Sharp Inequalities Involving Neuman Means of the Second Kind with Applications

Lin-Chang Shen\(^1\), Yue-Ying Yang\(^2*) and Wei-Mao Qian\(^3\)

\(^1\)Huzhou Shanlian Adult School, Huzhou, Zhejiang, China
\(^2\)Mechanic Electronic and Automobile Engineering College, Huzhou Vocational & Technical College, Huzhou, Zhejiang, China
\(^3\)School of Distance Education, Huzhou Broadcast and TV University, Huzhou, Zhejiang, China

Email: yyy1008hz@163.com

Abstract. In this paper, we give the explicit formulas for Neuman means of the second kind \(N_{QG}(a, b)\) and \(N_{GQ}(a, b)\), and find the best possible parameters \(\alpha_i, \beta_i \in (0, 1) (i = 1, 2, 3, \ldots, 6)\) such that the double inequalities

\[
\begin{align*}
&\alpha_1 Q(a, b) + (1 - \alpha_1) G(a, b) < N_{QG}(a, b) < \beta_1 Q(a, b) + (1 - \beta_1) G(a, b), \\
&\frac{\alpha_2}{G(a, b)} + \frac{1 - \alpha_2}{Q(a, b)} < \frac{1}{N_{QG}(a, b)} < \frac{\beta_2}{G(a, b)} + \frac{1 - \beta_2}{Q(a, b)}, \\
&\alpha_3 Q(a, b) + (1 - \alpha_3) G(a, b) < N_{GQ}(a, b) < \beta_3 Q(a, b) + (1 - \beta_3) G(a, b), \\
&\frac{\alpha_4}{G(a, b)} + \frac{1 - \alpha_4}{Q(a, b)} < \frac{1}{N_{GQ}(a, b)} < \frac{\beta_4}{G(a, b)} + \frac{1 - \beta_4}{Q(a, b)}, \\
&\alpha_5 Q(a, b) + (1 - \alpha_5) V(a, b) < N_{GQ}(a, b) < \beta_5 Q(a, b) + (1 - \beta_5) V(a, b), \\
&\alpha_6 Q(a, b) + (1 - \alpha_6) U(a, b) < N_{GQ}(a, b) < \beta_6 Q(a, b) + (1 - \beta_6) U(a, b),
\end{align*}
\]

holds for all \(a, b > 0\) with \(a \neq b\), where \(G(a, b)\) and \(Q(a, b)\) are the classical geometric and quadratic means, \(V(a, b), U(a, b), N_{QG}(a, b)\) and \(N_{GQ}(a, b)\) are Yang and Neuman mean of the second kind.

Keywords: geometric mean, quadratic mean, Neuman means of the second kind, Yang means, inequalities.

1 Introduction

For \(a, b > 0\) with \(a \neq b\), the Schwab-Borchardt mean \(SB(a, b)\) [1, 2] is defined by

\[
SB(a, b) = \left\{ \begin{array}{ll}
\sqrt{\frac{b^2 - a^2}{\cos^{-1}(a/b)}}, & \text{if } a < b, \\
\sqrt{\frac{a^2 - b^2}{\cosh^{-1}(a/b)}}, & \text{if } a > b.
\end{array} \right.
\]

where \(\cos^{-1}(x)\) and \(\cosh^{-1}(x) = \log(x + \sqrt{x^2 - 1})\) are the inverse cosine and inverse hyperbolic cosine functions, respectively.

It is well-known that \(SB(a, b)\) is strictly increasing in both \(a\) and \(b\), nonsymmetric and homogeneous of degree 1 with respect to \(a\) and \(b\). Many symmetric bivariate means are special cases of the Schwab-Borchardt mean, for example, the first and second Seiffert means, Neuman-Sándor mean, logarithmic mean and two Yang means [3] are respectively defined by

\[
P = P(a, b) = \frac{a - b}{2 \sin^{-1} [(a - b)/(a + b)]} = SB(G, A),
\]

\[
T = T(a, b) = \frac{a - b}{2 \tan^{-1} [(a - b)/(a + b)]} = SB(A, Q),
\]

Copyright © 2016 Isaac Scientific Publishing
\[M = M(a, b) = \frac{a - b}{2 \sinh^{-1} \left[(a - b)/(a + b) \right]} = SB(Q, A) , \]
\[L = L(a, b) = \frac{a - b}{2 \tanh^{-1} \left[(a - b)/(a + b) \right]} = SB(A, G) , \]
\[U = U(a, b) = \frac{a - b}{\sqrt{2} \tan^{-1} \left[(a - b)/\sqrt{2ab} \right]} = SB(G, Q) , \]
\[V = V(a, b) = \frac{a - b}{\sqrt{2} \sinh^{-1} \left[(a - b)/\sqrt{2ab} \right]} = SB(Q, G) . \]

where \(G = G(a, b) = \sqrt{ab} , A = A(a, b) = (a + b)/2 \) and \(Q = Q(a, b) = \sqrt{(a^2 + b^2)/2} \) are the classical geometric, arithmetic and quadratic means of \(a \) and \(b \).

