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Abstract. The motion of a particle in the restricted three-body problem is explored by treating the 
more massive primary as an oblate spheroid with its equatorial plane coincident with the plane of 
motion of the primaries using a perturbation method. Initial conditions for the infinitesimal periodic 
orbits around the more massive primary are generated and the effect of oblateness on the perigee of 
these orbits is studied as well. It is observed that when oblateness coefficient is increased, the perigee 
of the orbit shifts towards both the primaries depending upon the increase in period and mass ratio. 
It is further noticed that during this transition, for certain periods, the perigee of the orbit remains 
unaltered with the increase in the oblateness coefficient. 
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1   Introduction 

Important information about a dynamical system is provided by the study of the periodic orbits in the 
system. A periodic solution is regarded as a solution of the differential equation of motion that satisfies, 
in addition to the initial conditions, that after a lapse of one period both coordinates and velocities 
return to their initial values. The general aspects of periodic orbits in the restricted three- body problem 
(RTBP) are well known. The works of Stromgren’s group at Copenhagen [1] and that of Moulton [2] 
and Darwin [3] on periodic orbits in RTBP are very important contributions. Broucke [4] had presented 
a large number of periodic orbits, classified into 10 families, in the Earth-Moon system RTBP. Szebehely 
[5] provided an excellent treatise on RTBP and discussed various aspects including periodic orbits.

Many of the problems facing physicists, engineers, and applied mathematicians involve difficulties as
nonlinear governing equations, variable coefficients, and nonlinear boundary conditions at complex 
known or unknown boundaries that preclude solving them exactly. Consequently, solutions are 
approximated using numerical techniques, analytic techniques and combinations of both. New analytical 
techniques were discovered and became operational, including averaging methods, regularization, Lie 
series, KAM Theory, canonical operations in the extended phase space, resonance theory, perturbations 
in rectangular co-ordinates, asymptotic expansions and the theory of singular perturbations, search for 
new integrals, and new concepts of local and global stability, to mention just a few. Both general and 
special perturbation techniques benefitted from computer development. Algebraic manipulations in 
general, computerized Poisson and Fourier series, and compression and storage of ephemerides by 
Chebyshev polynomials might be mentioned as the most significant non numerical uses of computers 
assisting the development of general perturbation theories.  

Generally in perturbation methods, we start with an integrable system whose solutions are known 
completely, and study a small perturbation of the unperturbed solution. Since the unperturbed and 
perturbed vector fields are closed, we might expect that the solutions will also be close. This is not 
always the case. In that case the unperturbed system is often structurally unstable. Arbitrarily small 
perturbations of such systems cause radical qualitative changes in the structure of solutions. Foremost, 
among the analytic techniques are the systematic methods of perturbations (asymptotic expansions) in 
terms of a small or a large parameter or co-ordinate. McCuskey [6] treated the basic mathematical 
description of the perturbation problem together with the application to some astronomical systems. 
The book “Introduction to perturbation methods” by Nayfeh [7] presented in a unified way the most of 
the perturbation techniques. The book by Guckenheimer and Holms [8] provides the analytical methods 
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of averaging and perturbation theory for the study of periodically forced nonlinear oscillators. Various 
perturbation techniques for differential equations are described by Jordan and Smith [9] in their book 
“Nonlinear ordinary differential equations”. A detailed analysis of the stability properties of periodic 
orbits, in the cases that are relevant to the operations of electromagnetic tethers working in circular 
inclined orbits, has been carried out by Pelaez and Lara [10] by using an algorithm based on the 
Poincare method of continuation of periodic orbits.  

In the framework of the planar circular RTBP, Huang [11] used the method of successive 
approximations to study some interesting orbits which provided a useful background for deriving 
periodic orbits for the Moon probing vehicle in the Earth–Moon–Sun system. Huang and Wade [12] 
derived two families of direct and retrograde periodic orbits that enclose both the Earth and the Moon. 
Their stability was examined by investigating the variations of the difference of two successive periods. 
Later Huang [13] established a series solution for periodic orbits in the RTBP which were revolving 
around the more massive primary. Recently Abouelmagd et al. [14] studied periodic and secular 
solutions in the RTBP under the effect of zonal harmonics of the more massive primary around the 
triangular points. 

