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Abstract. A nonlinear antenna synthesis problem is considered. Given a function that approximates 
the modulus of the diagram, an explicit formula for the corresponding current is found. This current 
generates the diagram as close to the given function as one wants. The numerical results illustrating 
the developed method are presented. The results show that in order to achieve a desired accuracy of 
approximation of the given function by the modulus of the diagram one may use currents that 
oscillates much. 
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1   Introduction 

There is a large literature (e.g. [1], [2], [4]-[8], [13]) on finding ( )j x  given the diagram 



     0 0( ) ( ) : , .
l

ikx

l

f k e j x dx Aj k k k (1)

Here 0 0k  and  0l  are fixed numbers. The diagram ( )f k  is an entire function of k ,  | || ( ) | l kf k ce , 

Ck . By  0c  we denote various estimation constants. Equation (1) for j  is an integral equation 
with compact operator   2 2

0 0: ( , ) ( , )A L l l L k k . The operator A  is injective, its range 

  2( ) : { : , ( , )}R A f Aj j L l l  is not closed. Thus, if  


 2
0 0( , )

|| ||
L k k

f f , then f  may be not in 

( )R A . 
In this paper the following problem is discussed: 

Problem 1. Given ( ) 0h k ,  2
0 0( ) ( , )h k L k k , and   0 , find   2( ) ( , )j x L l l  such that 

 


 2
0 0( , )

|| ( ) | ( ) |||
L k k

h k f k  , where  


 ( ) ( )
l

ikx

l

f k e j x dx . 

This is a nonlinear problem. There was no closed form solution to this problem. The problem has been 
discussed in [1], where the approach was based on a numerical solution of a corresponding nonlinear 
minimization problem. Some theoretical aspects of antenna synthesis problem were discussed in [4]-[11], 
[13]. 

In Section 2 our main result, Theorem 1, is formulated. In Section 3 Theorem 1 is proved. In Section 
4 the numerical results, based on Theorem 1, are presented. 

2   Closed Form Solution 

Our approach is quite different from the one in [1], which reduces Problem 1 to a linear problem that is 
solved in closed form. Our result is formulated in Theorem 1. 
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Denote 

 


      2: ( ) , ( , ), 0, | | ,
l

ikx

l

f Fj e j x dx j L l l j x l  (2) 

and 

 


 



 1 1 ( ) .
2

ikxF f e f k dk  (3) 

Theorem 1. A solution to Problem 1 is  

     1 1( ) 2 ( ( ) ( )nj x F G F h , (4) 

where  

 








    
                

 2

1/22
2

2 2
1 1

1( ) 1 , ( ),
2

ikx
n p

nn pl

n
l

n kG k e n n
l k k  (5) 

1 02k k , 
1
2

p  is fixed, and  ( )n n  is chosen so that  

 




  
0

2
0 0

0

( , )
|| ( ) ( ) ( ) ||

k

n L k k
k

G k s h s ds h k . (6) 

Theorem 1 is proved in Section 3. 

3   Proof of Theorem 1 

We formulate and prove below several Lemmas from which the conclusion of Theorem 1 follows 
immediately. 
Lemma 1. The set 

   

   
  


2 ( , )

( ) ( )
l

ikx

l j L l l

f k e j x dx  is dense in 2
0 0( , )L k k  for any fixed 0 0k . 

Proof. If Lemma 1 is wrong, then there exists an element  2
0 0( , )h L k k  such that 

 
 

 
     

 
 
0

0

2( ) ( ) 0 ( , ).
k l

ikx

k l

h k e j x dx dk j L l l  (7) 

This implies 

 
 

 
     
 
 

 
0

0

2( ) ( ) 0 ( , ).
kl

ikx

l k

j x e h k dk dx j L l l  (8) 

If a function is orthogonal to every  2( , )j L l l , then this function vanishes identically: 

 


      
0

0

2( ) 0, ( , ).
k

ikx

k

e h k dk l x l j L l l  (9) 

Since the integral in (9) is an entire function of x  vanishing on an interval  ( , )x l l , this function 
must vanish identically. In particular, it vanishes for    x . Therefore ( ) 0h k  by the injectivity 
of the Fourier transform. 
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The proof of the following lemma is based on the results from [9], [10], see also [11]. 

Lemma 2. The function  








    
               

 2

1/22
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1( ) : 1
2

ikx
n p

nn pl

n
l

n kG k e
l k k

 

is an entire function of exponential type l , which belongs to  2( , )L  if 
1
2

p . 