Let \(X = X(a, b) \) and \(Y = Y(a, b) \) be the symmetric bivariate means of \(a \) and \(b \). Then Neuman mean of the second kind \(N_{XY}(a, b) \)[4] is defined by
\[N_{XY}(a, b) = \frac{1}{2} \left[X + \frac{Y^2}{SB(X, Y)} \right] . \]

Moreover, without loss of generality, let \(a > b, v = (a - b)/(a + b) \in (0, 1) \), then Neuman [4] gave explicit formulas
\[N_{AG}(a, b) = \frac{1}{2} A \left[1 + (1 - v^2) \frac{\tanh^{-1}(v)}{v} \right] , \]
\[N_{QA}(a, b) = \frac{1}{2} A \left[1 + (1 + v^2) \frac{\tan^{-1}(v)}{v} \right] , \]
and inequalities
\[G(a, b) < L(a, b) < N_{AG}(a, b) < P(a, b) < N_{GA}(a, b) < A(a, b) \]
\[< M(a, b) < N_{QA}(a, b) < T(a, b) < N_{AQ}(a, b) < Q(a, b) . \]

for all \(a, b > 0 \) with \(a \neq b \).

In the recent past, the Schwab-Borchardt mean has been the subject of intensive research. In particular, many remarkable inequalities for Schwab-Borchardt mean and its generated means can be found in the literature [4-14].

In [4], Neuman found the best possible constants \(\alpha_1, \alpha_2, \alpha_3, \alpha_4 \) and \(\beta_1, \beta_2, \beta_3, \beta_4 \) such that the double inequalities
\[\alpha_1 A(a, b) + (1 - \alpha_1) G(a, b) < N_{GA}(a, b) < \beta_1 A(a, b) + (1 - \beta_1) G(a, b) \]
\[\alpha_2 Q(a, b) + (1 - \alpha_2) A(a, b) < N_{AQ}(a, b) < \beta_2 Q(a, b) + (1 - \beta_2) A(a, b) \]
\[\alpha_3 A(a, b) + (1 - \alpha_3) G(a, b) < N_{AG}(a, b) < \beta_3 A(a, b) + (1 - \beta_3) G(a, b) \]
\[\alpha_4 Q(a, b) + (1 - \alpha_4) A(a, b) < N_{QA}(a, b) < \beta_4 Q(a, b) + (1 - \beta_4) A(a, b) \]
hold for \(a, b > 0 \) if and only if \(\alpha_1 \leq 2/3, \beta_1 \geq \pi/4, \alpha_2 \leq 2/3, \beta_2 \geq (\pi - 2)/[4(\sqrt{2} - 1)] = 0.689 \cdots, \alpha_3 \leq 1/3, \beta_3 \geq 1/2 \) and \(\alpha_4 \leq 1/3, \beta_4 \geq \left\lfloor \log(1 + \sqrt{2}) + \sqrt{2} - 2 \right\rfloor/[2(\sqrt{2} - 1)] = 0.356 \cdots \).

Zhang et al. [11] presented the best possible parameters \(\alpha_1, \alpha_2, \beta_1, \beta_2 \in [0, 1/2] \) and \(\alpha_3, \alpha_4, \beta_3, \beta_4 \in [1/2, 1] \) such that the double inequalities
\[G(\alpha_1 a + (1 - \alpha_1) b, \alpha_1 b + (1 - \alpha_1) a) < N_{AG}(a, b) < G(\beta_1 a + (1 - \beta_1) b, \beta_1 b + (1 - \beta_1) a) \]
\[G(\alpha_2 a + (1 - \alpha_2) b, \alpha_2 b + (1 - \alpha_2) a) < N_{QA}(a, b) < G(\beta_2 a + (1 - \beta_2) b, \beta_2 b + (1 - \beta_2) a) \]
\[Q(\alpha_3 a + (1 - \alpha_3) b, \alpha_3 b + (1 - \alpha_3) a) < N_{QA}(a, b) < Q(\beta_3 a + (1 - \beta_3) b, \beta_3 b + (1 - \beta_3) a) \]
\[Q(\alpha_4 a + (1 - \alpha_4) b, \alpha_4 b + (1 - \alpha_4) a) < N_{AQ}(a, b) < Q(\beta_4 a + (1 - \beta_4) b, \beta_4 b + (1 - \beta_4) a) . \]
hold for all \(a, b > 0\) with \(a \neq b\).