In this paper, we study the periodic orbits in the RTBP by Huang’s method by considering the more 
massive primary as an oblate spheroid with its equatorial plane coincident with the plane of motion. 
Two parameters, the mass ratio ( )2 1 2/µ m m m= + , where 1m  and 2m  are masses of the more massive 

and smaller primary, respectively, and the oblateness coefficient ( )2 2 2
1 / 5A AE AP R= − , where AE

and AP  are the equatorial and polar radii of the more massive primary, and R  is the distance between 
the primaries, are chosen for series expansions. Initial conditions for the infinitesimal periodic orbits 
around the more massive primary are generated and the effect of oblateness on the perigee of the 
generated orbits is studied as well.  

The paper is organized in 8 sections. Section 2 deals with the equations of motion with origin at the 
more massive primary. The equations of motion in polar co-ordinates are described in Section 3. 
Equations of perturbations are provided in Section 4. In Section 5, second order equations of motion 
with approximations are given. A solution of first order equations is presented in Section 6. Numerical 
applications are shown in Section 7 and the conclusions are drawn in Section 8.  

2     Equations of Motion 

The equations of motion of the problem under consideration in the dimensionless barycentric synodic 
coordinate system ( )1 2,x x  are (Sharma and Subba Rao [15])

1 2
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Shifting the origin to 1m , the equations of motion become 
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where 
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 3   Equation of Motion in Polar Coordinates 

In the equations of motion, it is assumed that the mass 1 µ−  is at the origin and the mass µ is at the 
point (-1, 0). Also 1 2,r r  are the distances of the third body from the masses 1-µ and µ, respectively. So 

1r  is the distance of the third body from the origin. Let 1r r= . We use the transformation 

1 cosx r θ=  (3.1) 

2 sinx r θ=  (3.2) 

This converts the Equations (2.1) and (2.2) into the form 
( ) ( )22

12 2
2 2 3 4 3

2

1 3 1d d d 12 cos
d dd 2

Ar rr nr n r n
t tt r r r r

µ µθ θ µ µ θ
− −   

− − = − − − + −       
  (3.3) 

2
2

2 3
2

d d d d 12 2 sin
d d dd
r rr n n
t t tt r

θ θ µ θ
 

+ + = − −  
 

  (3.4) 

4   Equations of Perturbations 

When µ is equal to zero, all circles with centre at the origin are the periodic solutions of the problem. If 
µ is small, the periodic orbits deviate only slightly from the circular one. The deviation depends upon µ. 
Therefore, the periodic solution may be written as 

( ) ( )2
0 11 22 ........r r r t r tµ µ= + + +  (4.1) 

( ) ( )2
1 2 ........t t tθ λ µθ µ θ= + + +  (4.2) 

where 0r and λ  are to be determined and are independent of time. Substitution of Equations (4.1) and 
(4.2) into Equations (3.3) and (3.4) provides different order of approximations. 

The zeroth ( )0µ  order approximation gives

( )2 3
0

1n
r
µλ −

+ = (4.3) 

which is Kepler’s third law in the problem of two bodies. The term is  n λ+  instead of λ  because the 
equations are expressed in rotating co-ordinate system. Also λ  may have positive or negative value 
corresponding to the third body. Neglecting higher order terms in 1A , we get 

( ) ( )2

1 3
0

3 11 1
2
A

r
µλ λ −

+ + + =   (4.4) 

If the terms involving third and higher orders of 0r  are neglected, the first order approximation yields 
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Neglecting higher order terms in 1A  provides 
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5   Second Order Equations 

With the same degree of approximation in regard to the series in 0r , the second order ( )2µ  equations
are 
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Similarly the equations of higher orders can be derived in terms of the solutions of the equations of 
the lower orders.  