Proof. Clearly, the function 





 
  
 

2

2

1
2( )

ikx
n p

n pl

n l l
g k e dx  is an entire function of exponential type l , 

 | || ( ) | l k
ng k ce . If  | |k  then 








 
  
 
 

2

2
2

2

sin 1( ) ( )
n pkl

n p
n pkl

n p

g k O
k

 

and  




  
2

2
2 2
1 1

( ) (1 ) ( ).n n
n

n kk O k
k k

 

Therefore the smooth function  1
| |

( ) ( )pn k
G k O  as  | |k , so   2( ) ( , )nG k L  if  1

2p . 

Lemma 3. The function  ( )n k  is a delta-sequence: 

 





 
2

2 2
1 1

lim (1 ) 1n

n

n k dk
k k

 (10) 

for any   0(0, )k , 1 0k k  and 

 


 
2

2 2
1 1

lim (1 ) 0
b

n

n
a

n k dk
k k

 (11) 

if 0 ( , )a b , that is, if    00 a b k  or    0 0k a b . 

Proof. The proof is easy and is left to the reader. 

Lemma 4. If  1
0 0( , )h C k k  and 

  


0 0
1max | ' |

k k k
h M , then  

 


    
0

0

1( ) ( ) ( ) ( ),
k

n
k

k s h s ds h k O n
n

. (12) 

Proof. One has 



 

 

 





     

       const

0 0

0 0

0

0

( ) ( ) ( ) ( ) ( )

( )[ ( ) ( )] ( ) ( ) , 0,

k k

n nk k

k
n

nk

k s h s ds h k k s h s ds

k s h s h k ds h k O e J
 

where 
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


  
0

0

: ( )[ ( ) ( )] .
k

n
k

J k s h s h k ds  

So, using the Lagrange formula with  ( , )t s k , one gets 

   

  

 




 



 

        

     

  

0 0

0 0
20 0

1 1

2
1 0

1
2 2

1 10 1

1

1/2
2 2

1 1 1 0

4 / 1 1
01 1 1 1 1 1

| ( ) ( )( ) | ( ) | |

(1 ) | | 2 (1 )

(1 ) .

k k k
k k

k k
k

k k

n nk k

n nn n
k

k Mk k nn n
n n

J k s h t s k ds M k s s k ds

M u u du k M u udu

k M v dv k M

 (13) 

Here the following estimate is used: 

 
 




    

0

0

0 0

1 1

2
( ) 1 ( ), .

k
n

n
k

k k k
k s ds O e

k k
 (14) 

Lemma 4 is proved. 

Define 

 


 
0

0

( ) : ( ) ( ) .
k

n n
k

f k G k s h s ds  (15) 

This function is entire, of exponential type l , the same as the exponential type of nG , and 

  2( , )nf L  if  1
2p , since ( )nG k  has this property. Therefore by the Paley-Wiener theorem [12], it 

follows that  
   1 2: ( ) ( , ),n nF f j x L l l  

where ( ) 0nj x  for   | | , Rx l x . 

Lemma 5. If  ( )n n  is sufficiently large, then  

 


 2
0 0( , )

|| ( ) ( ) ||n L k k
f k h k . (16) 

Proof. The conclusion of this lemma follows from two facts: 

1) The function 

( ) 1n n

g k  uniformly on the interval  1| |k k ; 

2)  ( )n k  is a delta-sequence. 

The second fact is proved in Lemma 3. 

Let us prove the first fact. Since   0l
lxdx , one has (cf. Lemma 2): 

 

 



 

   
          

  

 
2 2

22
3

1

1 1 1( ) 1 ( ) ( ) ,
2 2 2

, | | .

n p n pikxl l
n p

n
l l

ikxg k e dx dx O
l n p n

n k k

 (17) 

Thus 
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      1
1( ) 1 ( ), , | |ng k O n k k
n

. (18) 

Relation (18) holds for any finite 1k . 

Lemma 6. One has  

 


 2
0 0( , )

||| ( ) | ( ) ||n L k k
f k h k . (19) 

Proof. Inequality (19) follows from (16), inequality ( ) 0h k , and an elementary inequality 

  || ( ) | ( ) | | ( ) ( ) | .n nf k h k f k h k  

Lemma 7. One has  

 



  



   1 11( ) ( ) 2 ,
2

ikx
n n nj x f k e dk F G F h  (20) 

where 1F h  is defined in (3).  

Proof. One has 

 








 


    

 

    

    

0

0

0

0

1
2

( ) 1 11
2

( ) ( ) ( )

( ) ( ) .

kikx
n nk

k
isx k s x

n nk

j x e dk G k s h s ds

dsh s e G k s e dk F G F h
 (21) 

Lemma 7 is proved. 