Guo et.al. [12] proved that the double inequalities

\[
A(p, a, b)G(1-p)(a, b) < N_G(a, b) < A(q, a, b)G(1-q)(a, b),
\]

\[
\frac{p_3}{G(a, b)} + \frac{1 - p_3}{G(a, b)} < N_G(a, b) < \frac{q_3}{G(a, b)} + \frac{1 - q_3}{A(a, b)},
\]

\[
A(p, a, b)G(1-p)(a, b) < N_G(a, b) < A(q, a, b)G(1-q)(a, b),
\]

\[
\frac{p_4}{G(a, b)} + \frac{1 - p_4}{A(a, b)} < N_G(a, b) < \frac{q_4}{G(a, b)} + \frac{1 - q_4}{A(a, b)},
\]

\[
Q(p, a, b)A(1-p)(a, b) < N_Q(a, b) < Q(q, a, b)A(1-q)(a, b),
\]

\[
\frac{p_6}{A(a, b)} + \frac{1 - p_6}{Q(a, b)} < N_Q(a, b) < \frac{q_6}{A(a, b)} + \frac{1 - q_6}{Q(a, b)},
\]

\[
Q(p, a, b)A(1-p)(a, b) < N_Q(a, b) < Q(q, a, b)A(1-q)(a, b),
\]

\[
\frac{p_8}{A(a, b)} + \frac{1 - p_8}{Q(a, b)} < N_Q(a, b) < \frac{q_8}{A(a, b)} + \frac{1 - q_8}{Q(a, b)}.
\]

hold for all \(a, b > 0\) if and only if \(p_1 \leq 2/3, q_1 \geq 1, p_2 \leq 0, q_2 \geq 1/3, p_3 \leq 1/3, q_3 \geq 1, p_4 \leq 0, q_4 \geq 2/3, p_5 \leq 1/3, q_5 \leq 2 \log(p+2)/\log 2 - 4 = 0.7244 \cdots, p_6 \leq 6 + 2\sqrt{2} - (1 + \sqrt{2})/\pi + 2 = 0.2419 \cdots, q_6 \geq 1/3, p_7 \leq 1/3, q_7 \geq 2 \log(\sqrt{2} + \log(1 + \sqrt{2}))/\log 2 - 2 = 0.3977 \cdots \) and \(p_8 \leq 2 + 2\sqrt{2} - (1 + \sqrt{2}) \log(1 + \sqrt{2})/\sqrt{2} = 0.5603 \cdots, q_8 \geq 2/3.

Let \(a > b > 0\), \(u = (a-b)/\sqrt{2ab} \in (0, +\infty)\). Then from (1)-(3) we gave the explicit formulas

\[
N_Q(a, b) = \frac{1}{2} G(a, b) \left[1 + (1 + u^2)\frac{\sinh^{-1}(u)}{u} \right].
\]

(4)

\[
N_G(a, b) = \frac{1}{2} G(a, b) \left[1 + (1 + u^2)\tan^{-1}(u) \right].
\]

(5)

The main purpose of this paper is to find the best possible parameters \(\alpha_i, \beta_i \in (0, 1)(i = 1, 2, 3, \cdots, 6)\) such that the double inequalities

\[
\alpha_1 Q(a, b) + (1 - \alpha_1) G(a, b) < N_Q(a, b) < \beta_1 Q(a, b) + (1 - \beta_1) G(a, b),
\]

\[
\frac{\alpha_2}{Q(a, b)} + \frac{1 - \alpha_2}{Q(a, b)} < N_Q(a, b) < \frac{1}{Q(a, b)} + \frac{1 - \beta_2}{Q(a, b)},
\]

\[
\alpha_3 Q(a, b) + (1 - \alpha_3) G(a, b) < N_Q(a, b) < \beta_3 Q(a, b) + (1 - \beta_3) G(a, b),
\]

\[
\frac{\alpha_4}{Q(a, b)} + \frac{1 - \alpha_4}{Q(a, b)} < N_Q(a, b) < \frac{1}{Q(a, b)} + \frac{1 - \beta_4}{Q(a, b)},
\]

\[
\alpha_5 Q(a, b) + (1 - \alpha_5) V(a, b) < N_Q(a, b) < \beta_5 Q(a, b) + (1 - \beta_5) V(a, b),
\]

\[
\alpha_6 Q(a, b) + (1 - \alpha_6) U(a, b) < N_Q(a, b) < \beta_6 Q(a, b) + (1 - \beta_6) U(a, b).
\]

hold for all \(a, b > 0\) with \(a \neq b\).

2 Lemma

In order to prove our main results we need several lemmas, which we present in this section.