6   Solutions of First Order Equations 

Differentiating equation (4.7) with respect to t and substituting equation (4.8) in the resulting 
expression, we get 
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Solving Equation (6.1), we get 
 11 0 1 2 1 2 3cos sin cos cos 2 cos 3r c c pt c pt k t k t k tλ λ λ= + + + + +   (6.6) 

where 0 1 2, ,c c c  are arbitrary constants and   
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Substituting (6.6) in Equation (4.8), we get 
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Integrating, we get 
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where 1 2,D D  depend on 1 2,c c . 1 2,B B  are arbitrary constants.  
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Substituting the values of 11 1,r θ  in (4.7) and equating constant terms, we get  
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Thus neglecting the higher powers of 1A , the solution of (4.7) and (4.8) is obtained as 

 
( ) ( ) ( ) ( )

( ) ( )

01 1
12 2

0 0

11

1 1 2 1 2 32
0

22 31
2 1 2 1 3 16 1

2 31 cos sin cos cos 2 cos 3
1 4 1

rA B
A

r r
r

A c pt c pt k t k t k t
r

µ λ λλ

λ λ λ
µ λ

   
   − − − + −
    − + ++    =       × − + + + + + +    − +    

 (6.18) 

and   
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The values of 1 2 3 1 2 3, , , , , ,p k k k l l l  are given by  
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The periodic orbits around the more massive primary is given up to the first order terms in 0r  and µ 
by   

 0 11r r rµ= +   (6.27) 
and    

 1tθ λ µθ= +   (6.28) 
where   
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and 
 0 1 1 2 3sin sin 2 sin 3r l t l t l tθ λ λ λ= + +   (6.30)   
It follows from the solution given by Equations (6.18) and (6.19) that in general, a periodic solution 

can be obtained for any given value of λ  only by setting 1 2 1 2, , ,c c B B  equal to zero. Thus one periodic 
orbit is associated with one value of the period. All the foregoing relations with 1 0A =  are the same as 
in Huang (1964), except for sign changes at some places due to the difference in the utilized co-ordinate 
system. 

7   Numerical Applications 

The Earth-Moon system is considered to obtain periodic orbits using Equations (5.28) and (5.29). In the 

1 2x x−  co-ordinate system with origin at the mass (1 µ− ), having µ=0.012149, 1 0A =  and period T
=0.23802754, the value of λ  is obtained from the expression 2 /T λπ=  as 26.396884. Substituting 
these values in Equation (4.4) we get 0r . The values of ,n nk l  are calculated using Equations (5.21) to 
(5.26), which are shown in Table 1. Substituting these values in Equations (5.27) to (5.30) and 
transforming the variables from r  and θ  to 1x  and 2x  in accordance with Equations (3.1) and (3.2) 
will give the values of  1 2 1 2, , ,x x x x� �  when t = 0, which are denoted by 0 0 0 0, , ,x y x y� � . For various values 
of period T , we have calculated 0 0 0 0, , ,x y x y� �  and C, which are presented in Table 2. The values are 
compared with Huang’s results.  

Similarly, the Sun-Jupiter system is considered to derive periodic orbits, with µ =0.0009539, 1A =0, 
and period T =0.23802754. The values of nk , nl  are calculated, which are shown in Table 3. For various 
values of period, 0 0 0 0, , ,x y x y� �  and C are calculated and are presented in Table 4. Using the systems 
considered in Sharma and Subba Rao ([15], 1976), the values of 0 0,x y�  for periodic orbits around the 
(respective) more massive primaries are derived, and are shown in Table 5. 

Table 1.  Value of nk , nl  for T = 0.23802754, λ  = 26.396884.  

kn 0.0004249394     0.0001644862 0.000006901187 
ln 0.0008756117     0.0002296953 0.000008365787 
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Table 2.  Value of 0 0 0 0, , ,x y x y� �  (µ = 0.012149).  
 

T  0x  0y  0x�  0y�  C 
0.23802754 0.10959079 0.000000 0.000000 2.89272981 9.69689124 
0.39999890 0.15239387 0.000000 0.000000 2.39363721 7.28328121 
0.59999669 0.19580806 0.000000 0.000000 2.05037461 5.94990225 
0.79999292 0.23271671 0.000000 0.000000 1.82777788 5.22927567 
0.99999028 0.26506832 0.000000 0.000000 1.66576735 4.77580660 
1.19999397 0.29394939 0.000000 0.000000 1.53981183 4.46403690 
1.40001535 0.32005209 0.000000 0.000000 1.43763350 4.23681317 
1.60007155 0.34385492 0.000000 0.000000 1.35226205 4.06419053 

Table 3.  Value of nk ,  nl  for T = 0.23802754, λ =26.396884, µ = 0.0009539  
 

nk  -0.0004281438 -0.0001651052  0.000006953228 

nl   0.0008822146  0.0002305597 -0.000008428873 

Table 4.  Value of 0 0 0 0, , ,x y x y� �  (µ = 0.0009539). 

