Sorghum Fermentation for Nutritional Improvement

Debabandya Mohapatra*, Manoj Kumar Tripathi, Sumedha Deshpande, Sadvatha R. H
ICAR-Central Institute of Agricultural Engineering, Nabi Bagh, Berasia Road, Bhopal, Madhya Pradesh
*Email: debabandya@gmail.com

Abstract. Sorghum is one of the top five cereal crops in the world. It has been mostly used as a staple in Africa and Asian countries since ancient times. Its use as gluten free cereal is gaining importance in other developing countries, where it has traditionally been used as feed material and production of bioethanol and other industrial products. The grains are rich in nutrients, have high resistant starch, which makes it ideal for weight loss program. The world consumption pattern has seen a marginal growth, especially in China, USA, and Mexico as these grains are being preferred as non-gluten substitutes for the production of various functional and traditional foods. One of the major deterrents for its use as food is the lower availability of protein, starch, and minerals due to the presence of anti-nutritional factors like tannins and phytic acid. However, processing like fermentation has proven to reduce the anti-nutritional factors, thus improving the nutritional availability and the functional properties of sorghum. During preparation of most traditional dishes by natural or forced lactic acid bacteria fermentation, pH drops to below 4.0, which helps to prevent the growth of enteropathogenic bacteria, thus rendering the food microbiologically safe. Worldwide, especially in Africa different fermented products have been produced from sorghum. In India as well as in other countries, efforts are being made to replace the high glycemic index cereals such as rice and wheat with sorghum to prepare traditional ethnic foods through fermentation. There is enough opportunity to include this grain in the daily diets for better health.

Keywords: Sorghum, nutrition, mineral availability, fermentation

1 Introduction

Sorghum (Sorghum bicolor L. Moench), also known as Jowar in India, great millet and guinea corn in West Africa, kafir corn in South Africa, dura in Sudan, mtama in eastern Africa, milo or milo-maize in USA, and kaoliang in China, had been an important staple in the semi-arid tropics of Asia and Africa for centuries. Sorghum is believed to be originated in North Africa about 3000 BC. As evident from the wall paintings of that era, it was cultivated in Egypt by 2200 BC. From there, it is believed to have spread throughout Africa, India, and the Middle East and reached China and America more recently (Chigumira 1992). However, some historians differ about the antiquity of sorghum (De Wet & Huckabay 1967). Whatever the history agrees or disagrees, it is a fact that in the present time, sorghum is considered to be one of the top five cereal crops grown all over the world especially in arid and semi-arid regions. Grain sorghum is used for the preparation of various traditional foods in Africa and Asia and as feed material in developing countries; the green crop is used for grazing animals; the stalk of sweet sorghum variety is used for extraction of sweet syrup for the production of ethanol. Moreover, the plant residue is also used for making fencing, broom, pet food to name a few. This crop requires very less amount of water as compared to rice and wheat for cultivation and usually adapted to arid and heat stress conditions.

1.1 Status of Sorghum in the World Economy

Post-green revolution, India has witnessed a constant decline in production of millets. According to a report of Unites States Department of Agriculture (2016), production of sorghum in India has declined from 12.914 million tonnes in the year 1989 to 5.5 million tonnes in 2015. India is the fourth largest sorghum producing country after the USA (15.158 million tonnes), Mexico (7.15 million tonnes), Nigeria (6.15 million tonnes), and Sudan (5.5 million tonnes). China (10 million tonnes), Mexico (7.6 million tonnes), Nigeria (6.05 million tonnes), USA (5.84 million tonnes), Sudan (5.8 million tonnes), India (5.35
million tonnes) are the top sorghum consumers in the year 2015. Top three sorghum exporters are China (7 million tonnes), Japan (1 million tonnes) and Mexico (0.5 million tonnes). The top three exporters of sorghum are USA (8.255 million tonnes), Argentina (1.1 million tonnes) and Australia (1.0 million tonnes). Sorghum as feed is mostly consumed in China (7.8 million tonnes), Mexico (7.5 million tonnes) and USA (3.302 million tonnes).

1.2 Nutritive Value of Sorghum

Sorghum grain is a rich source of macronutrients (carbohydrates, proteins, and fat) and micronutrients (minerals and vitamins). It has about 70% carbohydrate, 3.5% fat and 11% protein. The protein content is about double than the brown rice and comparable to Rye and wheat (Table 1). The total dietary fiber content in sorghum is more than 20%, much higher than any other major cereal crops like rice and wheat (Table 2). It is rich in magnesium, iron, manganese and phosphorus. A comparative mineral composition of different cereal grains is presented in Table 3. Sorghum grains contain resistant starch, which makes it interesting for obese and diabetic people, as the digestibility of whole sorghum is slower than other major cereals, leading the slow release of glucose into the blood. Therefore, the energy released is fully utilized and prevents accumulation of fat. Sorghum is also recommended as gluten-free food for celiac patients. The α-amylase and β-amylase activities of malted sorghum varieties are similar to those of barley. Thus, the grain shows enough potential to be adopted in the production of various agro-food and industrial products (Dicko et al. 2006). Domestication of paddy and wheat crops had deterred the use of sorghum and other millets as food crop; however, currently, people are shifting towards high dietary fiber foods for their apparent health benefits. Sorghum grain is also a rich source of various phytochemicals such as tannins, phenolic acids, anthocyanins, phytosterols and policosanols (Awika & Rooney 2004), which have health-promoting activities, have anti-cancer, anti-tumour properties, antidiabetic and anti-obesity properties. The antioxidants present in the grains are comparable to those present in fruits (Awika & Rooney 2004; Kamath et al. 2004). The antioxidants present in various cereals are presented in Table 4.

Table 1. Chemical composition (% dry basis) of different cereal grains and millets

