On The Class of Almost β-γ-Continuous Functions

Hariwan Z. Ibrahim

Department of Mathematics, Faculty of Science, University of Zakho, Kurdistan-Region, Iraq
Email: hariwan_math@yahoo.com

Abstract The main purpose of the present paper is to introduce a new class of functions called almost β-γ-continuous functions which is contained in the class of almost β-continuous functions and contains the class of β-γ-continuous functions.

Keywords: β-γ-open, almost β-γ-continuous.

1 Introduction

Kasahara [10] defined an operation α on a topological space to introduce α-closed graphs. Following the same technique, Ogata [16] defined an operation γ on a topological space and introduced γ-open sets. Hariwan [7] introduced a type of continuity called β-γ-continuous function. Nasef and Noiri [13] introduced the notion of almost β-continuity.

In this paper, we introduce a new class of functions called almost β-γ-continuous functions which is contained in the class of almost β-continuous functions and contains the class of β-γ-continuous functions. We obtain basic properties of almost β-γ-continuous functions.

2 Preliminaries

Throughout this paper, (X, τ) and (Y, σ) stand for topological spaces with no separation axioms assumed unless otherwise stated. For a subset A of X, the closure of A and the interior of A will be denoted by $Cl(A)$ and $Int(A)$, respectively. Let (X, τ) be a space and A a subset of X. An operation γ [10] on a topology τ is a mapping from τ into power set $P(X)$ of X such that $V \subseteq \gamma(V)$ for each $V \in \tau$, where $\gamma(V)$ denotes the value of γ at V. A subset A of X with an operation γ on τ is called γ-open [16] if for each $x \in A$, there exists an open set U such that $x \in U$ and $\gamma(U) \subseteq A$. Then, γ_1 denotes the set of all γ-open set in X. Clearly $\gamma_1 \subseteq \tau$. Complements of γ-open sets are called γ-closed. The γ_1-interior [18] of A is denoted by $\gamma_1-Int(A)$ and defined to be the union of all γ-open sets of X contained in A. A subset A of a space X is said to be β-γ-open [8] if $A \subseteq Cl(\gamma_1-Int(Cl(A)))$. A subset A of X is called β-γ-closed [7] if and only if its complement is β-γ-open.

Definition 2.1. A subset A of a space X is said to be

1. α-open [14] if $A \subseteq Int(Cl(Int(A)))$.
3. preopen [12] if $A \subseteq Int(Cl(A))$.
4. β-open [1] if $A \subseteq Cl(Int(Cl(A)))$.

Definition 2.2. The intersection of all preclosed (resp., semi-closed, α-closed) sets of X containing A is called the preclosure [6] (resp., semi-closure [4], α-closure [17]) of A.

Definition 2.3. [19] The δ-interior of a subset A of X is the union of all regular open sets of X contained in A. The subset A is called δ-open if $A = Int_\delta(A)$, i.e., a set is δ-open if it is the union of regular open sets. The complement of a δ-open set is called δ-closed. Alternatively, a set $A \subseteq X$ is called δ-closed if $A = Cl_\delta(A)$, where $Cl_\delta(A) = \{x \in X : Int(Cl(U)) \cap A \neq \phi, U \in \tau \text{ and } x \in U\}$.

Proposition 2.4. [2] A subset A of a space X is β-open if and only if $Cl(A)$ is regular closed.
Theorem 2.5. [1] Let A be any subset of a space X. Then $A \in \beta O(X)$ if and only if $Cl(A) = Cl(Inter(Cl(A)))$.

Theorem 2.6. Let A be a subset of a topological space (X, τ). Then:
1. If $A \in SO(X)$, then $pCl(A) = Cl(A)$ [5].
2. If $A \in \beta O(X)$, then $\alpha Cl(A) = Cl(A)$ [3].
3. If $A \in \beta O(X)$, then $Cl_\delta(A) = Cl(A)$ [20].

Lemma 2.7. [9] Let A be a subset of a space (X, τ). Then $A \in O(X, \tau)$ if and only if $sCl(A) = Int(Cl(A))$.