T  0x  0y
  0x�  0y�  C 

0.23802754 -0.11000065 0.0000 0.0000 -2.90366433 9.74713571 

0.39999890 -0.15296086 0.0000 0.0000 -2.40269691 7.31517351 

0.59999666 -0.19653370 0.0000 0.0000 -2.05809668 5.97152838 

0.79999290 -0.23358009 0.0000 0.0000 -1.83455031 5.24523535 

0.99999026 -0.26605988 0.0000 0.0000 -1.67174119 4.78809624 

1.1999940 -0.29506812 0.0000 0.0000 -1.54503453 4.47370815 

1.4000154 -0.32130451 0.0000 0.0000 -1.44209402 4.24448737 

1.6000716 -0.34525482 0.0000 0.0000 -1.35590940 4.07026362 

Table 5.  Value of 0x , 0y�  (various mass ratios with T = 0.23802754). 

 µ  
0x  0y�  

1 0.0121490000 -0.10959079 -2.89272981 
2 0.0002461294 -0.11002645 -2.90435293 
3 0.0000807835 -0.11003248 -2.90451375 
4 0.0000479677 -0.11003368 - 2.90454567 
5 0.0000415283 -0.11003391 -2.90455193 
6 0.0000250794 -0.11003451 -2.90456793 
7 0.0000039400 -0.11003528 -2.90458849 
8 0.0000032000 -0.11003531 -2.90458921 
9 0.0000020390 -0.11003535 -2.90459034 
10 0.0000010950 -0.11003539 -2.90459126 
11 0.0000002000 -0.11003542 -2.90459213 
12 0.0000001480 -0.11003542 -2.90459218 
13 0.0000000659 -0.11003542 -2.90459226 
14 0.0000000520 -0.11003542 -2.90459227 

 
In order to study the effect of mass ratio on the periodic orbits, initial conditions are derived for 

periodic orbits around the more massive primary with mass ratios varying from 0.01 to 0.4. It is 
observed that for a given period, the value of x0 decreases as mass ratio increases (Table 6). This shows 
that the perigee of the orbit moves towards the more massive primary as the mass ratio increases. 
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Considering different mass ratios, if the oblateness coefficient is increased, the value of 0x  decreases 
for a small period. When period is also increased, value of 0x  decreases for small mass ratios with the 
increase in the oblateness effect. For mass ratios from 0.015 onwards, the value of 0x  increases due to 
the increase in the oblateness. Values of the oblateness coefficient considered are A1 = 0.0, A11 = 
0.000001, A12 = 0.000005, A13 = 0.00001, A14 = 0.00005, A15 = 0.0001, A16 = 0.0005, A17 = 0.001, A18 = 
0.005, A19=0.01. As an example, we have considered two cases with T = 0.23802754 and T = 
0.59999666. In the first case as oblateness increases, the value of 0x  decreases for all the mass ratios 
considered in Table 6. But in the second case, when oblateness increases, the value of 0x  increases for 
mass ratios considered from 0.015 onwards (Table 7). With further increase in period and oblateness, 
the value of x0 decreases. Perigee variations (in kilometers) are shown in Table 8 and Table 9. Perigee of 
the orbit moves towards or away from the more massive primary depending on the mass ratio, period 
and oblateness effect, which is shown in Figures 1 and 2. 

Table 6.  The value of 0x  for various oblateness coefficients (T = 0.23802754). 