<table>
<thead>
<tr>
<th>Cereal</th>
<th>Carbohydrate</th>
<th>Protein (N × factor)*</th>
<th>Total ash</th>
<th>Crude fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley</td>
<td>53.6 ± 1.0</td>
<td>19.4 ± 0.4</td>
<td>2.88 ± 0.04</td>
<td>2.31 ± 0.1</td>
</tr>
<tr>
<td>Brown rice</td>
<td>79.2 ± 2.08</td>
<td>6.98 ± 0.07</td>
<td>1.96 ± 0.11</td>
<td>1.20 ± 0.68</td>
</tr>
<tr>
<td>Finger millet</td>
<td>61.00</td>
<td>7.0</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Foxtail millet</td>
<td>72.3±0.3</td>
<td>11±0.2</td>
<td>2.4±0.1</td>
<td>4.6±0.3</td>
</tr>
<tr>
<td>Millet</td>
<td>67.4 ± 1.3</td>
<td>8.8 ± 0.1</td>
<td>1.82 ± 0.03</td>
<td>4.22 ± 0.2</td>
</tr>
<tr>
<td>Proso millet</td>
<td>70.0±0.8</td>
<td>10.9±0.2</td>
<td>3.3±0</td>
<td>3.8±0.2</td>
</tr>
<tr>
<td>Rye</td>
<td>58.0 ± 1.0</td>
<td>13.3 ± 0.2</td>
<td>1.96 ± 0.03</td>
<td>2.53 ± 0.1</td>
</tr>
<tr>
<td>Sorghum</td>
<td>67.7 ± 1.2</td>
<td>12.1 ± 0.1</td>
<td>1.87 ± 0.03</td>
<td>3.32 ± 0.1</td>
</tr>
<tr>
<td>Wheat (Hard)</td>
<td>77.4 ± 1.7</td>
<td>13.5 ± 0.3</td>
<td>0.56 ± 0.01</td>
<td>0.98 ± 0.03</td>
</tr>
<tr>
<td>Wheat (soft)</td>
<td>77.9 ± 1.8</td>
<td>11.0 ± 0.2</td>
<td>0.71 ± 0.01</td>
<td>0.86 ± 0.03</td>
</tr>
</tbody>
</table>

*Nitrogen-to-protein conversion factors are: 5.7 for wheat flour, 5.83 for rye and barley whole grain, and 5.95 for brown rice, 6.25 for millet and sorghum whole grain (Ref: Ragaee et al. 2006; Moongngarm & Saetung 2010; Dharmaraj & Malleshi 2011; Devisetti et al. 2014)

Table 2. Dietary fibres composition (% dry basis) of sorghum and other cereals

<table>
<thead>
<tr>
<th>Cereal</th>
<th>Soluble dietary fibre</th>
<th>Resistant starch</th>
<th>Insoluble dietary fibre</th>
<th>Total dietary fibre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley</td>
<td>2.56 ± 0.03</td>
<td>0.23 ± 0.01</td>
<td>22.07 ± 0.41</td>
<td>24.63 ± 0.52</td>
</tr>
<tr>
<td>Brown rice</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.13 ± 0.16</td>
</tr>
<tr>
<td>Finger millet</td>
<td>1.4</td>
<td>-</td>
<td>15.7</td>
<td>-</td>
</tr>
<tr>
<td>Foxtail millet</td>
<td>1.1±0.1</td>
<td>-</td>
<td>19.7±0.5</td>
<td>20.8±0.4</td>
</tr>
<tr>
<td>Millet</td>
<td>1.45 ± 0.01</td>
<td>1.96 ± 0.01</td>
<td>13.50 ± 0.32</td>
<td>14.95 ± 0.41</td>
</tr>
</tbody>
</table>

AFSE

Copyright © 2017 Isaac Scientific Publishing
Table 3. Mineral composition (mg/kg) of sorghum and other cereals

<table>
<thead>
<tr>
<th>Cereals</th>
<th>P</th>
<th>K</th>
<th>Mg</th>
<th>Ca</th>
<th>Na</th>
<th>Zn</th>
<th>Fe</th>
<th>Mn</th>
<th>Cu</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley</td>
<td>4570</td>
<td>4572</td>
<td>1971</td>
<td>736.2</td>
<td>238.4</td>
<td>128.4</td>
<td>9.2</td>
<td>5.7</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Brown Rice</td>
<td>480-4300</td>
<td>125-3000</td>
<td>39.5-1600</td>
<td>26-500</td>
<td>17-340</td>
<td>2-57</td>
<td>2-60</td>
<td>0.5-6</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Finger millet</td>
<td>2440</td>
<td>-</td>
<td>-</td>
<td>3210</td>
<td>-</td>
<td>21</td>
<td>60</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rye</td>
<td>3620</td>
<td>3570</td>
<td>1328</td>
<td>348.7</td>
<td>67.2</td>
<td>44</td>
<td>24.4</td>
<td>2.9</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Sorghum</td>
<td>349.9</td>
<td>239.9</td>
<td>187.7</td>
<td>27.3</td>
<td>4.6</td>
<td>10.6</td>
<td>1.2</td>
<td>0.2</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Wheat (hard)</td>
<td>3498</td>
<td>826.2</td>
<td>301.2</td>
<td>159.5</td>
<td>46</td>
<td>30.8</td>
<td>13.2</td>
<td>5.2</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Wheat (soft)</td>
<td>977.6</td>
<td>1225</td>
<td>306.5</td>
<td>202.2</td>
<td>38.4</td>
<td>7.6</td>
<td>13.9</td>
<td>8.1</td>
<td>1.6</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 4. Total phenols content and antioxidant properties of sorghum and other cereals

<table>
<thead>
<tr>
<th>Cereal</th>
<th>Total phenols as gallic acid equivalent (µg/g)</th>
<th>DPPH scavenging capacity at 10 min (µmole/g)</th>
<th>ABTS scavenging capacity at 3 min (µmole/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barley</td>
<td>879 ± 24.0</td>
<td>21.00 ± 0.83</td>
<td>14.9 ± 0.61</td>
</tr>
<tr>
<td>Brown Rice</td>
<td>703 ± 83.1</td>
<td>12.99-76.38</td>
<td>-</td>
</tr>
<tr>
<td>Millet</td>
<td>1387 ± 13.3</td>
<td>23.83 ± 0.67</td>
<td>21.4 ± 0.43</td>
</tr>
<tr>
<td>Rye</td>
<td>1026 ± 16.9</td>
<td>12.17 ± 0.50</td>
<td>13.0 ± 0.48</td>
</tr>
<tr>
<td>Sorghum</td>
<td>4128 ± 9.3</td>
<td>195.8 ± 8.82</td>
<td>51.7 ± 0.57</td>
</tr>
<tr>
<td>Wheat (Hard)</td>
<td>562 ± 28.8</td>
<td>4.33 ± 0.17</td>
<td>8.8 ± 0.39</td>
</tr>
<tr>
<td>wheat (Soft)</td>
<td>501 ± 25.5</td>
<td>4.17 ± 0.17</td>
<td>8.3 ± 0.31</td>
</tr>
</tbody>
</table>

1.3 Bioactive Compounds in Sorghum

Phenolic acids, tannins, and flavonoids are major bioactive phenolic compounds present in sorghum (Dykes & Rooney 2006). Those bioactive compounds found in sorghum are more diverse in nature and are present in higher amount in sorghum than in other cereal crops like wheat, barley, rice, maize, rye, and oats (Ragaee et al. 2006). The presence of higher amount of proanthocyanidins, 3-deoxyanthocyanidins, and flavan-4-ols in sorghum varieties resistant to biotic and abiotic stresses than susceptible varieties (Dicko et al. 2005) suggested that these crops have better resistivity to adverse conditions during growing, which was possible through the synthesis of these bioactive compounds. Though millets including sorghum are nutritionally rich, their bioavailability is limited, which is the biggest shortfall for fully utilizing these crops as a part of the human diet (Faria et al. 2013; Hole et al. 2012). Different factors affecting the bioavailability of phenolic compounds can be listed as environmental factors, a method of food processing, type of food matrix, and interaction of the biomolecule with other compounds and polyphenols (D’Archivio et al. 2010). Faria et al. (2013) observed that catabolites of phenolic compounds, not absorbed in the small intestine passed into the large intestine. It was postulated that these compounds can interfere with the activities of the colon microbiota.