Definition 2.8. Let A be any subset of a topological space (X, τ) and γ be an operation on τ. Then:
1. The union of all $\beta-\gamma$-open sets contained in A is called the $\beta-\gamma$-interior of A and is denoted by $\beta-\gamma Int(A)$.
2. The intersection of all $\beta-\gamma$-closed sets containing A is called the $\beta-\gamma$-closure of A and is denoted by $\beta-\gamma Cl(A)$.

Definition 2.9. [7] A function $f : (X, \tau) \to (Y, \sigma)$ is said to be $\beta-\gamma$-continuous if for every open set V of Y, $f^{-1}(V)$ is $\beta-\gamma$-open in X.

Definition 2.10. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be $\beta-\gamma$-continuous if for each $x \in X$ and each open set V of Y containing $f(x)$, there exists a $\beta-\gamma$-open set U containing x such that $f(U) \subseteq V$.

Definition 2.11. [13] A function $f : (X, \tau) \to (Y, \sigma)$ is called almost β-continuous at a point $x \in X$ if for every open set V in Y containing $f(x)$, there exists a β-open set U in X containing x such that $f(U) \subseteq Int(Cl(V))$. If f is almost β-continuous at every point of X, then it is called almost β-continuous.

Definition 2.12. [15] A space X is said to be semi-regular if for any open set U of X and each point $x \in U$, there exists a regular open set V of X such that $x \in V \subseteq U$.

3 Almost $\beta-\gamma$-Continuous

Definition 3.1. A function $f : (X, \tau) \to (Y, \sigma)$ is called almost $\beta-\gamma$-continuous at a point $x \in X$ if for each $x \in X$ and each open set V of Y containing $f(x)$, there exists a $\beta-\gamma$-open set U of X containing x such that $f(U) \subseteq Int(Cl(V))$. If f is almost $\beta-\gamma$-continuous at every point of X, then it is called almost $\beta-\gamma$-continuous.

Example 3.2. Consider $X = \{1, 2, 3\}$ with the discrete topology τ on X. Define an operation γ on τ by

$$\gamma(A) = \begin{cases} A & \text{if } A = \{1, 3\} \\ X & \text{otherwise.} \end{cases}$$

And define a function $f : (X, \tau) \to (X, \sigma)$ as follows:

$$f(x) = \begin{cases} 1 & \text{if } x = 1 \\ 2 & \text{if } x = 2 \\ 3 & \text{if } x = 3 \end{cases}$$

Then, f is not $\beta-\gamma$-continuous.

Remark 3.3. It easily follows that $\beta-\gamma$-continuity implies almost $\beta-\gamma$-continuity and almost $\beta-\gamma$-continuity implies almost β-continuity. However, the converses are not true as the following example shows.

Example 3.4. Consider $X = \{a, b, c\}$ with the topology $\tau = \sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Define an operation γ on τ by $\gamma(A) = A$ for all $A \in \tau$. Define a function $f : (X, \tau) \to (X, \sigma)$ as follows:

$$f(x) = \begin{cases} c & \text{if } x = a \\ b & \text{if } x = b \\ a & \text{if } x = c \end{cases}$$
Then f is almost β-continuous but not β-continuous, because $\{a\}$ is an open set in (X, σ) containing $f(c) = a$, but there exists no β-open set U in (X, τ) containing c such that $f(U) \subseteq \{a\}$.

And we define an operation γ on τ by $\gamma(A) = X$ for all $A \in \tau$. Then f is almost β-continuous but is not almost β-continuous.

Theorem 3.5. For a function $f : (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

1. f is almost β-continuous.
2. For each $x \in X$ and each open set V of X containing $f(x)$, there exists a β-open set U in X containing x such that $f(U) \subseteq sCl(V)$.
3. For each $x \in X$ and each regular open set V of Y containing $f(x)$, there exists a β-open set U in X containing x such that $f(U) \subseteq \gamma(V)$.
4. For each $x \in X$ and each δ-open set V of Y containing $f(x)$, there exists a β-open set U in X containing x such that $f(U) \subseteq V$.

Proof. (1) \Rightarrow (2). Let $x \in X$ and let V be any open set of Y containing $f(x)$. By (1), there exists a β-open set U of X containing x such that $f(U) \subseteq \gamma(V)$ in V. Since V is open and hence V is preopen set. By Lemma 2.7, $\gamma(V) = sCl(V)$. Therefore, $f(U) \subseteq sCl(V)$.