Lemma 2.1 (sec[15]) For \(-\infty < a < b < +\infty\), let \(f, g : [a, b] \to R\) be continuous on \([a, b]\), and be differentiable on \((a, b)\), let \(g'(x) \neq 0\) on \((a, b)\). If \(f'(x)/g'(x)\) is increasing (decreasing) on \((a, b)\), then so are

\[
\frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f(x) - f(b)}{g(x) - g(b)}
\]

If \(f'(x)/g'(x)\) is strictly monotone, then the monotonicity in the conclusion is also strict.
Lemma 2.2 (see [16]). Suppose that the power series \(f(x) = \sum_{n=0}^{\infty} a_n x^n \) and \(g(x) = \sum_{n=0}^{\infty} b_n x^n \) have the radius of convergence \(r > 0 \) with \(a_n, b_n > 0 \) for all \(n = 0, 1, 2, \ldots \). Let \(h(x) = f(x)/g(x) \), if the sequence series \(\{a_n/b_n\}_{n=0}^{\infty} \) is (strictly) increasing (decreasing), then \(h(x) \) is also (strictly) increasing (decreasing) on \((0, r)\).

Lemma 2.3

1. (See [17], Lemma 2.4) The function
 \[
 \varphi_1(x) = \frac{2x + \sinh(2x) - 4 \sinh(x)}{\sinh(2x) - 2 \sinh(x)}
 \]
is strictly increasing from \((0, +\infty)\) onto \((2/3, 1)\).

2. (See [17], Lemma 2.6) The function
 \[
 \varphi_2(x) = \frac{\sinh(x) \cosh(x) - x}{[\cosh(x) - 1][x + \sinh(x) \cosh(x)]}
 \]
is strictly decreasing from \((0, +\infty)\) onto \((0, 2/3)\).

3. (See [17], Lemma 2.5) The function
 \[
 \varphi_3(x) = \frac{2x - \sin(2x)}{\sin(x)[1 - \cos(x)]}
 \]
is strictly increasing from \((0, \pi/2)\) onto \((8/3, \pi)\).

4. (See [17], Lemma 2.8) The function
 \[
 \varphi_4(x) = \frac{\sin(x) \cos(x) - x}{[1 - \cos(x)][x + \sin(x) \cos(x)]}
 \]
is strictly decreasing from \((0, \pi/2)\) onto \((-1, -2/3)\).

Lemma 2.4

The function
\[
\varphi_5(x) = \frac{x \sinh(2x) - 2x^2}{x \sinh(2x) - \cosh(2x) + 1}
\]
is strictly decreasing from \((0, +\infty)\) onto \((1, 2)\).

Proof. Let \(f_1(x) = x \sinh(2x) - 2x^2 \), \(g_1(x) = x \sinh(2x) - \cosh(2x) + 1 \). Then simple computations lead to
\[
\varphi_5(x) = \frac{f_1(x)}{g_1(x)} = \frac{f_1(x) - f_1(0^+)}{g_1(x) - g_1(0^+)}.
\]
\[
\frac{f_1'(x)}{g_1'(x)} = \frac{\sinh(2x) + 2x \cosh(2x) - 4x}{2x \cosh(2x) - \sinh(2x)}
\]
\[
= \frac{2x \sum_{n=0}^{\infty} \frac{2^n}{(2n)!} x^{2n} + \sum_{n=0}^{\infty} \frac{2^{n+1}}{(2n+1)!} x^{2n+1} - 4x}{2x \sum_{n=0}^{\infty} \frac{2^n}{(2n)!} x^{2n} - \sum_{n=0}^{\infty} \frac{2^{n+1}}{(2n+1)!} x^{2n+1}}
\]
\[
= \frac{\sum_{n=1}^{\infty} \frac{(n+1) \times 2^{n+2}}{(2n+1)!} x^{2n+1} - \sum_{n=0}^{\infty} \frac{(n+2) \times 2^{n+4}}{(2n+3)!} x^{2n}}{\sum_{n=0}^{\infty} \frac{(n+1) \times 2^{n+4}}{(2n+3)!} x^{2n}}.
\]
Let
\[
a_n = \frac{(n+2) \times 2^{n+4}}{(2n+3)!} > 0, \quad b_n = \frac{(n+1) \times 2^{n+4}}{(2n+3)!} > 0.
\]
and
\[
a_{n+1} - a_n = \frac{1}{(n+1)(n+2)} < 0.
\]
for all $n \geq 0$.

It follows from Lemma 2.2 and (7)-(9) that $f'_1(x)/g'_1(x)$ is strictly decreasing on $(0, +\infty)$. Note that

$$\varphi_5(0^+) = \frac{a_0}{b_0} = 2, \varphi_5(+\infty) = 1.$$ \hspace{1cm} (10)

Therefore, Lemma 2.4 follows easily from Lemma 2.1 and (6), (10) together with the monotonicity of $f'_1(x)/g'_1(x)$.