The content of phenolic acids in sorghum varieties varies between 135.5 and 479.40 µg/g (Chiremba et al. 2012), with major amounts of the protocatechuic (150.3 to 178.2 µg/g) and ferulic (120.5 to 173.5 µg/g) acids.
µg/g) acids and small amounts of the p-coumaric (41.9 to 71.9 µg/g), syringic (15.7 to 17.5 µg/g), vanillic (15.4 to 23.4 µg/g), gallic (14.8 to 21.5 µg/g), caffeic (13.6 to 20.8 µg/g), cinnamic (9.8 to 15.0 µg/g), and p-hydroxybenzoic (6.1 to 16.4 µg/g) acids (Afify et al. 2012c). Comparatively, phenolic acids present in wines, fruits, and vegetables have better bioavailability than the cereals. The majority of phenolic acids found in free or as conjugated forms can be hydrolysed in the upper intestinal tract (Hole et al. 2012). On the contrary, phenolic acids present in cereals like sorghum, are mostly bound to lignin (Hole et al. 2012). These bound phenolic acids are not readily hydrolysed by human digestive enzymes thus limiting their bioavailability; however, they are fermented by the microbiota of the colon (Hole et al. 2012).

Tannins are complex phenolics or secondary metabolites found in many plants. These compounds are mainly associated with plants defense mechanism against insects, ruminants, pathogens, and climate stress (Kauffman et al. 2013). These compounds are present in the outer layer and testa of the millets like pigmented sorghum varieties (Wu Yuye et al. 2012). The tannins content, type, and their distribution pattern vary in millets, which are influenced by the genetic and environmental factors (Dykes et al. 2009; Taleon et al. 2012). They are classified as type I (no significant levels), type II (tannins that are extractable only in acidified methanol) and type III (tannins that are extractable in methanol and acidified methanol) (Hahn & Rooney, 1986). Almost all of the tannins in sorghum are condensed and constituted by oligomers or polymers of catechins (Wu Yuye et al. 2012). The total flavones of the sorghum vary from 0 to 386 µg/g (on average, 87 µg/g), with a prevalence of aglycone forms of luteolin and apigenin (Dykes et al. 2011). The main flavanones of sorghum are the aglycone forms of eriodictyol and naringenin (Dykes et al. 2011). The smallest contents are found in white varieties and the largest contents are observed in those with lemon-yellow pericarp (474 to 1780 µg/g) (Dykes et al. 2011).

Though tannins are known to have anti-nutritional properties, their radical scavenging ability is 15–30 times more effective than other polyphenolics (Hagerman et al. 1998). The oligomers of tannins in foods contribute up to 19% of the antioxidant capacity of the diet and have immunomodulatory, anticancer, antioxidant, antiradical, anti-inflammatory, vasodilatory, cardio-protective, anti-thrombotic, and anti-UV properties (Floegel et al. 2010).

Stilbenes are a small family of phenolic compounds which are derived from the phenylpropanoid pathway (Chung et al. 2009). The total content of stilbenes correlates with the colour of the grain and is present in smaller quantities in white varieties. White sorghum contains traces of trans-piceid (up to 0.1 mg/kg) and trans-resveratrol is absent, while in red sorghum, these two classes are present (Břohan et al. 2011). Polycosanols and phytosterols are associated with the lipid fraction of the sorghum (Zbasnik et al. 2009). Thus, these compounds have been studied mainly in lipids extracted from dry sorghum obtained after alcohol production. The content of sorghum phytosterols (4.13 to 24.45 µg/g, dry weight basis) is affected by growing conditions (Chung et al. 2013). Sorghum grains are a relatively rich source of phytosterols when compared with fruits, vegetables, and other cereal grains commonly found in the food supply. Presently more than 200 sterols reported in vegetables, 3 have been identified in sorghum (sitosterol: 44.8 to 48.2%; campesterol: 26.1 to 38.0% and stigmasterol: 17.3% to 25.6%) (Wang et al. 2007; Ye et al. 2010).

Numerous reports on reduced weight gain of animals (rats, pigs, rabbits, poultry) fed high tannin sorghum are available (Muriu et al. 2002). The mechanisms by which tannin sorhums reduce nutritive value include binding of food proteins (Hagerman & Butler 1981) and carbohydrates (Naczk & Shahidi 1997) into insoluble complexes that cannot be broken down by digestive enzymes. Another mechanism involves the direct binding of digestive enzymes including sucrose, amylases, trypsin, chymotrypsin and lipases (Al-Mamary et al. 2001), thus inhibiting their activity. Effects of the sorghum tannins on animal weight gain depend on levels fed as well as animal species. Al-Mamary et al. (2001) found the addition of 1.4% catechin equivalents (CE) sorghum to rabbit diet had no effect on growth rate and weight gain, whereas, at a CE of 3.5%, there was a marked decrease in live weight gain and feed conversion ratio.

Positive effects of sorghum consumption on cancer have been well documented. Van Rensburg (1981) reported that sorghum consumption consistently correlated with low incidences of oesophageal cancer in various parts of the world, whereas wheat and corn consumption correlated with elevated incidences. Such regions also had deficiencies of certain minerals and vitamins in their diets. In attempting to explain this phenomenon, the author proposed (with considerable evidence) that the nutrient deficiencies were responsible for the high oesophageal cancer incidences, and that sorghum and millet...
consumption promoted resistance to esophageal cancer risk. In vitro studies have also revealed anti-carcinogenic properties of sorghum. Grimmer et al. (1992) demonstrated anti-mutagenicity of sorghum polyphenol extracts. They found the high molecular weight procyanidins (tannins) had the highest anti-mutagenic activity compared to lower molecular weight tannins. Gomez-Cordovez et al. (2001) showed that sorghum tannins had anti-cancerogenic activity against human melanoma cells, as well as positive melanogenic activity (Eller et al. 1996).