µ  A1 A11 A12 A13 A14 A15 A16 
0.01 -0.109669709 -0.109669691 -0.109669618 -0.109669527 -0.109668799 -0.10966789 -0.109660613 

0.012149 -0.109590787 -0.109590766 -0.109590679 -0.109590571 -0.109589706 -0.109588624 -0.109579973 
0.015 -0.109485904 -0.109485878 -0.109485773 -0.109485642 -0.109484596 -0.109483287 -0.109472820 
0.02 -0.109301461 -0.109301427 -0.109301291 -0.109301121 -0.109299758 -0.109298055 -0.109284429 
0.03 -0.108930641 -0.108930591 -0.108930393 -0.108930145 -0.108928160 -0.108925679 -0.108905834 
0.05 -0.108181104 -0.10818102 -0.108180706 -0.108180307 -0.108177120 -0.108173136 -0.108141262 
0.1 -0.106259018 -0.106258870 -0.106258277 -0.106257536 -0.106251610 -0.106244202 -0.106184933 
0.2 -0.102185281 -0.102185033 -0.102184039 -0.102182797 -0.102172861 -0.102160442 -0.102061081 
0.3 -0.097750073 -0.097749796 -0.097748688 -0.097747302 -0.097736221 -0.097722368 -0.097611543 
0.4 -0.092863436 -0.092863246 -0.092862488 -0.092861541 -0.092853959 -0.092844482 -0.092768657 

Table 7.  The value of 0x  for various oblateness coefficients (T = 0.59999666). 

µ  A1 A11 A12 A13 A14 A15 A16 
0.01  -0.195947808 -0.195947805 -0.195947795 -0.195947782 -0.195947679 -0.195947551 -0.195946521 
0.012149 -0.195808055 -0.195808054 -0.195808049 -0.195808043 -0.195807994 -0.195807934 -0.195807447 
0.015 -0.195622312 -0.195622313 -0.195622315 -0.195622318 -0.195622343 -0.195622374 -0.195622622 
0.02  -0.195295624 -0.195295628 -0.195295644 -0.195295664 -0.195295822 -0.195296019 -0.195297598 
0.03  -0.194638634 -0.194638645 -0.194638689 -0.194638744 -0.194639185 -0.194639735 -0.194644140 
0.04  -0.193309916 -0.193309943 -0.193310050 -0.193310185 -0.193311259 -0.193312601 -0.193323341 
0.1  -0.189898224 -0.189898301 -0.189898611 -0.189898998 -0.189902094 -0.189905964 -0.189936924 
0.2  -0.182648652 -0.182648888 -0.182649835 -0.182651018 -0.1826604850 -0.182672318 -0.182766979 
0.3  -0.174731535 -0.174732040 -0.174734057 -0.174736579 -0.1747567530 -0.17478197 -0.174983703 

 
In the case of fixed mass ratio (higher values), if the period is increased to a particular stage, the 

value of x0 increases with oblateness. As the period is increased further, the value of x0 decreases due to 
the increase in oblateness (Table 10) and this phenomenon continues. From Figures 3 and 4, it is 
observed that as oblateness coefficient increases, the perigee of the orbit shifts towards both the 
primaries. It is also observed that during this transition, for certain periods, the perigee of the orbit 
remains unaltered with the increase in oblateness coefficient (Table 11). Table 12 shows that difference 
in y0 increases as oblateness increases and for a fixed oblateness coefficient; this difference decreases as 
period increases to a particular value. On further increase in period, this difference increases. For this 
study, the period considered are 1T = 0.23802754, 2T = 0.039999890, 3T = 0.59999666, 4T = 0.79999290, 

5T  = 0.99999026, 6T  =1.1999940, 7T  =1.4000154 and 8T = 1.6000716. For convenience, symbols 19T : T  
= 0.68419, 20T : T = 0.68420, 201T : T = 0.684201 etc. are used here. 
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Table 8.  Perigee variations for T = 0.23802754 (each deviation multiplied by 3840000) 

µ  A11 A12 A13 A14 A15 A16 A17 A18 A19 
0.01 0 0 0 0 0 0 0 0 0 
0.012149 0.013056 0.065664 0.131712 0.659712 1.319808 6.599808 13.200768 66.018048 132.07104 
0.015 0.030336 0.152832 0.305664 1.531008 3.062400 15.313152 30.627840 153.172992 306.425856 
0.02 0.061056 0.304512 0.609024 3.047424 6.094848 30.475008 60.951936 304.823424 609.806208 
0.03 0.120576 0.603200 1.206144 6.032640 12.065200 60.328320 120.660096 603.429120 1207.178496 
0.05 0.23616 1.180416 2.360832 11.80608 23.61216 118.065024 236.136576 1180.941312 2362.527360 
0.1 0.49920 2 .495616 4.990848 24.955008 49.910016 249.556992 499.128960 2496.235008 4993.947264 
0.2 0.883968 4.419840 8.839680 44.198784 88.397568 442.001664 884.036352 4421.476224 8846.192640 
0.3 0.994176 4.970112 9.93984 49.700352 99.401088 497.027328 994.106880 4972.598784 9950.362752 
0.4 0.657792 3.289344 6.579072 32.898816 65.79840 329.022720 658.119552 3293.516928 6594.33408 