Lemma 2.5 The function

$$\varphi_6(x) = \frac{x^2 + x \sin(x) \cos(x) - 2 \sin^2(x)}{\sin(x)|x - \sin(x)|}$$

is strictly increasing from $(0, \pi/2)$ onto $(0, (\pi^2 - 8)/[2(\pi - 2)])$.

Proof. The function $\varphi_6(x)$ can be rewritten as

$$\varphi_6(x) = \frac{x}{\sin(x) + x \cos(x) - 2 \sin(x)} = \frac{x}{x - \sin(x)} \varphi_7(x) + \varphi_8(x),$$ \hspace{1cm} (11)

where $\varphi_7(x) = x/\sin(x)$ and $\varphi_8(x) = [x + x \cos(x) - 2 \sin(x)]/[x - \sin(x)]$.

Let $f_2(x) = x + x \cos(x) - 2 \sin(x), g_2(x) = x - \sin(x), f_3(x) = 1 - \cos(x) - x \sin(x)$ and $g_3(x) = 1 - \cos(x)$. Then simple computations lead to

$$\varphi_8(x) = f_2(x)/g_2(x) = f_2(x) - f_2(0^+) \quad g_2(x) - g_2(0^+),$$ \hspace{1cm} (12)

$$\frac{f'_2(x)}{g'_2(x)} = \frac{f_3(x) - f_3(0^+)}{g_3(x) - g_3(0^+)}.$$ \hspace{1cm} (13)

and

$$\frac{f'_3(x)}{g'_3(x)} = -\frac{x}{\tan(x).}$$ \hspace{1cm} (14)

Since the function $x \rightarrow x/\tan(x)$ is strictly decreasing on $(0, \pi/2)$, hence Lemma 2.1 and (12)-(14) lead to that $\varphi_8(x)$ is strictly increasing on $(0, \pi/2)$. From (11) and the fact that the function $\varphi_7(x) = x/\sin(x)$ is strictly increasing on $(0, \pi/2)$ together with the monotonicity of $\varphi_8(x)$ we can reach the conclusion that $\varphi_6(x)$ is strictly increasing on $(0, \pi/2)$.

Note that

$$\varphi_6(0^+) = 0, \varphi_6(\frac{\pi}{2}) = \frac{\pi^2 - 8}{2(\pi - 2)}.$$ \hspace{1cm} (15)

Therefore, Lemma 2.5 follows easily from (15) and the monotonicity of $\varphi_6(x)$.

3 Main Results

Theorem 3.1 The double inequalities

$$\alpha_1 Q(a, b) + (1 - \alpha_1)G(a, b) < N_{QG}(a, b) < \beta_1 Q(a, b) + (1 - \beta_1)G(a, b).$$ \hspace{1cm} (16)

$$\frac{\alpha_2}{G(a, b)} + \frac{1 - \alpha_2}{Q(a, b)} < \frac{1}{N_{QG}(a, b)} < \frac{\beta_2}{G(a, b)} + \frac{1 - \beta_2}{Q(a, b)}.$$ \hspace{1cm} (17)

hold for all $a, b > 0$ with $a \neq b$ if and only if $\alpha_1 \leq 1/3, \beta_1 \geq 1/2, \alpha_2 \leq 0$ and $\beta_2 \geq 2/3$.

Proof. We clearly see that inequalities (16) and (17) can be rewritten as

$$\alpha_1 < \frac{N_{QG}(a, b) - G(a, b)}{Q(a, b) - G(a, b)} < \beta_1,$$ \hspace{1cm} (18)

and

$$\alpha_2 < \frac{1/N_{QG}(a, b) - 1/Q(a, b)}{1/G(a, b) - 1/Q(a, b)} < \beta_2.$$ \hspace{1cm} (19)
respectively.

Since both the geometric mean $G(a, b)$ and quadratic mean $Q(a, b)$ are symmetric and homogeneous of degree 1, without loss of generality, we assume that $a > b > 0$. Let $u = (a - b)/\sqrt{2ab} \in (0, +\infty)$. Then from (4) and (18)-(19) together with $Q(a, b) = G(a, b)\sqrt{1 + u^2}$ we have

$$
\alpha_1 < \frac{1}{2} \left[\sqrt{1 + u^2 + \frac{\sinh^{-1}(u)}{u}} \right] < \beta_1.
$$

and

$$
\alpha_2 < \frac{u\sqrt{1 + u^2} - \sinh^{-1}(u)}{(\sqrt{1 + u^2} - 1)\left[u\sqrt{1 + u^2} + \sinh^{-1}(u)\right]} < \beta_2.
$$

respectively.