1.4 Anti-nutritional Factors in Sorghum

One of the major impediments for adopting sorghum as staple Vis-a-vis major cereal based products is its lower nutritional status and inferior organoleptic qualities, which is attributed to the presence of anti-nutritional factors such as tannins and phytic acids. As compared to other major cereals, sorghum has the lowest starch digestibility, which is attributed to the presence of hard peripheral endosperm layer rich in pigments and phenolics. Moreover, sorghum poor digestibility of proteins on wet cooking as compared to rice, wheat, and maize i.e. about 46% in contrast to 66-81% (Axtell et al. 1981). Poor sorghum protein digestibility is due to the exogenous factors such as, grain organizational structure, polyphenols, phytic acid, starch and non-starch polysaccharides and endogenous factors such as disulphide and non-disulphide cross-linking of enzymatically resistant protein polymers, kafirin hydrophobicity and changes in protein secondary structure (Fombang et al. 2005; Taylor & Emmambux 2010). It was proposed that cross-linking between γ- and β-kafirin proteins, those residing in the peripheral region of protein body, with centrally located major storage protein, α-kafirin, or between γ- or β-kafirin and α-kafirin caused protein indigestibility (Duodu et al. 2003).

Dry sorghum grains contain tannin and small cyanide. These phenolics impart dark colour, bitterness, and astringency in the prepared food, thus affecting the sensory quality of sorghum based food (Kobue-Lekalake et al. 2007). Moreover, these tannins interact with protein involving hydrogen bonding and hydrophobic interactions. Pepsin-indigestible proteins in sorghum were mainly prolamin proteins (Hamaker et al. 1987), which bind strongly to sorghum tannins and cause reduced protein digestibility. It is reported that the degradation of phytic acid in high tannin content sorghum is lower as compared to that in low tannin variety (Hurrell et al. 2003); this observation indicated that presence of tannin also affects the other anti-nutritional factors, the way they are bonded with other chemical constituents.

Phytates are major anti-nutritional compounds identified in sorghum (Abdel-Rahman & Osman 2011; Afify et al. 2011). The phytate molecule, containing six phosphate groups, is highly charged and has the capability to form insoluble complexes with proteins leading to reduced digestibility. In addition, some varieties have protease inhibitors (trypsin, chymotrypsin, and amylase) and lectins (Abdel-Rahman & Osman 2011; Raimi et al. 2012). These phytochemicals decrease the digestibility of proteins and carbohydrates and mineral bioavailability.

Protein digestibility of uncooked flour ranges about 40-93%; whereas, on cooking, digestibility decreases to about 18-73% for whole sorghum flour and decorticated flours of different varieties (Duodu et al. 2003). The protein digestibility of cooked sorghum can be improved through dry cooking (popping), malting, irradiation, fermentation, flaking, extrusion etc. (Duodu et al. 2003; Fombang et al. 2005).

2 Sorghum Fermentation

Fermentation is an age-old practice by a human being, so as to induce favourable biochemical reactions caused by microorganisms in the targeted food. Fermentation brings change in flavour, texture and nutritive value of the food. Traditionally, rice, black gram, sorghum, millets and other grains are fermented naturally by lactic acid bacteria (LAB) for the preparation of different food and beverages. Fermentation using yeast also has an importance in preparing specialty foods like bread. The advantages of LAB fermentation are many, which include inhibition of enteropathogenic bacteria, improvement of palatability and acceptability as a results of change in texture, flavour and colour, enrichment of nutrients by microbial synthesis of vitamins and reduction in anti-nutritional factors like phytic acid and tannins, improvement in protein and starch digestibility, increase oil-binding capacity,
emulsifying capacity and emulsifying stability, decreased the water-binding capacity (Kazanas & Fields 1981; Oyewole 1997; Elkhalifa et al. 2005). These effects are discussed in the following sections.

2.1 Fermentation and Protein Digestibility

Cooked sorghum protein is less digestible than other cooked cereal proteins (Hamaker et al. 1984). Fermentation causes structural changes in the sorghum storage proteins like prolamin and glutelin so that they are more susceptible to digestion by the pepsin enzyme. Many types of research indicated that there was an increase in globulin and albumin fractions during fermentation, while prolamin and other protein fractions fluctuated (El Khalifa & El Tinay 1994; Hassan & El Tinay 1995). The improvement in protein digestion though fermentation is attributed to the degradation of tannins (Yousif & El Tinay 2001). Kazanas and Fields (1981) observed that natural LAB fermentation of whole ground sorghum resulted in an increase in available amino acids like lysine/leucine, isoleucine, methionine, vitamins like niacin, riboflavin, and thiamine. Moreover, the protein quality increased significantly as a result of fermentation. Chavan et al. (1988) observed an increase in proteins, free amino acids, soluble proteins and in vitro protein digestibility of sorghum meal within 24 h fermentation. Fermentation and germination has been reported as good options for increasing digestibility of sorghum proteins (Axtell et al. 1981; Wedad et al. 2008), reducing the anti-nutritional factors such as tannin and phytic acid and improving the availability of minerals as compared to raw sorghum (Idris et al. 2005; Abdelseeed et al. 2011; ELKhier & Abd-Al Raheem 2011). Naturally fermented sorghum porridge, a traditional African food, had better in vitro protein digestibility and in vitro insoluble protein digestibility (Taylor & Taylor 2002). Traditional Saudi Arabia bread Khamir is prepared through fermentation of milled sorghum flour. Fermentation not only improves the in vitro protein digestibility (Osman, 2004) but also eliminates the problems in baking. During sourdough fermentation, proteins from the dough liquid are degraded to peptides smaller than kafirin monomers (<19 kDa). Schober et al. (2007) observed fermentation of sorghum sourdough, caused a significantly higher resistance to deformation after gelatinization; with a stronger gel rendering the sorghum bread its desirable characteristics.

2.2 Fermentation and Starch Digestibility

Most starches exist inside the endosperm of cereals enmeshed in a strong protein matrix. Therefore, their digestibility is affected by the extent of starch-protein interaction, plant species, physical form of the granule and type of starch and presence of inhibitors such as tannins (Rooney & Pflugfelder 1985; Zhang & Hannaker 1998; Shin et al. 2004; Benmoussa et al. 2006; Singh et al. 2010). Sorghum tannins, predominately proanthocyanidins, interact strongly with amylose and linear fragments of amyllopectin during cooking and thus decrease their bioavailability and digestibility (Barros et al. 2012). During LAB fermentation extracellular amylase is produced and helps ferment starch (Reddy et al. 2008). LAB fermentation thus improves starch digestibility and reduces the resistant starch and total starch (El Khalifa et al. 2004). Natural fermentation with LAB also reduced the amylase inhibition activities by 75% during 24 h fermentation, which would otherwise have interfered with starch digestibility and availability (Osman, 2004). LAB fermentation also reportedly decreases tannin content, affects the protein-starch matrix; thus, improves the starch digestibility (Hassan & El Tinay 1995).