Table 9.  Perigee variations for T = 0.59999666 (each deviation multiplied by 3840000). 

µ  A11 A12 A13 A14 A15 A16 A17 A18 A19 
0.01 0 0 0 0 0 0 0 0 0 

0.012149 -0.004992 -0.025728 -0.052220 -0.260352 -0.520704 -2.604288 -5.208192 -26.02368 -52.003968 
0.015 -0.011904 -0.061056 -0.122496 -0.612864 -1.226112 -6.131328 -12.262272 -61.27296 -122.445312 
0.0 -0.024960 -0.125184 -0.250368 -1.252224 -2.504064 -12.52032 -25.038336 -125.111424 -250.020864 
0.03 -0.051840 -0.260736 -0.521472 -2.608512 -5.217024 -26.083968 -52.164480 -260.660736 -520.917120 
0.05 -0.112512 -0.564480 -1.129728 -5.649408 -11.298816 -56.491776 -112.975488 -564.553728 -1128.293376 
0.1 -0.306816 -1.535232 -3.071232 -15.355776 -30.711168 -153.548544 -307.079040 -1534.652160 -3067.446528 
0.2 -0.918528 -4.593408 -9.186816 -45.933696 -91.866624 -459.317760 -918.595200 -4591.35936 -9178.672128 
0.3 -1.946496 -9.732864 -19.465728 -97.329024 -194.657664 -973.262592 -1946.46144 -9729.753984 -19453.120900 
0.4 -3.620352 -18.102912 -36.206218 -181.03104 -362.060928 -1810.268928 -3620.449152 -18098.68262 -36188.455300 

 

Figure 1. Perigee variations for various oblateness coefficients A11 = 0.000001, A12 = 0.000005, A13 = 0.00001 when 
p = 0.23802754 Vs mass ratio (μ). 

 
Figure 2. Perigee variations for various oblateness coefficients A11=0.000001, A12 = 0.000005, A13 = 0.00001 when p 
= 0.59999666 Vs mass ratio (μ)  
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Table 10.  Difference in 0x  with and without oblateness for various periods (µ = 0.012149, each deviation 
multiplied by 3840000). 

A1 1T  2T  3T  4T  5T  6T  7T  8T  

0 0 0 0 0 0 0 0 0 
3.7E-07 38.4 0 1.536 -1.536 -1.92 -7.68 0 0.384 
5E-07 38.4 0 2.304 -1.92 -2.688 -11.52 0 0.768 

0.000001 76.8 0 4.608 -3.84 -4.992 -26.88 -0.384 1.536 
0.000002 192.0 38.4 9.216 -7.296 -9.6 -57.6 -0.768 2.688 
0.000005 422.4 115.2 23.424 -17.664 -23.808 -142.08 -1.536 6.912 
0.00001 844.8 268.8 46.464 -34.944 -47.232 -288 -3.456 13.44 
0.00002 1689.6 576 93.312 -69.888 -94.08 -579.84 -6.912 26.88 
0.00005 4147.2 1459.2 233.472 -174.336 -235.008 -1451.52 -17.28 67.2 
0.0001 8332.8 2918.4 466.944 -348.672 -470.016 -2903.04 -34.944 134.016 

Table 11.  Value of 0x   from T = 0.68419 to 0.684208. 