The conclusion of Theorem 1 follows from Lemmas 1-7 immediately. 

Remark 1. By estimate (16), formula (15) and Lemma 4 one has    1
n

O , so  
  2

1( )n n O  as 

  0 . 

Remark 2. By Parseval's equality one has 

 







 



 

      

   
0

0

2 2 2 2 21
1 2

2

21
2

|| || : (| | | ) (1 ) | ( ) |

(1 ) ( ) ( ) .

l

n n n nl

k

nk

j j j dx k f k dk

k G k s h s ds dk
 (22) 

Thus, one can check the norm 1|| ||nj  if h  and nG  are given. 

If  1
2p , then  2( , )nj L l l . If  1p , then  1|| ||nj . By changing n  and p  one changes 1|| ||nj . 

Remark 3. Our method is valid if the linear segment ( , )l l  is replaced by a multidimensional bounded 
domain D . In this case the origin has to be chosen at the gravity center of D , that is, at the point such 
that   0

D
xdx . In this case formula (18) and Lemma 2 remain valid, the function ( )nG k  is 

 



    
         

 2

2

, 2
1

1( ) 1 ,
| |

ik x
n p

nn p

n n N
D

k kG k e dx c
D k

 (23) 
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where k k  is the dot product of vectors, | |D  is measure (volume) of D , N  is the dimension of the 
space, and ,n Nc  is the normalizing constant: 

 





 
   

 


0
0 1

, 2
| | 1
2

lim 1 1
n

n Nn
k k
k k

k kc dk
k

. (24) 

If D  is smooth and strictly convex then the Fourier transform of the characteristic function of D  is 
1( )kO . Therefore   21( ) ( ) (R )p

N
n k

G k O L  if  2
Np . There is a large literature on the rate of decay of the 

Fourier transform of the characteristic function of a bounded domain D  in RN  [3], [11]. 

4   Numerical Modeling 

The numerical results related to investigation of the role of the number n  on the quality of 
approximation of the desired diagram ( )h k  are shown in Table 1. The parameters of the problem are the 
following:  2.0l , 0 3.0k ,  1 02 1.5k k ,  1.0p . The errors of the estimate (6) are given in the 

second column of Table 1. The mean-square deviation (MSD) || ( ) | ( ) |||h k f k , obtained in the process of 
solving the nonlinear synthesis problem by approach in [1], is presented in the third column, and the 
square of the norm 2|| ||j  is given in the last column. One can see that the value of n  influences 
strongly the accuracy of the approximation of the desired diagram. In order to get the error   of the 
approximation which is less than 310  it is sufficient to choose n  around 4000 . 

The quality of the approximation of the desired diagram ( )h k  by | ( ) |f k  for small n  is shown in Fig. 
1. The given function ( )h k  is plotted by thick solid line. The moduli | ( ) |f k  for  10,20,50,100n  are 
shown with the thin lines, the respective currents ( )j x  are shown in Fig. 2. So, the error of estimate (6) 
for  100n  is equal to 0.0295 . The error of the approximation decreases if n  increases, and its 
minimal value in our computations is equal to  40.7146 10  and is attained at  4000n . 

The values of the MSD, presented in the third column, are of the same order as the errors of estimate 
(6). For the given diagram ( )h k  the increase of the accuracy of the approximation does not force the 
growth of the norm || ||j  of the current which would cause practical difficulties (column 4 in Table 1). 

−1.0 −0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
h(k)
n=10
n=20
n=50
n=100

h(k),| f (k)| 

k/k
0
 
 

Fig. 1. The given  0( ) cos( / 2 )h k k k  and the obtained ( )f k  diagrams. 
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Table 1.  Quality of the approximation of  0( ) cos( / 2 )h x k k  for various n . 

n  Est. (6) MSD 2|| ( ) ||j x  

10 0.2784 0.2951 0.5060 

20 0.1463 0.1495 0.5858 

50 0.0591 0.0587 0.6432 

100 0.0295 0.0287 0.6653 

200 0.0147 0.0135 0.6772 

500 0.0059 0.0044 0.6847 

1000 0.0029 0.0014 0.6873 

4000  40.7146 10   40.8135 10  0.6892 

 

−2.0 −1.0 0.0   1.0 2.0
0.0

0.2

0.4

0.6
n=10
n=20
n=50
n=100

j(x) 

x 
 

Fig. 2. The currents ( )j x  for various n ,  0( ) cos( / 2 )h k k k . 