2.3 Fermentation and Anti-nutritional Factors

During LAB fermentation, phenolic acids, phenolic acid esters, and flavonoid glucosides are metabolized (Svensson et al. 2010), which influences the nutritional value and the molecular interactions. LAB fermentation reduces the tannin content (El Khalifa & El Tinay 1994; Hassan & El Tinay 1995; Wedad et al. 2008). Towo et al. (2006) had observed that fermentation with lactic acid bacteria of tannin sorghum gruel reduced the polyphenol content by about 50% with respect to the raw material. However, the reduction was up to 75% when enzymes like phytase and polyphenol oxidase were used. Fermentation has proven to be better in reducing the phytate level than the malting process of grain sorghum (Makokha et al. 2002). El Khalifa and El Tinay (1994) reported a reduction of tannin content by 92% in high tannin content variety during 14 h fermentation of grain sorghum and the phytate content in the raw sorghum flour (12.1 μmol/g) was significantly reduced after soaking and boiling (9.3
μmol/g) and fermentation (7.4 μmol/g). The addition of germinated power flour to the gruel had better efficiency in reducing the polyphenolic and phytic acid content. Mahgoub and Elhag (1998) studied the effect of milling, soaking, malting, heat-treatment and fermentation on phytate level of four Sudanese sorghum cultivars. The reduction in phytic acid level was about 57-80% of different varieties of sorghum after 12 h of fermentation. They also observed that malting reduces the phytic acid content by 68-83%, whereas cooking reduces the phytic acid content only by 17.9-37.5% and soaking for 12 h the reduction was in the tune of 8.2-14.4% and that level increased to 57-60% when the soaking time increased up to 24h. Similar observations were made by Wedad et al. (2008), who reported the decrease in tannin and phytic acid level from 36% to 0.04% and 181 to 44.24 mg/100 g, respectively in fermented cooked sample after 16 h of fermentation.

2.4 Fermentation and Bioavailability of Minerals

Since earlier times, fermentation is used as a tool to improve the bioavailability of nutrients in vegetable food (Svanberg & Lorri 1997). The presence of polyphenolic compounds like tannin and phytic acid in vegetable food affects the bioavailability of minerals like Iron, Calcium, Manganese, Zinc, Phosphorus etc. (Sandberg 1991; Makokha et al. 2002; Umeta et al. 2005). LAB fermentation was observed to improve the iron bioavailability from 4 to 9% in sorghum (Svanberg et al. 1993). Hydrolysis of phytate by the phytase enzyme produces various inositol phosphates containing 1–5 phosphate groups, during fermentation; thereby causing little or no interference in the binding of minerals like Zn, Ca and Fe, resulting in their improved bioavailability in the ingested food (Sandberg 1991; Kruger et al. 2012).

Towo et al. (2006) observed that the bioavailability of iron did not change during fermentation of the sorghum gruel, however with the addition of enzymes and germinated flour to the gruel significantly increased the iron bioavailability from 1 % to 3.1%. Makokha et al. (2002) observed a decrease in phytic acid to 64% after 96 h fermentation and improvement in the available iron, calcium, and manganese.

2.5 Fermentation and Enteropathogenic Bacteria

Studies have proved that consumption of fermented cereal gruel having pH less than 4, can reduce the presence of enteropathogenic bacteria in human (Gibson & Wang 1994; Kingamkono et al. 1999). LAB produces bacteriocin, hydrogen peroxide, ethanol and organic acids and decreases the pH of foods in which they grow, thus inhibiting the growth of enteropathogenic bacteria (Adams & Nicolaides 1997). Svanberg et al. (1992) fermented maize and sorghum gruel and observed that the pH dropped down to about 3.8; moreover presence of viable LAB indicated the effect of bacteriocin on the reduction of gram +ve bacteria. Similar kinds of observations were made by Kingamkono et al. (1994). Fermentation of low tannin and high tannin sorghum with starter culture decreased the pH of the gruel to < 4 within 24-48h, resulting in inhibition of enteropathogenic bacteria. Fermentation involving the production of acetic acid also makes the food safe. Hence preparation of alcoholic beverages from sorghum and other cereals renders the drink safe. Fermentation involving LAB culture is can inhibit the growth of enteropathogenic bacteria like Campylobacter, Salmonella, Shigella, enterotoxigenic Escherichia Coli (ETEC), Staphylococcus and Bacillus with 24h of incubation (Kingamkono et al. 1995). Hence, food fermentation process involving LAB for sufficiently long time can be regarded as safe.

3 Utilization of Fermented Sorghum in Food and Beverages

Sorghum, like other cereals, is an excellent source of starch and protein and can be processed into starch, flour, grits and flakes which can be used to produce a wide range of food, feed, and industrial products. It can also be malted and therefore can be processed into malted foods, beverages, and beer. Cakes, cookies, pasta, a parboiled rice-like product and snack foods have been successfully produced from sorghum. The food uses of sorghum are still mostly traditional and the methods of processing may involve the use of wet or dry heat (Murty & Kumar 1995). Porridges appear to be the most common types of food prepared from sorghum. A range of porridges of varying consistencies (soft or thick) may be prepared from fermented or non-fermented sorghum meal (Murty & Kumar 1995). Porridge preparation involves cooking the meal with boiling water and the process varies considerably depending
on the type of porridge being produced (Taylor et al. 1997). Flatbread and alcoholic beverages are also produced from sorghum. Sorghum grains are also popped and consumed as snacks or delicacies. Sorghum grains also partially or fully replace rice, wheat, soybean and other cereals for the production of traditional fermented foods like idli, dosa, uttapam, vada, porridges, tempeh (Lyimo 2000), gowe (Laetitia et al. 2005) and so on, in several Asian and African Countries (Hesseltine 1979).

Several traditional fermented foods like idli, dosa, dhokla, appam, and kalliapappam are reportedly prepared from sorghum. Idli and dosa are few of the fermented foods based on rice and black gram, however, the emphasis is being given in sorghum producing states of India to incorporate this grain for better nutritional value as these millets had better protein, fiber, fat content as compared to rice-based fermented products. Processing steps like decortication, germination, and fermentation reduce phytic acid and tannin content, making these products acceptable (Raghavendra et al. 1979; Krishnamoorthy et al. 2013). Nazni and Shalini (2010) prepared idli using (i) rice and black gram mixture, (ii) partially replaced rice with sorghum and (iii) fully replaced rice with sorghum. They observed that though the softness of the sorghum idli was less than the rice idli and mixed idli, the protein content was higher in mixed idli, followed by sorghum idli and rice idli. Fat content was highest in sorghum idli, followed by mixed and rice idli. The energy content of sorghum idli was the lowest as compared to rice idli and mixed idli. Minerals like calcium, iron were highest in the sorghum idli as compared to mixed and rice idli. On the other hand, carbohydrate content was lowest in sorghum idli, followed by rice and mixed idli. Though organoleptically people preferred rice idli, the mixed idli and sorghum idli were not rejected and scored over 7.0. Asha et al. (2005) too incorporated sorghum and moth bean in fermented foods like idli and dosa with enhancement in protein and other nutrient content. Since sorghum has high resistant starch content, the glycemic index of sorghum incorporated fermented foods has a lesser glycemic index as compared to other cereal based foods like idli. Jahan et al. (2013) observed that glycemic index of idli prepared from sorghum grits was about 51.2 as a contrast to 56.3 that was prepared from rice grits. This finding supports the fact that fermented food like idli can be prepared from sorghum by replacing rice for people with diabetics.

