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Abstract Measuring risks in a portfolio of financial assets is a very high profile issue in financial
mathematics research. In this article, we focus on the search for an efficient portfolio and a smooth
efficient frontier using the Downside Risk method measured by the Semi-Variance to have a portfolio
with minimal variance. More specifically, and considering a set of financial securities, we compare
the Markowitz Mean-Variance method and the Downside Risk method. We find that Downside
Risk is a better measure of risk than Mean-Variance and is therefore more suitable for building a
portfolio of minimum variance.
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1 Introduction

Risk measures has always played a very important role in corporate decision making. The development
and implementation of financial markets, and the multi-study of financial products have stimulated
researchers to develop models to help investors make the right decisions and implement effective strategies
(risk measures), for a better fructification of their wealth in order to maximize their gains while minimizing
the risk of losing. This need has given rise to a range of research work that has focused on portfolio
management and the evolution of financial assets. The origin of the development of modern portfolio
theory can be traced back to Markowitz (1952) [3,4] who determined the Mean-Variance model to measure
the relationship between the return and the risk of portfolios. However, this model is valid only if returns
are normally distributed or if investors have mean-variance preferences. However, several studies have
shown that returns on financial assets are not normally distributed. Similarly, Ballestro (2005) [5,6],
Estrada(2004) [7] have pointed out that variance is a dubious risk measure because it treats above-average
and below-average returns in the same way, whereas investors associate risk with the target rate of return
(benchmark). Thus, the mean-variance model becomes unable to adequately capture the characteristics of
portfolio returns and investors’ perceptions of risk. As a result, the use of the Downside Risk measure
seems necessary in order to better present investor preferences and to take into account the asymmetric
nature of returns. In this regard, Harlow (1991) developed a portfolio optimization model under Downside
Risk, in which investors minimize only returns below the target rate of return while looking for desirable
returns above the target. However, Harlow’s model is not perfect, and it is with this in mind that Daboussi
(2006), inspired by Estarda (2003) [8], determined a new portfolio optimization model for downside risk.
Similar facts were also mentioned in Jimbo et al (2017) and Jimbo and Craven (2011).

The aim of this article is to present on the one hand the mathematical tools for measuring and
comparing risk by developing respectively the theory of an optimal portfolio according to the Markowitz
Mean-Variance model and the Downside Risk method. On the other hand, we will end our study by
comparing the two models on optimal portfolios chosen in an efficient financial market.

https://dx.doi.org/10.22606/aan.2020.51001
Advances in Analysis, Vol. 5, No. 1, October 2020

1

Copyright © 2020 Isaac Scientific Publishing AAN



2 Optimal Portfolio Concept by the Markowitz Method (1952)

2.1 Modern Portfolio Theory

The optimization of a portfolio or the optimal choice of a portfolio of financial assets is a very high profile
issue in financial mathematics research. In this context, Markowitz was the first to introduce a model
called “Mean-Variance” (1952) as a risk measurement for optimal portfolio choice. Indeed, the Markowitz
model consists of minimizing the standard deviation for a given profitability or maximizing the portfolio’s
profitability for a given risk.

2.2 Characteristic of a Portfolio

Portfolio return Let Pt be the price of a share at the end of period t, the variation of the price
(Pt − Pt−1) designates the gain to which is possibly added the income dt called dividend paid during
period t.

The return on this share in the period t is defined as follows:

Rt = (Pt − Pt−1) + dt
Pt−1

(1)

Let P be a portfolio of financial stocks (A1, ....., AN ) represented by a vector x=(x1, ...., xN ) where xi
denotes the proportion of the capital C invested in the stock ai characterized by its uncertain return Ri
(i = 1, ...., N).

The profitability of a portfolio is equal to the weighted average of the securities or stocks that make it
up. We have:

RP = x1 ×R1 + .....+ xN ×RN =
N∑
i=1

xiRi (2)

Expected profitability of a portfolio Under the above assumptions, the expected profitability of a
portfolio is given by:

E[RP ] = E

[
N∑
i=1

xiRi

]
=

N∑
i=1

E[xiRi] =
N∑
i=1

xiE[Ri] (3)

Consider a portfolio of N securities. For each security where assets Aj , we have T historical returns rated
Rj=[rj1 rj2 rj3 ....rji......rjT ]. Generally, we have for all securities,

R =


r11 r12 · · · r1T
r21 r22 · · · r2T
...