Let $x = \sinh^{-1}(u)$. Then $x \in (0, +\infty)$,

$$
\frac{1}{2} \left[\sqrt{1 + u^2 + \frac{\sinh^{-1}(u)}{u}} \right] - 1
= \frac{1}{2} \left[\frac{2x + \sinh(2x) - 4\sinh(x)}{\sinh(2x) - 2\sinh(x)} \right] = \frac{1}{2} \varphi_1(x).
$$

Therefore, inequality (16) holds for all $a, b > 0$ with $a \neq b$ if and only if $\alpha_1 \leq 1/3$ and $\beta_1 \geq 1/2$ follows from (20) and (22) together with Lemma 2.3(1), inequality (17) holds for all $a, b > 0$ with $a \neq b$ if and only if $\alpha_2 \leq 0$ and $\beta_2 \geq 2/3$ follows from (21) and (23) together with Lemma 2.3(2).

Theorem 3.2 The double inequalities

$$
\alpha_3 Q(a, b) + (1 - \alpha_3)G(a, b) < N_{GQ}(a, b) < \beta_3 Q(a, b) + (1 - \beta_3)G(a, b).
$$

$$
\alpha_4 \frac{G(a, b)}{Q(a, b)} + 1 - \alpha_4 < \frac{1}{N_{GQ}(a, b)} < \beta_4 \frac{G(a, b)}{Q(a, b)} + 1 - \beta_4
$$

holds for all $a, b > 0$ with $a \neq b$ if and only if $\alpha_3 \leq 2/3, \beta_3 \geq \pi/4, \alpha_4 \leq 0$ and $\beta_4 \geq 1/3$.

Proof. We clearly see that inequalities (24) and (25) can be rewritten as

$$
\alpha_3 < \frac{N_{GQ}(a, b) - G(a, b)}{Q(a, b) - G(a, b)} < \beta_3.
$$

and

$$
\alpha_4 < \frac{1/N_{GQ}(a, b) - 1/Q(a, b)}{1/G(a, b) - 1/Q(a, b)} < \beta_4.
$$

respectively.

Since both the geometric mean $G(a, b)$ and quadratic mean $Q(a, b)$ are symmetric and homogeneous of degree 1, without loss of generality, we assume that $a > b > 0$. Let $u = (a - b)/\sqrt{2ab} \in (0, +\infty)$. Then from (5) and (26)-(27) together with $Q(a, b) = G(a, b)\sqrt{1 + u^2}$ we have

$$
\alpha_3 < \frac{1}{2} \left[1 + (1 + u^2)\tan^{-1}(u) \right] - 1
< \beta_3.
$$
and
\[
\alpha_4 < \frac{2u \sqrt{1 + u^2} - [u + (1 + u^2) \tan^{-1}(u)]}{(\sqrt{1 + u^2} - 1) [u + (1 + u^2) \tan^{-1}(u)]} < \beta_4 .
\] (29)
respectively.

Let \(x = \tan^{-1}(u)\). Then \(x \in (0, \pi/2)\),
\[
\frac{1}{2} \left[1 + \frac{(1 + u^2) \tan^{-1}(u)}{u} \right] - 1
\frac{\sqrt{1 + u^2} - 1}{2x - \sin(2x)} = \frac{1}{4} \sin(x) [1 - \cos(x)] = \frac{1}{4} \varphi_3(x).
\] (30)

Therefore, inequality (24) holds for all \(a, b > 0\) with \(a \neq b\) if and only if \(\alpha_3 \leq 2/3\) and \(\beta_3 \geq \pi/4\) follows from (28) and (30) together with Lemma 2.3(3), inequality (25) holds for all \(a, b > 0\) with \(a \neq b\) if and only if \(\alpha_4 \leq 0\) and \(\beta_4 \geq 1/3\) follows from (29) and (31) together with Lemma 2.3(4).

Theorem 3.3 The double inequalities
\[
\alpha_5 Q(a, b) + (1 - \alpha_5) V(a, b) < N_{QG}(a, b) < \beta_5 Q(a, b) + (1 - \beta_5) V(a, b) .
\] (32)
holds for all \(a, b > 0\) with \(a \neq b\) if and only if \(\alpha_5 \leq 0\) and \(\beta_5 \geq 1/2\).

Proof. We clearly see that inequalities (32) can be rewritten as
\[
\alpha_5 < \frac{N_{QG}(a, b) - V(a, b)}{Q(a, b) - V(a, b)} < \beta_5 .
\] (33)

Since both the geometric mean \(G(a, b)\) and quadratic mean \(Q(a, b)\) are symmetric and homogeneous of degree 1, without loss of generality, we assume that \(a > b > 0\). Let \(u = (a - b)/\sqrt{2ab} \in (0, +\infty)\). Then from (4) and (33) together with \(Q(a, b) = G(a, b) \sqrt{1 + u^2}\) we have
\[
\alpha_5 < \frac{1}{2} \left[\frac{\sqrt{1 + u^2} + \sinh^{-1}(u)}{u} - \frac{u}{\sinh^{-1}(u)} \right] < \beta_5 .
\] (34)

Let \(x = \sinh^{-1}(u)\). Then \(x \in (0, +\infty)\),
\[
\frac{1}{2} \left[\frac{\sqrt{1 + u^2} + \sinh^{-1}(u)}{u} - \frac{u}{\sinh^{-1}(u)} \right]
\frac{\sqrt{1 + u^2} - \sinh^{-1}(u)}{\sinh^{-1}(u)}
= 1 - \frac{1}{2} \frac{x \sinh(2x) - 2x^2}{x \sinh(2x) - \cosh(2x) + 1} = 1 - \frac{1}{2} \varphi_5(x).
\] (35)

where the functions \(\varphi_5(x)\) is defined as in Lemma 2.4.