A variety of traditional fermented food products like sour bread, porridge, alcoholic and non-alcoholic beverages are produced in many regions of Africa and Asia, every region has their own protocol. Some of the sorghum-based traditional fermented food and beverages are consumed all over the world and the microorganisms associated with them are presented in table 5.

4 Conclusions

Sorghum is one of the staple foods in most African and Asian countries, but the emphasis on high yielding cereal crops like wheat and rice, had made it almost disappear from the world food habit. Though in the recent years there is a decline in the production of this grain, however, it is gaining a foothold in the feed industry and biofuel industry in the developed countries. Climate change has also put pressure in the non-sorghum growing regions to adopt this grain as it requires less water as compared to rice and wheat. This gluten free grain is rich in mineral, resistant starch, and polyphenols, which makes it ideal for diabetic and gluten sensitive people. However, the presence of some anti-nutritional factors like phytic acid and tannin has put constraint over its use as food, as these chemicals prevent bio-accessibility and digestibility of protein, starch, and minerals. Processing conditions like fermentation improve the digestibility of starch, protein and mineral availability of this food. Perhaps that is the reason why sorghum is mainly consumed in the fermented form in African traditional foods and beverages. With suitable processing, the adverse effect of the polyphenolic compounds can be reduced so that the grains can have diverse application in the human diet.
Table 5. Sorghum based fermented foods, and beverages consumed around the world, their preparation methods and microorganisms involved

<table>
<thead>
<tr>
<th>Product</th>
<th>Procedure of preparation</th>
<th>Microorganisms involved</th>
<th>Uses</th>
<th>Country</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceda Nasha</td>
<td>Whole grain sorghum flour was fermented for about 3 days, dried at 70°C and ground to make flour. Aceda is prepared by boiling to a stiff porridge and Nasha is prepared to a thin porridge for weaning food</td>
<td>Lactobacillus spp, Acetobacter spp, and Saccharomyces</td>
<td>Thick pudding a snack / Thin Porridge as weaning food</td>
<td>Sudan</td>
<td>Ibrahim et al. 2005</td>
</tr>
<tr>
<td>Amgba/ bilbili</td>
<td>Germinated grains are sundried, and the malted grains are ground and steeped in water with stirring, the solution is decanted, to separate the supernatant and residue. Residue is cooked for 2 h and then mixed with the supernatant and homogenised, left to stand overnight in open air. Separated supernatant, and filtered liquid are mixed to form the wort. Wort is boiled for 5 h and allowed to cool. Pitch / or culture is added to the cooled mash and left to ferment for overnight. Next morning a frothy beer is produced, which is filtered before consumption the same day</td>
<td>LAB, Saccharomyces cerevisiae, Candida albican, Kluyveromyces marxianus, Debaryomyces hansenii</td>
<td>Opaque Alcoholic drink</td>
<td>Cameroon Chad</td>
<td>Roger et al. 2013 Maoura et al. 2005</td>
</tr>
<tr>
<td>Assaliya</td>
<td>Produced from germinated sorghum, involves 40 steps</td>
<td>unknown</td>
<td>Clear sorghum beer</td>
<td>Sudan</td>
<td></td>
</tr>
<tr>
<td>Bogobe</td>
<td>Dehulled sorghum meal is fermented in water for 24 h using a starter. The fermented slurry was then cooked in boiling water for 10-12 min to prepare a stiff porridge</td>
<td>L. reuteri, L. fermentum, L. barbinensis, L. plantarum, L. parabuchneri, L. casei and L. coryniformis</td>
<td>Semi-stiff porridge taken in lunch</td>
<td>Botswana</td>
<td>Boling & Eisener, 1982 Monang & Gänzle, 2011</td>
</tr>
<tr>
<td>Boza</td>
<td>Boza Various (barley, oats, rye, millet, maize, wheat or rice)</td>
<td>LAB: Leuconostoc (Leu. parmesenteroides, Leu. sanfranciscensis, Leu. mesenteroides), Lactobacillus (Lb. plantarum, Lb. acidophilus, Lb. fermentum); Yeast: Saccharomyces (S. uvarum, S. cerevisiae), Pichia fermentans, Candida spp.</td>
<td>Alcoholic drink</td>
<td>Kazakhstan, Turkey, Kyrgyzstan, Albania, Bulgaria, Macedonia, Montenegro, Romania, Serbia, Bosnia and Herzegovina</td>
<td>Marsh et al. 2014</td>
</tr>
<tr>
<td>Burukutu / otika</td>
<td>Burukutu production involves malting, mashing, addition of an adjunct, fermentation of sorghum using an old brew as a starter culture for 48 h; pasteurization by boiling and maturation.</td>
<td>Saccharomyces cerevisiae, S. chavereia and Leuconostoc mesteroides</td>
<td>Alcoholic beverage</td>
<td>Nigeria, Benin, Ghana</td>
<td>Kolaowle et al. 2007</td>
</tr>
<tr>
<td>Product</td>
<td>Preparation</td>
<td>Fermentation Conditions</td>
<td>Country</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--------------------------</td>
<td>-----------</td>
<td>------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Bushera</td>
<td>Bushera is prepared by cooking germinated sorghum flour in (1:3) water for 2-5 minutes. After cooling down, the slurry is added with sorghum malt to initiate fermentation. Fermentation is carried out ambient temperature for 1 for production of sweet bushera and 2-4 days for sour bushera.</td>
<td>Sweet bushera as weaning food and sour bushera for older people as alcoholic beverage</td>
<td>Uganda</td>
<td>Muyanja et al. 2003</td>
<td></td>
</tr>
<tr>
<td>Chibuku</td>
<td>Chibuku is prepared by blending sorghum meal and sorghum malt with water and lactic acid, which is gelatinized, mashed and strained. The solution is malted and fermentation with yeast to produce ethanol and carbon dioxide.</td>
<td>Opaque Sorghum beer</td>
<td>Botswana</td>
<td>Togo et al. 2002</td>
<td></td>
</tr>
<tr>
<td>Chikokivana</td>
<td>Chikokivana is a 1-day brew produced from sorghum meal and malt with water using a yeast as starter culture.</td>
<td>Saccharomyces cerevisiae</td>
<td>Zimbabwe</td>
<td>Gadaga et al. 1999</td>
<td></td>
</tr>
<tr>
<td>Dolo</td>
<td>Dolo is prepared by blending porridge prepared from sorghum meal with malt meal and left to ferment for a few days. The slurry is then boiled followed by malt addition. The brew is fermented for few more days, followed by boiling, cooling down to room temperature and addition of coarsely ground malt. The mixture is filtered and left to mature overnight before consumption.</td>
<td>Opaque Sorghum beer</td>
<td>Botswana</td>
<td>Gadaga et al. 1999</td>
<td></td>
</tr>
<tr>
<td>Gowe</td>
<td>Dough prepared from malted sorghum flour is fermented for 12 h and mixed with unmalted sorghum flour slurry, which is then left to ferment for 12-24 h.</td>
<td>LAB: Lactobacillus fermentum, Weissella confusa, Lactobacillus mucosae, Pediococcus acidilactici, Pediococcus pentosaceus and Weissella kimchii Yeast: Kluyveromyces marxianus, Pichia anomala, Candida krusei and Candida tropicalis.</td>
<td>Nigeria</td>
<td>Vieira-Dalodé et al. 2007</td>
<td></td>
</tr>
<tr>
<td>Hulu Mur</td>
<td>Hulu Mur is a fermented food product made from fermented Sorghum bicolour flour, Tamarindus indica L, Phoenix dactylifera, Hibiscus sabdariffa and spices. Equal proportion of sorghum malt and porridge made from sorghum flour mixed and</td>
<td>Saccharomyces Candida</td>
<td>Sudan</td>
<td>Agab, 1985</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sulieman & Abdelgadir, 2015</td>
<td></td>
</tr>
</tbody>
</table>
left to ferment in sun. During fermentation spices and date slurry is added and left to ferment for 24-36 h. The dough is then baked to thick brown sheets, and to prepare the hulu mur drink, the sheets are broken into small pieces and soaked in water and then strained.