...
. . .

...
rN1 rN2 · · · rNT

 =


R1
R2
...
RN

 (4)

where R is the matrix of the returns of the N securities collected over T period. We can therefore
determine the column vector of the mathematical expectations µ of dimension N × 1.

µ = E[R] = E



R1
R2
...
RN


 =


E[R1]
E[R2]

...
E[RN ]

 =


µ1
µ2
...
µN

 (5)
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Variance of portfolio return The variance covariance matrix Σ of dimension N × N is written as
follows:

Σ = V ar[R] =


V ar[1, R1] V ar[R1, R2] · · · V ar[R1, RN ]
V ar[R2, R1] V ar[R2, R2] · · · V ar[R2, RN ]

...
...

. . .
...

V ar[RN , R1] V ar[RN , R2] · · · V ar[RN , RN ]



=


V ar[R1, R1] Cov[R1, R2] · · · Cov[R1, RN ]
Cov[R2, R1] V ar[R2, R2] · · · Cov[R2, RN ]

...
...

. . .
...

Cov[RN , R1] Cov[RN , R2] · · · V ar[RN , RN ]



=


σ2

1 σ1,2 · · · σ1,N
σ1,2 σ2

2 · · · σ2,N
...

...
. . .

...
σ1;N σN,2 · · · σ2

N

 (6)

where we have on the diagonal the variances of each security. It should also be noted that our covariance
matrix is symmetrical i.e. Σ=ΣT . Thus, it is possible to build a portfolio P (ω) with:

ω =


ω1
ω2
...
ωN

 (7)

which represents the weight vector of each security or asset in the portfolio so the sum is equal to 1 in
other words ωTu = 1 with:

u =


1
1
...
1

 (8)

The expectation µP and the variance σ2
P of the portfolio can be expressed like this:{

µP = ωTµ
ΣP = ωTΣω

(9)

Example 1. In the case of a portfolio consisting of two assets, the variance is:

V ar[RP ] = x2
1V ar[R1] + x2

2V ar[R2] + 2x1x2Cov(R1, R2)
V ar[RP ] = x2

1V ar[R1] + x2
2V ar[R2] + 2x1x2σR1σR2Corr(R1, R2) (10)

σRP
=
√
V ar[RP ] (11)

Covariance and portfolio profitability correlation The variance of a multi-security portfolio is:

σ2 =
∑
i

∑
j

xiyjCovij (12)

where Covij is the covariance of securities i and j. It is used to measure the risk of a portfolio in the same
lines as correlation.

Correlation measures the strength of the relationship between the returns of two securities and their
propensity to move together. It ranges from +1 (the changes in returns are identical) to -1 (returns always
move in opposite directions). When the correlation is zero, the changes in profitability are unrelated.
Before measuring the risk in a portfolio of financial assets, we will first measure the risk of an asset
because a portfolio is made up of several assets.
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Measuring the risk of an asset The risk of an asset or security i is assessed by its contribution to
portfolio risk. Two related measures can be given:

- An absolute measurement is the covariance (σip) of the asset with the portfolio. σip gives us the
contribution of security i to the portfolio risk. It is the measurement of risk in the portfolio.

- A relative measurement is the Beta (βip) of the assets in the portfolio.

The covariance of an asset with the portfolio is the weighted average of the covariances of the assets
with the portfolio.

σip =
∑
j

xjσij (13)

In this case the variance of the portfolio is equal to the weighted average of the covariances of the assets
with the portfolio.