Therefore, inequality (32) holds for all \(a, b > 0\) with \(a \neq b\) if and only if \(\alpha_5 \leq 0\) and \(\beta_5 \geq 1/2\) follows from (34) and (35) together with Lemma 2.4.
Theorem 3.4 The double inequalities
\[\alpha_6 Q(a, b) + (1 - \alpha_6)U(a, b) < N_{GQ}(a, b) < \beta_6 Q(a, b) + (1 - \beta_6)U(a, b). \] (36)
holds for all \(a, b > 0 \) with \(a \neq b \) if and only if \(\alpha_6 \leq 0, \beta_6 \geq (\pi^2 - 8)/[4(\pi - 2)] = 0.4094 \cdots \).

Proof. We clearly see that inequalities (36) can be rewritten as
\[\alpha_6 < \frac{N_{GQ}(a, b) - U(a, b)}{Q(a, b) - U(a, b)} < \beta_6. \] (37)

Since both the geometric mean \(G(a, b) \) and quadratic mean \(Q(a, b) \) are symmetric and homogeneous of degree 1, without loss of generality, we assume that \(a > b > 0 \). Let \(u = (a - b)/\sqrt{2ab} \in (0, +\infty) \). Then from (5) and (36) together with \(Q(a, b) = G(a, b)\sqrt{1 + u^2} \) we have
\[\alpha_6 < \frac{1}{2} \left[1 + (1 + u^2)\frac{\tan^{-1}(u)}{u} \right] - \frac{u}{\tan^{-1}(u)} < \beta_6. \] (38)

Let \(x = \tan^{-1}(u) \). Then \(x \in (0, \pi/2) \),
\[\frac{1}{2} \left[1 + (1 + u^2)\frac{\tan^{-1}(u)}{u} \right] - \frac{u}{\tan^{-1}(u)} = \frac{1}{2} \varphi_6(x), \] (39)
where the function \(\varphi_6(x) \) is defined as in Lemma 2.5.

Therefore, inequality (36) holds for all \(a, b > 0 \) with \(a \neq b \) if and only if \(\alpha_6 \leq 0 \) and \(\beta_6 \geq (\pi^2 - 8)/[4(\pi - 2)] = 0.4094 \cdots \) follows from (37)-(39) together with Lemma 2.5.

4 Applications

In this section, we will establish several sharp inequalities involving the hyperbolic, inverse hyperbolic, trigonometric and inverse trigonometric functions by use of Theorems 3.1-3.4.

From (3) we clearly see that
\[N_{GQ}(a, b) = \frac{1}{2} \left[Q(a, b) + \frac{G^2(a, b)}{V(a, b)} \right], \quad N_{GQ}(a, b) = \frac{1}{2} \left[G(a, b) + \frac{Q^2(a, b)}{U(a, b)} \right]. \] (40)

Let \(a > b \) and \(x = \sinh^{-1}\left(\frac{a-b}{\sqrt{2ab}}\right) \in (0, \infty) \). Then simple computations lead to
\[\frac{Q(a, b)}{G(a, b)} = \cosh(x), \quad \frac{V(a, b)}{G(a, b)} = \frac{\sinh(x)}{x}, \quad \frac{U(a, b)}{G(a, b)} = \frac{\sinh(x)}{\tan^{-1}\left(\sinh(x)\right)}. \] (41)

Theorems 3.1-3.4 and (40)-(41) lead to Theorem 4.1.