<table>
<thead>
<tr>
<th>Hussuwa</th>
<th>Both lactic acid and ethanolic fermentation takes place involving mainly Lactobacillus fermentum, Pediococcus acidilactici P. pentosaceus</th>
<th>semi-solid, dough-like</th>
<th>Sudan</th>
<th>Yousif et al. 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hussuwa production involves cooking of sorghum paste to produce stiff ‘aceda’ porridge. To this, sorghum malt is added and left to ferment for up to 48 h, to give the sourdough called ‘ajin’ which is cooked until all moisture is expelled. After cooking, the slurry is fermented in an earthenware pot which is buried under the fireplace for up to two months. The cooking of daily meals over it ensures a continuous warming throughout this period of fermentation.</td>
<td>Candida guilliermondi</td>
<td>Staple-bread</td>
<td>Ethiopia, Eritrea</td>
<td>Gebrekidan & Gebrehiwot (1981); Taylor, 2003</td>
</tr>
<tr>
<td>Injera</td>
<td>Candida guilliermondi</td>
<td>Staple-bread</td>
<td>Ethiopia, Eritrea</td>
<td>Gebrekidan & Gebrehiwot (1981); Taylor, 2003</td>
</tr>
<tr>
<td>Injera, is a large circular, fermented pancake-like bread. Dehulled and milled sorghum flour was mixed with water (50:50) and the starter, which is then fermented for 72h. A portion of the dough, about 5%, is mixed with water. This slurry is added and cooked to make a gruel, which is then added to the dough. A batter is formed by addition of more water; the batter thus formed is then let to stand for 2-3 h, and then baked for 2-3 min in covered condition to produce injera, a thin spongy bread</td>
<td>Bacteria: Pediococcus pentosaceus, Lactobacillus brevis, Lact. lactis subsp. lactis, Lact. cellobiosus, Klebsiella oxytoca, Kl. pneumoniae, Enterobacter aerogenes, Ent. sakazakii, Serratia marcescens and Ser. odourifera, mould: Penicillium sp, Rhizopus sp, Aspergillus niger, Alternaria sp, Fusarium sp. and Mucor sp. yeast: Candida</td>
<td>Staple bread</td>
<td>Arab countries</td>
<td>Gassem, 1999</td>
</tr>
<tr>
<td>Khamir</td>
<td>Bacteria: Pediococcus pentosaceus, Lactobacillus brevis, Lact. lactis subsp. lactis, Lact. cellobiosus, Klebsiella oxytoca, Kl. pneumoniae, Enterobacter aerogenes, Ent. sakazakii, Serratia marcescens and Ser. odourifera, mould: Penicillium sp, Rhizopus sp, Aspergillus niger, Alternaria sp, Fusarium sp. and Mucor sp. yeast: Candida</td>
<td>Staple bread</td>
<td>Arab countries</td>
<td>Gassem, 1999</td>
</tr>
<tr>
<td>Region</td>
<td>Staple bread</td>
<td>Yeast and bacteria</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>-------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Kisra</td>
<td>Most lab and yeast</td>
<td>Paracoccus pentosaceus, Lactobacillus confusus, Lactobacillus brevis, Lactobacillus sp, Erwinia ananas, Klebsiella pneumoniae, and Enterobacter cloacae, yeasts (Candida intermedia and Debaryomyces hansenii), and molds (Aspergillus sp, Penicillium sp, Fusarium sp, and Rhizopus sp)</td>
<td>Sudan (Mohammed et al. 1991, Hamad et al. 1992)</td>
<td></td>
</tr>
<tr>
<td>Kwunn-Zaki</td>
<td>LAB, yeasts</td>
<td>Saccharomyces cerevisiae, Candida spp. Lactobacillus delbrueckii or L. bulgaricus</td>
<td>Nigeria (Blandino et al. 2003, Nyanzu, & Jooste, 2012)</td>
<td></td>
</tr>
<tr>
<td>Mahewu</td>
<td>mesophilic bacteria, lactic acid bacteria, yeasts and moulds</td>
<td>Saccharomyces cerevisiae</td>
<td>Southern Africa, Zimbabwe (Bvochora et al. 1999)</td>
<td></td>
</tr>
<tr>
<td>Mangisi</td>
<td>LAB and Saccharomyces cerevisiae</td>
<td>Non-alcoholic beverage</td>
<td>Zimbabwe (Gadaga et al. 1999)</td>
<td></td>
</tr>
<tr>
<td>Merissa</td>
<td>LAB and Saccharomyces cerevisiae</td>
<td>Unclear sorghum beer</td>
<td>Sudan (Zweytick & Berghofer, 2009)</td>
<td></td>
</tr>
<tr>
<td>Beverage</td>
<td>Process Description</td>
<td>LAB</td>
<td>Type/Origin</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>deboba</td>
<td>Fermented for 7 h and filtered. The filtrate is called mahoj Merissa and the residue is added with hot water and the mixture is filtrated to produce Dagga Merissa.</td>
<td>Lactic acid bacteria and yeasts</td>
<td>Botswana</td>
<td></td>
</tr>
<tr>
<td>motogo</td>
<td>Dehulled sorghum meal is fermented in warm water for 24 h using a starter. The fermented slurry was then cooked in boiling water to prepare a soft porridge.</td>
<td>Soft porridge consumed for breakfast</td>
<td>Monang & Gänzle, 2011</td>
<td></td>
</tr>
<tr>
<td>Munkoyo</td>
<td>Munkoyo production involves cooking the sorghum grain flour in water, liquefaction-saccharification of the porridge gel with munkoyo roots (Eminia, Rhynchocisia and Vigna species), and fermentation.</td>
<td>LAB: Lactobacillus delbrueckii subsp. Lactis and Saccharomyces cerevisiae</td>
<td>Democratic Republic of Congo (D.R.C) and Zambia</td>
<td></td>
</tr>
<tr>
<td>Ogi-baba</td>
<td>Ogi is a smooth, creamy, free-flowing thin porridge obtained from wet-milled, sorghum (Sorghum vulgare). Sorghum grains are soaked for 1-3 days and wet milled followed by sieving to remove bran, hull and germ. The filtrate is fermented for 2-3 days and the wet cake, ogi-baba is added with water and boiled to prepare a stiff porridge (agidi).</td>
<td>Lactobacillus plantarum, Saccharomyces cerevisiae, Candida mycoderma, Corynebacterium, Aerobacter, Rhodotorula, Cephalosporium, Fusarium, Aspergillus and Penicillium, Debaryomyces hansenii, Candida krusei, Lactobacillus plantarum, Saccharomyces cerevisiae, Candida mycoderma, Corynebacterium, Aerobacter, Rhodotorula, Cephalosporium, Fusarium, Aspergillus and Penicillium, Debaryomyces hansenii, Candida krusei</td>
<td>Paste as staple. For breakfast or weaning food for babies</td>
<td>Nigeria, West Africa</td>
</tr>
<tr>
<td>Omuramba</td>
<td>Soaking of sorghum grains for 12 h, addition of ash to increase the mineral content and allowed to germinate for 3 days, washed and sundried, followed by grinding to coarse flour. The flour is added with water and allowed to stand for 5-7 days. The mixture is boiled, cooled left to stand for another 2-3 days. Yeast is added to ferment the mixture for 2 days. Whole process takes about 4 weeks, with series of boiling and fermentation process.</td>
<td>Yeast</td>
<td>Alcohol beverage</td>
<td>Uganda</td>
</tr>
<tr>
<td>Pito</td>
<td>The process of pito production involves malting, mashing, fermentation and maturation. In this case different types of grains are used to brew it and adjunct is not added.</td>
<td>Yeast</td>
<td>Alcohol dark brown drink</td>
<td>Nigeria, Ghana</td>
</tr>
<tr>
<td>Tchapalo</td>
<td>Tchapalo is prepared from malted sorghum flour. This flour was mixed with water containing a sticky substance from the bark of</td>
<td>Yeast</td>
<td>Alcoholic drink</td>
<td>Côte d'Ivoire</td>
</tr>
</tbody>
</table>