(2) \Rightarrow (3). Let $x \in X$ and let V be any regular open set of Y containing $f(x)$. Then V is an open set of Y containing $f(x)$. By (2), there exists a β-open set U in X containing x such that $f(U) \subseteq sCl(V)$.

Since V is regular open and hence is preopen set. By Lemma 2.7, $sCl(V) = \gamma(V)$. Therefore, $f(U) \subseteq \gamma(V)$.

(3) \Rightarrow (4). Let $x \in X$ and let V be any δ-open set of Y containing $f(x)$. Then for each $f(x) \in V$, there exists an open set γ containing $f(x)$ such that $\gamma \subseteq \gamma(V)$. Since $\gamma(V)$ is regular open set of Y containing $f(x)$. By (3), there exists a β-open set U in X containing x such that $f(U) \subseteq \gamma(V)$.

This completes the proof.

(4) \Rightarrow (1). Let $x \in X$ and let V be any open set of Y containing $f(x)$. Then $\gamma(V)$ is δ-open set of Y containing $f(x)$. By (4), there exists a β-open set U in X containing x such that $f(U) \subseteq \gamma(V)$.

Therefore, f is almost β-continuous. □

Theorem 3.6. For a function $f : (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

1. f is almost β-continuous.
2. $f^{-1}(\gamma(V))$ is β-open set in X, for each open set V in Y.
3. $f^{-1}(\gamma(U))$ is β-open set in X, for each closed set U in Y.
4. $f^{-1}(U)$ is β-open set in X, for each regular closed set U of Y.
5. $f^{-1}(U)$ is β-open set in X, for each regular open set V of Y.

Proof. (1) \Rightarrow (2). Let V be any open set in Y. We have to show that $f^{-1}(\gamma(V))$ is β-open set in X. Let $x \in f^{-1}(\gamma(V))$. Then $f(x) \in \gamma(V)$ and $\gamma(V)$ is a regular open set in Y. Since f is almost β-continuous. Then by Theorem 3.5, there exists a β-open set U of X containing x such that $f(U) \subseteq \gamma(V)$. This implies that $x \in U \subseteq f^{-1}(\gamma(V))$. Therefore, $f^{-1}(\gamma(V))$ is β-open set in X.

(2) \Rightarrow (3). Let F be any closed set of Y. Then $f^{-1}(\gamma(V)) = f^{-1}(\gamma(U))$. Since F is a closed set of X and hence $f^{-1}(\gamma(U))$ is β-open set in X.

(3) \Rightarrow (4). Let F be any regular closed set of Y. Then $f^{-1}(\gamma(U)) = f^{-1}(U)$ is β-closed set in X. Since F is regular closed set. Then $f^{-1}(\gamma(U)) = f^{-1}(F)$. Therefore, $f^{-1}(F)$ is β-closed set in X.

(4) \Rightarrow (5). Let V be any regular open set of Y. Then $f^{-1}(V) = f^{-1}(U)$ is β-closed set in X and hence $f^{-1}(V)$ is β-open set in X.

(5) \Rightarrow (1). Let $x \in X$ and let V be any regular open set of Y containing $f(x)$. Then $x \in f^{-1}(V)$. By (5), we have $f^{-1}(V)$ is β-open set in X. Therefore, we obtain $f(f^{-1}(V)) \subseteq V$. Hence by Theorem 3.5, f is almost β-continuous. □

Theorem 3.7. For a bijection function $f : (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:
Theorem 3.9. Proof. (1) \Rightarrow (2). Let A be a subset of X. Since $\text{Cl}_f(A)$ is δ-closed in Y, it is denoted by $\cap \{F_\alpha : F_\alpha \in \text{RC}(Y), \alpha \in \Delta\}$, where Δ is an index set. Then, we have $A \subseteq f^{-1}(\text{Cl}_f(A)) = f^{-1}(\cap \{F_\alpha : \alpha \in \Delta\})$. By (1) and Theorem 3.6, $f^{-1}(\text{Cl}_f(A))$ is $\beta\gamma$-closed set of X. Hence $\beta\gamma\text{Cl}(A) \subseteq f^{-1}(\text{Cl}_f(A))$. Therefore, we obtain $f(\beta\gamma\text{Cl}(A)) \subseteq \text{Cl}_f(A)$.