σ2
p =

N∑
i

xiσip (14)

As an illustration, let’s look at the variance of a portfolio made up of two risky securities:

σ2
p = x2

1σ
2
1 + x2

2σ
2
2 + 2(x1x2σ1σ2ρ12) (15)

We can still write this expression in the following form:

σ2
p = x1(x1σ

2
1 + x2σ12) + x2(x1σ12 + x2σ

2
2) (16)

The terms in brackets are the covariance of each of the securities with the portfolio. For example, in the
case of security 1, we have:

x1σ
2
1 + x2σ12 = x1Cov(r1, r1) + x2Cov(r1, r2)

= Cov(r1, x1r1) + Cov(r1, x2r2)
= Cov(r1, rp) = σ1p

(17)

We obtain σ2
p = x1σ1p + x2σ2p. This expression is generalized in the case of N assets (we have already

done it above).
The beta of security i relative to portfolio P is the ratio of the covariance of security i to the variance

of the portfolio.
βip = σip

σ2
p

(18)

A beta greater than unity means that the risk of security j in portfolio P is above average. The average
of the beta is equal to unity, i.e.:

N∑
i=1

xiβip = 1 (19)

Determination of beta Beta is the slope of the following regression line.

rj = α+ βrp + ε (20)

2.3 Markowitz Method for the Determination of an Efficient Portfolio, Tangent Portfolio

Definition 1. (Efficient portfolio)
An efficient portfolio is any portfolio that offers the highest expected return for a given level of risk. Or
conversely, any portfolio that exposes its holder to the lowest risk for a given level of return.

Definition 2. (Efficient Frontier)
The efficient frontier is the curve on which all efficient portfolios are represented.
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From the notion of efficiency thus defined, we understand that there is only one and only one efficient
portfolio P (ω∗) for an expected level of return µ0. This is called the tangent portfolios.

Markowtiz explains and formalizes the fundamental dilemma of modern finance in the following way:
“To achieve low but certain profitability, or to accept risk in the hope of increasing that profitability. The
expectation of profitability being higher than the risk is important.”

The first question an investor asks himself is obviously the following: Which efficient portfolio offers
the most reliable level of risk? Answering this question means solving the following optimization program
issued by Markowitz: {

Min σ2
P (ω) = ωTΣω

ωTu = 1 (21)

where 

MaxE(µp) = Max ωTµ
m∑
i=1

m∑
j=1

σij = (σ2
p)∗

m∑
j=1

ωj = 1

(22)

To solve this program, we will use the Lagrange multiplier method.

L(ω, λ) = ωTΣω − λ(ωTu− 1) (23)

where λ is the Lagrange multiplier. We will then calculate the partial derivatives that we will specify
equal to 0: 

∂L
∂ω

= 2Σω − λu = 0

∂L
∂λ

= ωTu− 1 = 0
(24)

We will then draw ω into equation (25), after which we will replace it in equation(26).

2Σω − λu = 0 =⇒ ω = 1
2λΣ

−1u (25)

ωTu− 1 = 0 =⇒ ωTu = 1 (26)
1
2λu

TΣ−1u = 1 =⇒ λ = 2
uTΣ−u

(27)

(27) in (25) we have:

ω = 1
2

(
2

uTΣ−1u

)
Σ−1u donc ω = Σ−1u

uTΣ−1u
(28)

The efficient portfolio is given by P (ω).
Our objective is to be able to determine the efficient frontier or at least express a function that allows

us to determine the portfolio for a µ0 target level of return. This problem can be formulated as follows:Min σ2
P (ω) = ωTΣω

ωTµ = µ0
ωTu = 1

(29)

The Lagrangian is given by the following expression:

L(ω, λ1, λ2) = ωTΣω − λ1(ωTµ− µ0)− λ2(ωTu− 1) (30)
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The first-order conditions are: 

∂L
∂ω

= 2Σω − λ1µ− λ2u = 0

∂L
∂λ1

= ωTµ− µ0 = 0

∂L
∂λ2

= ωTu− 1 = 0

(31)

2Σω − λ1µ− λ2u = 0 =⇒ ω = 1
2Σ
−1(λ1µ+ λ2u) (32)

ωTµ− λ0 =⇒ 1
2λ1µ

TΣ−1µ+ 1
2λ2u

TΣ−1µ = µ0 (33)

ωTu− 1 = 0 =⇒ 1
2λ1µ

TΣ−1u+ 1
2λ2u

TΣ−1u = 1 (34)

To overcome this system, we define the following expressions: A=uTΣ−1µ, B=µTΣ−1µ and C=uTΣ−1u
to make the rest of the operations more accommodating:{

Aλ1 +Bλ2 = 2µ0
Aλ1 + Cλ2 = 2 ⇐⇒

(
B A
A C

) (
λ1
λ2

)
= 2

(
µ0
1

)
(35)