Note:. Yeast: Alcoholic beverage; LAB: Lactic acid bacteria.
a shrub (Anogeissus leo carpus). The mash so obtained is decanted to separate supernatant and sediment. The sediment was cooked, mixed with the supernatant to give wort, which is then fermented naturally overnight to produce sour wort. The sour wort was cooked, cooled and inoculated with yeast for 9-12 h to produce tchapalo.

| Tella | Unleavened bread (kita) is prepared from the malt (bikil) of barley/maize/wheat/sorghum and broken into pieces. Sorghum grain is ground to flour and roasted (enkuro). Dried gesho leaves are soaked in water for 4-5 d. The mixture of malt (bikil) and unleavened bread pieces (kita) is put into the gesho leaf-soaked water with additional powders of gesho leaves and stem and left to ferment for 2 days or more. At the third stage, powder of the gesho leaves and pounded stem and cereal flour are mixed into a thick slurry and left to ferment for 2 days or more. At the final phase, the container is filled with water to the brim and the slurry is mixed thoroughly. The container is then sealed with mud to create an anaerobic condition and left for 2 days or more. Tella is consumed directly or after filtration. |
| Saccharomyces cerevisiae and Lactobacillus pastorianum | Alcoholic drink | Ethiopia | Lee et al. 2015 |

| Ting | Spontaneous fermentation is carried out by mixing sorghum flour (40-45%) with warm water (55-60%). The slurry is fermented in a warm place (30-37 °C) for 2-3 days. Alternatively, sorghum slurries are inoculated with material from a previous fermentation. Fermentation of slurry is completed in in 1-3 days for production of Ting. |

| Togwa | A slurry prepared from sorghum or mixture of sorghum-maize flour is prepared (5-15% w/v), which is boiled for 15 min and left to cool down. To it malt flour Lactobacillus brevis, Lactobacillus cellobiosus, Lactobacillus fermentum, Lactobacillus plantarum and Pediococcus pentosaceus) and fermented gruel or beverage is consumed as weaning food or beverage after |
| | | Tanzania Mugula et al. 2003a,b |
or back slopping is added and allowed to ferment for 9-24 h at ambient temperature to produce Togwa yeasts (Candida pelliculosa, Candida tropicalis, Issatchenkia orientalis, Saccharomyces cerevisiae, Weissella confusa, dilution

Tonto/ Uruagwa/ Mbege/ Urwaga/ isongo
Ripened green banana juice is added with roasted and ground sorghum and fermented for 2-4 days in warm pits. The alcohol content is about 6-11%. The process of ripening bananas, juice extraction and fermentation of the final product took about 9 to 10 days.

Lactic acid bacteria, yeast and molds and aerobic mesophilic bacteria

Banana beer: alcoholic drink
Uganda
Uganda
Rwanda
Tanzania
Kenya
Burundi

Mwesigye & Okurut, 1995;
Wilson et al. (2012)

Uji
Mixture of maize and sorghum flour is slurried with water and allowed to ferment for 1-3 days, diluted to desired consistency followed by boiling and sweetened with sugar.

Lb. plantarum, Lb. fermentum, Lb. cellobiosus and Lb. buchneri, Pediococcus acidilactici and P. pentosaceus

Porridge:
Hot form as breakfast, cold form as thirst quenching and light midday meal

Est Africa, Kenya, Uganda, Tanzania

Masha et al. 1998; Nyanzi, & Jooste, 2012

References

82. Makokha AO, Oniang’o RK, Njoroge SM and Kamar OK (2002). Effect of traditional fermentation and malting on phytic acid and mineral availability from sorghum (Sorghum bicolor) and finger millet (Eleusine coracana) grain varieties grown in Kenya. Food and Nutrition Bulletin, 23(3 Suppl), 241-245.

130. Togo CA, Feresu SB and Mutukumira AN (2002). Identification of lactic acid bacteria isolated from opaque beer (Chibuku) for potential use as a starter culture.