U ).

Proof. By definition of the cone mapping and the Hom functor,

Con(ĝ)(U) =
(
Hom•(P, B)[1]⊕Hom•(P, A)

)
(U)

= Hom•O|U
(P|U , B|U )[1]⊕Hom•O|U

(P|U , A|U ).

According (52), the last expression is precisely Con(ĝ|U ).

Proof of Proposition 2.2. By definition of Hom

Hom•
(
P, Con(g)

)
(U) = Hom•O|U

(
P|U , Con(g)|U

)
. (53)

By (51)
Hom•O|U

(
P|U , Con(g)|U

)
= Hom•O|U

(
P|U , Con(g|U )

)
. (54)

Denoting A the category of complex of O|U -modules, then Hom•O|U
= Hom•A. With the notation used

at the beginning of the Appendix, the right hand side of (54) is ̂Con(g|U ). From Lemmas 5.1 and 5.2, it
follows

̂Con(g|U ) = Con(ĝ|U ) = Con(ĝ)(U). (55)

From (53), together with (54) and (55), we obtain

Hom•(P, Con(g))(U) = Con(ĝ)(U).

Similarly,
Hom•(P, Cyl(g))(U) = Cyl(ĝ)(U). (56)

Journal of Advances in Applied Mathematics, Vol. 2, No. 2, April 2017 87

Copyright © 2017 Isaac Scientific Publishing JAAM



References

1. Aspinwall, P. S.: D-branes on Calabi-Yau manifolds. In Progress in String Theory. Pages 1-152. World Sci.
Publ. (2005).

2. Aspinwall, P. S. et al.: Dirichlet branes and mirror symmetry. Clay mathematics monographs vol 4. Amer.
Math. Soc. (2009).

3. Baum, P.: K-homology and D-branes. In Superstrings, Geometry, Topology, and C∗-algebras. Vol 81, Proc.
Sympos. Pure Math. 81-94. AMS (2009).

4. Bondal A., Kapranov M.: Representable functors, Serre functors, and mutations, Izv. Akad. Nauk SSSR,
Ser.Mat., 53, 1183-1205 (1989); English transl. in Math. USSR Izv., 35, 519-541 (1990).

5. Fulton, W.: Intersection theory. Springer (1998).
6. Eisenbud, E.: Commutative algebra with a view toward algebraic geometry. Springer-Verlag (1995).
7. Gelfand, S. I., Manin, Y. I.: Methods of homological algebra. Springer (2003).
8. Griffiths, P., Harris, J.: Principles of algebraic geometry. John Wiley (1994).
9. Hartshorne R.: Algebraic geometry. Springer-Verlag (1983).

10. Iversen, B.: Cohomology of sheaves. Springer (1986).
11. Jia, B.: D-branes and K-homology. arXiv:1306.0535 [math. KT].
12. Katz, S., Sharpe, E.: D-branes, open string vertex operators, and Ext groups. Adv. Theor. Math. Phys. 6,

979-1030 (2003).
13. Kashiwara, M., Schapira, P.: Sheaves on manifolds. Springer-Verlag (2002).
14. Mac Lane, S.: Homology. Springer-Verlag (1975).
15. Mitchell, B.: Theory of categories. Academic Press. (1965).
16. Moore, G. W.: The impact of D-branes in Mathematics. (2014) (In www.physics.rutgers.edu/∼gmoore).
17. Reis, R.M.G., Szabo, R.J.: Geometric K-homology of flat D-branes. Commun. Math. Phys. 266, 71-122 (2006).
18. Serre, J. P.: Faisceaux algébriques cohérents. Annals of Math. 61, 197-278 (1955).
19. Weibel, Ch. A.: An introduction to homological algebra. Cambridge U.P. (1997).
20. Witten, E.: Chern-Simmons gauge theory as a string theory. In H.Hofer et alt. editors The Floer memorial

volume. 637-678. Birkhäuser (1995).
21. Witten, E.: Mirror manifolds and topological field theory. In Mirror Symmetry I. Edit S.-T. Yau. Pages

121-157. AMS (1998).

88 Journal of Advances in Applied Mathematics, Vol. 2, No. 2, April 2017

JAAM Copyright © 2017 Isaac Scientific Publishing