The quality of approximation to the given diagram ( ) 1h k  is shown in Table 2. For this ( )h k  the 
error of the approximation is larger than the error for  0( ) cos( / 2 )h k k k  at the same values of n . The 

value of   in estimate (6) at  4000n  is two orders greater than that for the diagram 
 0( ) cos( / 2 )h k k k . Although the error of estimate (6) and the MSD are small, but the difference of the 

shapes of ( )h k  and ( )f k  is visible. In the four last rows of Table 2 the results are presented for 
0 6.0k  and 0 9.0k . The error of estimate (6) is almost the same as for 0 3.0k , but the value of the 

MSD is lower. This means an improvement of the approximation to the given diagram by the shape 
(compare the dash dot and dot curves in Fig. 3). The mean-square deviation at  1000n  and  4000n  
for 0 9.0k  is almost two times less than for 0 3.0k . 
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−1.0 −0.5 0.0 0.5 1.0
0.4

0.6

0.8

1.0

1.2

h(k)
k

0
=3.0, n=50

k
0
=3.0, n=200

k
0
=3.0, n=4000

k
0
=9.0, n=500

 k/k
0

h(k), | f (k)| 

Fig. 3. The given ( ) 1h k  and the obtained | ( ) |f k  diagrams. 

The corresponding distributions of the current ( )j x  are shown in Fig. 4. For larger 0k  the norm of 

the current grows. This agrees with the numerical results in [1], namely the better approximation of the 
given diagram leads to the larger norm of the current. 

−2.0 −1.00.0 1.0 2.0
0.0

1.0

2.0

3.0
k

0
=3.0, n=50

k
0
=3.0, n=200

k
0
=3.0, n=4000

k
0
=9.0, n=500

x 

j(x) 

Fig. 4. The currents ( )j x  for several parameters 0k , ( ) 1h k . 

The number of n , which is sufficient for obtaining the desired error  , is shown in Table 3 for  2.0l , 
0 6.0k ,  1 02 1.5k k , and  1.0p . The results are presented for the given diagrams 

 2
0( ) (cos( / 2 ) qh k k k , with  1,4,8,16,32q . To obtain a higher accuracy of approximation of h  it is 

necessary to increase the number n  for all q . The quantity n  for the prescribed   varies for different 
q . 
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Table 2.  Quality of the approximation of ( ) 1h x  for various n . 

n Est. (6) MSD 2|| ( ) ||j x

0 3.0k

 10 0.5592 0.5885 0.7287

 20 0.3654 0.3712 0.8314

 50 0.2161 0.2219 0.8967

 100 0.1487 0.1650 0.9218

 200 0.1034 0.1338 0.9361

 500 0.0645 0.1141 0.9456

 1000 0.0433 0.1073 0.9458

 4000 0.0225 0.1021 0.9515

0 6.0k

 500 0.0584 0.0715 1.3506

 4000 0.0203 0.0537 1.3624

0 9.0k

 500 0.0565 0.0607 1.6575

 4000 0.0195 0.0380 1.6749

The power q  in the function  2
0(cos( / 2 ) qk k  corresponds to the diagrams with different widths at 

the level ( ) 0.5h k . The value of  ( ) 0.5| ( ) | ( ) ||h kh k f k  is minimal at  16q . Also, this ( )f k  has the 

smallest side lobes outside the interval  0| |k k  in comparison with the values of the side lobes at other 

values of q . Such diagram is called optimal [2], and it can be created more easily in comparison with 
other diagrams. This leads to the minimal value of n  which is necessary to obtain the desired error  . 

5   Conclusion 

The closed form solution of the linear antenna synthesis problem by the modulus of the diagram is 
given. The initial nonlinear problem is reduced to a linear one. The solution of this linear problem is 
presented in closed form, see formula (4). 

The numerical results, presented for several given amplitude diagram, demonstrate the high accuracy 
of the proposed method. The approach can be used also for solving the multidimensional antenna 
synthesis problems. 
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Table 3.  Number of n  necessary to attain the given value of   for various ( )h k . 

( )h k    0.1    0.01    0.001  

 2
0( ) (cos( / 2 )h k k k   24n   86n   320n  

 8
0( ) (cos( / 2 ))h k k k   15n   50n   240n  

 16
0( ) (cos( / 2 ))h k k k   12n   44n   165n  

 32
0( ) (cos( / 2 ))h k k k   9n   46n   150n  

 64
0( ) (cos( / 2 ))h k k k   13n   55n   182n  
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