(2) \Rightarrow (3). Let B be any subset of Y. Then $f^{-1}(B)$ is a subset of X. By (2), we have $f(\beta\gamma\text{Cl}(f^{-1}(B))) \subseteq \text{Cl}_f(B)$. Hence $\beta\gamma\text{Cl}(f^{-1}(B)) \subseteq f^{-1}(\text{Cl}_f(B))$.

(3) \Rightarrow (4). Let F be any δ-closed set of Y. By (3), we have $\beta\gamma\text{Cl}(f^{-1}(F)) \subseteq f^{-1}(\text{Cl}_f(F)) = f^{-1}(F)$ and hence $f^{-1}(F)$ is $\beta\gamma$-closed set in X.

(4) \Rightarrow (5). Let V be any δ-closed set of Y. Then $Y \setminus V$ is δ-closed set of Y and by (4), we have $f^{-1}(Y \setminus V) = \beta\gamma\text{Cl}(V)$ is $\beta\gamma$-closed set in X. Hence $f^{-1}(V)$ is $\beta\gamma$-open set in X.

(5) \Rightarrow (6). For each subset B of Y. We have $\text{Int}_\alpha(B) \subseteq B$. Then $f^{-1}(\text{Int}_\alpha(B)) \subseteq f^{-1}(B)$. By (5), $f^{-1}(\text{Int}_\alpha(B)) \subseteq \beta\gamma$-open set in X. Then $f^{-1}(\text{Int}_\alpha(B)) \subseteq \beta\gamma\text{Int}(f^{-1}(B))$.

(6) \Rightarrow (7). Let A be any subset of X. Then $f(A)$ is a subset of Y. By (6), we obtain that $f^{-1}(\text{Int}_\alpha(f(A))) \subseteq \beta\gamma\text{Int}(f^{-1}(f(A)))$. Hence $f^{-1}(\text{Int}_\alpha(f(A))) \subseteq \beta\gamma\text{Int}(A)$, which implies that $\text{Int}_\alpha(f(A)) \subseteq f(\beta\gamma\text{Int}(A))$.

(7) \Rightarrow (1). Let x be any regular open set of Y containing f(x). Then x is $\beta\gamma$-open in X.

Theorem 3.8. For a function $f : (X, \tau) \to (Y, \sigma)$, the following properties are equivalent:

1. f is almost $\beta\gamma$-continuous.
2. $\beta\gamma\text{Cl}(f^{-1}(V)) \subseteq f^{-1}(\text{Cl}(V))$, for each $\beta\gamma$-open set V of Y.
3. $f^{-1}(\text{Int}(F)) \subseteq \beta\gamma\text{Int}(f^{-1}(F))$, for each $\beta\gamma$-closed set F of Y.
4. $f^{-1}(\text{Int}(F)) \subseteq f^{-1}(\text{Cl}(F))$, for each semi-closed set F of Y.
5. $\beta\gamma\text{Cl}(f^{-1}(V)) \subseteq f^{-1}(\text{Cl}(V))$, for each semi-closed set V of Y.

Proof. (1) \Rightarrow (2). Let V be any $\beta\gamma$-open set of Y. It follows from Proposition 2.4, that $\text{Cl}(V)$ is regular closed set in Y. Since f is almost $\beta\gamma$-continuous. Then by Theorem 3.6, $f^{-1}(\text{Cl}(V))$ is $\beta\gamma$-closed set in X. Therefore, we obtain $\beta\gamma\text{Cl}(f^{-1}(V)) \subseteq f^{-1}(\text{Cl}(V))$.

(2) \Rightarrow (3). Let F be any $\beta\gamma$-closed set of Y. Then $Y \setminus F$ is $\beta\gamma$-open set of Y and by (2), we have $\beta\gamma\text{Cl}(f^{-1}(Y \setminus F)) \subseteq f^{-1}(\text{Cl}(Y \setminus F)) \Rightarrow \beta\gamma\text{Cl}(X \setminus f^{-1}(F)) \subseteq f^{-1}(Y \setminus \text{Int}(F)) \Rightarrow X \setminus \beta\gamma\text{Int}(f^{-1}(F)) \subseteq X \setminus f^{-1}(\text{Int}(F))$. Therefore, $f^{-1}(\text{Int}(F)) \subseteq \beta\gamma\text{Int}(f^{-1}(F))$.