A1 19T   20T  201T  202T   203T   204T  

0.000000 -0.2119969670 -0.2119988323 -0.2119990211 -0.2119992098 -0.2119993986 -0.2119995762 
0.00000037 -0.211996967 -0.2119988323 -0.2119990211 -0.2119992098 -0.2119993986 0.2119995762 

0.00000050 -0.211996967 -0.2119988323 -0.2119990211 -0.2119992098 -0.2119993986 0.2119995762 

0.00000100 -0.211996967 -0.2119988323 -0.2119990211 -0.2119992098 -0.2119993986 0.2119995762 

0.00000500 -0.211996967 -0.2119988323 -0.2119990211 -0.2119992098 -0.2119993986 0.2119995762 

0.00001000 -0.211996967 -0.2119988323 -0.2119990211 -0.2119992098 -0.2119993986 0.2119995762 

0.00005000 -0.211996967 -0.2119988323 -0.2119990211 -0.2119992098 -0.2119993986 0.2119995762 

0.00010000 -0.211996967 -0.2119988323 -0.2119990211 -0.2119992099 -0.2119993986 0.2119995763 

Table 11(continued).  Value of 0x  from T =0.68419 to 0.684208  

A1 205T   2057T   2059T   206T   207T  208T   

0.00000000 .2119998760 -.2119998982 -0.2119999315 -0.2119999537 -0.2120001425 0.2120003201 

0.00000037 -0.2119998760 -0.2119998982 -0.2119999315 -0.2119999537 -0.2120001425 -0.2120003201 

0.00000050 -0.2119998760 -0.2119998982 -.2119999315 -0.2119999537 -0.2120001425 0.2120003201 

0.00000100 -0.2119998760 -0.2119998982 -0.2119999315 -0.2119999537 -0.2120001425 0.2120003201 

0.00000500 -0.2119998760 -0.2119998982 -0.2119999315 -0.2119999537 -0.2120001425 0.2120003201 

0.00001000 -0.2119998760 -0.2119998982 -0.2119999315 -0.2119999537 -0.2120001425 0.2120003201 

0.00005000 -0.2119998760 -.2119998982 -.2119999315 -.2119999538 -0.2120001423 0.2120003202 

0.00010000 -0.2119998760 -.2119998982 -.2119999316 -.2119999538 -0.2120001425 0.2120003202 
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Figure 3. Perigee variations for periods 2T = 0.039999890, 3T  = 0.59999666, 4T = 0.79999290, 6T  =1.1999940 
with mass ratio µ = 0.012149. 

 

Figure 4. Perigee variations for periods 5T = 0.99999026, 7T = 1.4000154, 8T =1.6000716 with mass ratio µ = 
0.01214. 

Table 12. Difference in y0 with oblateness from that without oblateness for various periods. 

1A   1T  2T  3T  1A   
5T  6T  7T  8T  

0 0 0 0 0 0 0 0 0 
E-07 6.345 4.042 3.102 2.773 2.585 2.538 2.538 2.538 
5E-07 8.601 5.452 4.23 3.76 3.525 3.431 3.431 3.431 

0.000001 17.202 10.951 8.46 7.52 7.05 6.909 6.862 6.909 
0.000002 34.357 21.855 16.967 15.04 14.147 13.771 13.724 13.865 
0.000005 85.869 54.708 42.441 37.6 35.344 34.451 34.31 34.639 
0.00001 171.785 109.416 84.929 75.2 70.735 68.949 68.62 69.325 
0.00002 343.523 218.879 169.905 150.353 141.517 137.851 137.24 138.65 
0.00005 858.737 328.295 424.786 375.906 353.769 344.651 343.1 346.672 
0.0001 1717.427 1094.348 849.572 751.765 707.538 689.302 686.2 693.34 

8   Conclusions 

In this paper, a series solution is developed for finding the initial conditions of periodic orbits by 
including oblateness effect of the more massive primary with the help of a perturbation technique. The 
results are verified with Huang's values. The effect of oblateness of the more massive primary on the 
initial conditions of the periodic orbits is studied by taking into consideration the variation of mass ratio 
(μ). As the mass ratio increases up to 0.012, the perigee of the orbit moves towards the more massive 
primary. With the increase in oblateness coefficient, the perigee of the orbit shifts towards both the 
primaries depending upon the increase in period and mass ratio. It is further noticed that during this 
transition, for certain periods, the perigee of the orbit remains unaltered with the increase in the 
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oblateness coefficient. The present study will be useful in understanding the general behavior of the 
motion of the inner planets and asteroids as a result of the perturbation by the major planets. 
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