Theorem 4.1 The double inequalities
\[2\alpha_1 \cosh(x) + 2(1 - \alpha_1) < \cosh(x) + \frac{x}{\sinh(x)} < 2\beta_1 \cosh(x) + 2(1 - \beta_1), \]
\[\frac{1}{2} \left[\alpha_2 \cosh(x) + (1 - \alpha_2) \right] < 1 - \frac{2x}{\sinh(2x) + 2x} < \frac{1}{2} \left[\beta_2 \cosh(x) + (1 - \beta_2) \right], \]
\[2\alpha_3 \cosh(x) + (1 - 2\alpha_3) < \cosh(x) \coth(x) \tan^{-1}\left(\sinh(x)\right) < 2\beta_3 \cosh(x) + (1 - 2\beta_3), \]
\[\frac{\alpha_4 \cosh(x) + (1 - \alpha_4)}{2 \cosh(x)} < \frac{1}{1 + \cosh(x) \coth(x) \tan^{-1}\left(\sinh(x)\right)} < \frac{\beta_4 \cosh(x) + (1 - \beta_4)}{2 \cosh(x)}, \]
\[2\alpha_5 \cosh(x) + 2(1 - \alpha_5) \frac{\sinh(x)}{x} < \cosh(x) + \frac{x}{\sinh(x)} < 2\beta_5 \cosh(x) + 2(1 - \beta_5) \frac{\sinh(x)}{x}, \]

\[2\alpha_6 \cosh(x) + 2(1 - \alpha_6) \frac{\sinh(x)}{\tan^{-1}[\sinh(x)]} < 1 + \cosh(x) \cot(x) \tan^{-1} \left[\frac{\sinh(x)}{\tan^{-1}[\sinh(x)]} \right] < 2\beta_6 \cosh(x) + 2(1 - \beta_6) \frac{\sinh(x)}{\tan^{-1}[\sinh(x)]}, \]

hold for all \(x > 0 \) if and only if \(\alpha_1 \leq 1/3, \beta_1 \geq 1/2, \alpha_2 \leq 0, \beta_2 \geq 2/3, \alpha_3 \leq 2/3, \beta_3 \geq \pi/4, \alpha_4 \leq 0, \beta_4 \geq 1/3, \alpha_5 \leq 0, \beta_5 \geq 1/2, \alpha_6 \leq 0 \) and \(\beta_6 \geq (\pi^2-8)/[4(\pi - 2)] \).

Let \(a > b \) and \(x = \tan^{-1} \left(\frac{a-b}{\sqrt{2ab}} \right) \in (0, \pi/2) \). Then it is not difficult to verify that

\[\frac{Q(a,b)}{G(a,b)} = \sec(x), \quad \frac{V(a,b)}{G(a,b)} = \frac{\tan(x)}{\sinh^{-1}[\tan(x)]}, \quad \frac{U(a,b)}{G(a,b)} = \frac{\tan(x)}{x}. \]

From Theorems 3.1-3.4 and (40), (42) we get Theorem 4.2 immediately.

Theorem 4.2 The double inequalities

\[2\alpha_1 \sec(x) + 2(1 - \alpha_1) < \sec(x) + \frac{\sinh^{-1}[\tan(x)]}{\tan(x)} < 2\beta_1 \sec(x) + 2(1 - \beta_1), \]

\[\frac{1}{2} \left[\alpha_2 + (1 - \alpha_2) \cos(x) \right] < \tan(x) \frac{\tan(x)}{\sec(x) \tan(x) + \sinh^{-1}[\tan(x)]} < \frac{1}{2} \left[\beta_2 + (1 - \beta_2) \cos(x) \right], \]

\[2\alpha_3 \sec(x) + 2(1 - \alpha_3) < 1 + \frac{2x}{\sin(2x)} < 2\beta_3 \sec(x) + 2(1 - \beta_3), \]

\[\frac{1}{2} \left[\alpha_4 + (1 - \alpha_4) \cos(x) \right] < 1 - \frac{2x}{\sin(2x) + 2x} < \frac{1}{2} \left[\beta_4 + (1 - \beta_4) \cos(x) \right], \]

\[2\alpha_5 \sec(x) + 2(1 - \alpha_5) \frac{\tan(x)}{\sinh^{-1}[\tan(x)]} < \sec(x) + \frac{\sinh^{-1}[\tan(x)]}{\tan(x)} < 2\beta_5 \sec(x) + 2(1 - \beta_5) \frac{\tan(x)}{\sinh^{-1}[\tan(x)]}, \]

\[2\alpha_6 \sec(x) + 2(1 - \alpha_6) \frac{\tan(x)}{x} < 1 + \frac{2x}{\sin(2x)} < 2\beta_6 \sec(x) + 2(1 - \beta_6) \frac{\tan(x)}{x}. \]

hold for all \(x \in (0, \pi/2) \) if and only if \(\alpha_1 \leq 1/3, \beta_1 \geq 1/2, \alpha_2 \leq 0, \beta_2 \geq 2/3, \alpha_3 \leq 2/3, \beta_3 \geq \pi/4, \alpha_4 \leq 0, \beta_4 \geq 1/3, \alpha_5 \leq 0, \beta_5 \geq 1/2, \alpha_6 \leq 0 \) and \(\beta_6 \geq (\pi^2-8)/[4(\pi - 2)] \).

Acknowledgments. This research was supported by the Natural Science Foundation of Zhejiang Broadcast and TV University under Grant XKT-15G17.

References