(3) \Rightarrow (4). This is obvious since every semi-closed set is $\beta\gamma$-closed set.

(4) \Rightarrow (5). Let V be any semi-closed set of Y. Then $Y \setminus V$ is semi-closed set and by (4), we have $f^{-1}(\text{Int}(Y \setminus V)) \subseteq \beta\gamma\text{Int}(f^{-1}(Y \setminus V)) \Rightarrow f^{-1}(Y \setminus \text{Cl}(V)) \subseteq \beta\gamma\text{Int}(X \setminus f^{-1}(V)) \Rightarrow X \setminus f^{-1}(\text{Cl}(V)) \subseteq X \setminus \beta\gamma\text{Cl}(f^{-1}(V))$. Therefore, $\beta\gamma\text{Cl}(f^{-1}(V)) \subseteq f^{-1}(\text{Cl}(V))$.

(5) \Rightarrow (1). Let F be any regular closed set of Y. Then F is semi-closed set of Y. By (5), we have $\beta\gamma\text{Cl}(f^{-1}(F)) \subseteq f^{-1}(\text{Cl}(F)) = f^{-1}(F)$. This shows that $f^{-1}(F)$ is $\beta\gamma$-closed set in X. By Theorem 3.6, f is almost $\beta\gamma$-continuous.
Theorem 3.11. A function \(f : X \to Y \) is almost \(\beta, \gamma \)-continuous if and only if \(f^{-1}(V) \subseteq \beta, \gamma \text{Int}(f^{-1}(\text{Cl}(V))) \) for each preopen set \(V \) of \(Y \).

Proof. **Necessity.** Let \(V \) be any preopen set of \(Y \). Then \(V \subseteq \text{Int}(\text{Cl}(V)) \) and \(\text{Int}(\text{Cl}(V)) \) is regular open set in \(Y \). Since \(f \) is almost \(\beta, \gamma \)-continuous, by Theorem 3.6, \(f^{-1}(\text{Int}(\text{Cl}(V))) \) is \(\beta, \gamma \)-open set in \(X \) and hence we obtain that \(f^{-1}(V) \subseteq f^{-1}(\text{Int}(\text{Cl}(V))) = \beta, \gamma \text{Int}(f^{-1}(\text{Int}(\text{Cl}(V)))) \).

Sufficiency. Let \(V \) be any regular open set of \(Y \). Then \(V \) is preopen set of \(Y \). By hypothesis, we have \(f^{-1}(V) \subseteq \beta, \gamma \text{Int}(f^{-1}(\text{Int}(\text{Cl}(V)))) = \beta, \gamma \text{Int}(f^{-1}(V)) \). Therefore, \(f^{-1}(V) \) is \(\beta, \gamma \)-open set in \(X \) and hence by Theorem 3.6, \(f \) is almost \(\beta, \gamma \)-continuous. \(\square \)

Corollary 3.12. A function \(f : X \to Y \) is almost \(\beta, \gamma \)-continuous if and only if \(f^{-1}(V) \subseteq \beta, \gamma \text{Int}(f^{-1}(\text{sCl}(V))) \) for each preopen set \(V \) of \(Y \).

Corollary 3.13. A function \(f : X \to Y \) is almost \(\beta, \gamma \)-continuous if and only if \(\beta, \gamma \text{Cl}(f^{-1}(\text{Cl}(\text{Int}(F)))) \subseteq f^{-1}(F) \) for each preclosed set \(F \) of \(Y \).

Corollary 3.14. A function \(f : X \to Y \) is almost \(\beta, \gamma \)-continuous if and only if \(\beta, \gamma \text{Cl}(f^{-1}(\text{sInt}(F))) \subseteq f^{-1}(F) \) for each preclosed set \(F \) of \(Y \).

Theorem 3.15. For a function \(f : X \to Y \), the following statements are equivalent:

1. \(f \) is almost \(\beta, \gamma \)-continuous.
2. For each neighborhood \(V \) of \(f(x) \), \(x \in \beta, \gamma \text{Int}(f^{-1}(\text{sCl}(V))) \).
3. For each neighborhood \(V \) of \(f(x) \), \(x \in \beta, \gamma \text{Int}(f^{-1}(\text{Int}(\text{Cl}(V)))) \).

Proof. Follows from Theorem 3.11 and Corollary 3.12. \(\square \)

Theorem 3.16. Let \(f : X \to Y \) is an almost \(\beta, \gamma \)-continuous function and let \(V \) be any open subset of \(Y \). If \(x \in \beta, \gamma \text{Cl}(f^{-1}(V)) \) \(\setminus f^{-1}(V) \), then \(f(x) \in \beta, \gamma \text{Cl}(V) \).

Proof. Let \(x \in X \) such that \(x \in \beta, \gamma \text{Cl}(f^{-1}(V)) \setminus f^{-1}(V) \) and suppose \(f(x) \notin \beta, \gamma \text{Cl}(V) \). Then there exists a \(\beta, \gamma \)-open set \(H \) containing \(f(x) \) such that \(H \cap V = \emptyset \). Then \(\text{Cl}(H) \cap V = \emptyset \) which implies \(\text{Int}(\text{Cl}(H)) \cap V = \emptyset \) and \(\text{Int}(\text{Cl}(H)) \) is regular open set. Since \(f \) is almost \(\beta, \gamma \)-continuous, by Theorem 3.5, there exists a \(\beta, \gamma \)-open set \(U \) in \(X \) containing \(x \) such that \(f(U) \subseteq \text{Int}(\text{Cl}(H)) \). Therefore, \(f(U) \cap V = \emptyset \). However, since \(x \in \beta, \gamma \text{Cl}(f^{-1}(V)), U \cap f^{-1}(V) \neq \emptyset \) for every \(\beta, \gamma \)-open set \(U \) in \(X \) containing \(x \), so that \(f(U) \cap V \neq \emptyset \). We have a contradiction. It follows that \(f(x) \in \beta, \gamma \text{Cl}(V) \). \(\square \)

Theorem 3.17. If \(f : X \to Y \) is almost \(\beta, \gamma \)-continuous and \(g : Y \to Z \) is continuous and open. Then the composition function \(\text{gof} : X \to Z \) is almost \(\beta, \gamma \)-continuous.
Proof. Let \(x \in X \) and \(W \) be an open set of \(Z \) containing \(g(f(x)) \). Since \(g \) is continuous, \(g^{-1}(W) \) is an open set of \(Y \) containing \(f(x) \). Since \(f \) is almost \(\beta\gamma \)-continuous, there exists a \(\beta\gamma \)-open set \(U \) of \(X \) containing \(x \) such that \(f(U) \subseteq \text{Int}(\text{Cl}(g^{-1}(W))) \). Also, since \(g \) is continuous, then we obtain \((gof)(U) \subseteq g(\text{Int}(g^{-1}(\text{Cl}(W)))) \). Since \(g \) is open, we obtain \((gof)(U) \subseteq \text{Int}(\text{Cl}(W)) \). Therefore, \(gof \) is almost \(\beta\gamma \)-continuous. \(\square \)

Theorem 3.18. If \(f : X \to Y \) is an almost \(\beta\gamma \)-continuous function and \(Y \) is semi-regular, then \(f \) is \(\beta\gamma \)-continuous.

Proof. Let \(x \in X \) and let \(V \) be any open set of \(Y \) containing \(f(x) \). By the semi-regularity of \(Y \), there exists a regular open set \(G \) of \(Y \) such that \(f(x) \in G \subseteq V \). Since \(f \) is almost \(\beta\gamma \)-continuous. By Theorem 3.5, there exists a \(\beta\gamma \)-open set \(U \) of \(X \) containing \(x \) such that \(f(U) \subseteq G \subseteq V \). Therefore, \(f \) is \(\beta\gamma \)-continuous. \(\square \)

References

7. Hariwan Z. Ibrahim, \(\beta\gamma \)-Irresolute and \(\beta\gamma \)-Closed Graph, Gen. Math. Notes, 15 (2), April, (2013), 32-44.