This becomes an identity of the well-known linear algebra Mx=b =⇒ x=M−1b for

M =
(
B A
A C

)
(36)

M−1 =
(
B A
A C

)−1
= 1
BC −A2

(
C −A
−A B

)
(37)

According to the co-factors and

b = 2
(
µ0
1

)
(38)

By designating D = BC −A2 we finally get(
λ1
λ2

)
= 2
D

(
C −A
−A B

)(
µ0
1

)
= 2
D

(
Cµ0 −A
−Aµ0 +B

)
(39)

which implies λ1 = 2−A+ Cµ0

D
and λ2 = 2B −Aµ0

D
. By replacing the expressions of λ in the expression

of ω, you get:

ω = 1
2Σ
−1(λ1µ+ λ2u) = 1

D
Σ−1(−Aµ+Bµ) + 1

D
Σ−1(Cµ−Au)µ0 (40)

The efficient frontier function, which is really just an expression of σ2
P in function of µ0 is:

σ2
P (µ0) = ω(µ0)TΣ−1ω(µ0) (41)

After determining the efficient frontier of a portfolio we will determine the tangent portfolio. This portfolio
offers the best excess return per unit of risk, the best of sharpe ratio µP −RP

σP
.
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Determination of the tangent portfolio In order to find it, we reason by taking into account an
additional asset (the risk-free asset), Af . This asset provides a return Rf and a variance where risk is
zero, and its covariance with other securities is zero, Cov(Rf ;Rj)=0. The investor asks himself the same
questions as above.

Suppose we call it ωτ , the risky asset share and ωf , the risk-free asset share of our portfolio, we should
have:

ωTτ u+ ωf = 1 =⇒ ωf = (1− ωTτ u) (42)

Also, since our risk-free assets have zero variance and zero correlation with other risky assets, the only risk
in our new portfolio P (ωτ ), comes from risky assets only. So we’re going to solve the following problem:Min σ2

P (ωτ ) = ωTΣωτ

s/c ωTτ u+ (1− ωTτ u)Rf = µ0

(43)

The Lagrangian of the program is as follows:

L(ωτ , λ) = ωTτ Σωτ − λ(ωTτ (µ−Rfu) +Rf + µ0) (44)

The first-order conditions are: 
∂L
∂ωτ

= 2Σωτ − λ(µ−Rfu) = 0

∂L
∂λ

= ωTτ (µ−Rfu) +Rf − µ0 = 0

(45)

We will as before determine an expression of ωτ based on λ. From (45), we have:

ωτ = −1
2λΣ

−1(µ−Rfu) (46)

ωTτ (µ−Rfu) = µ0 −Rf (47)

which enables us to have:

− λ

2 (µ−Rfu)TΣ−1(µ−Rfu) = (µ0 −Rf ) soit λ = − 2(µ0 −Rf )
(µ−Rfu)TΣ−1(µ−Rfu) (48)

where the differences (µ−Rf ) and (µ−Rfu) are respectively the excess returns first from the portfolio
and then from the securities. The expression for ωτ is:

ωτ = (µ0 −Rf )
(

Σ−1(µ−Rfu)
(µ−Rfu)TΣ−1(µ−Rfu)

)
= µ0 −Rf

(µ−Rfu)T (49)

This portfolio that we have just obtained P (ωτ ) belongs, in fact, to a family of portfolios that we will see
in the diagram below. The right-hand side of Capital Market Line (CML) whose most finite expression
known thanks to the work of W.Sharpe et al is

µp = Rf + σp

[
µM −Rf
σM

]
(50)

where µM and σM are the expectation and standard deviation of Market. The tangent portfolio will
then graphically be the intersection of the Market line and the efficient frontier. It’s the one that offers
the best expected return, the best Sharpe ratio µp −Rf

σp
. By calculation, to obtain this portfolio, we

will equalize the derivatives of the market line and the curve; then we will determine the ω that verifies
this equation. But this method is tedious since the curve above shows us that the line and the curve
intersect at one point, so that’s where they must have the same securities. This observation allows us
to conclude that at this point, ωf=0 and therefore the portfolio is entirely made up of risky assets i.e.
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ωTτ u = 1 and by relying on our reasoning, we can write that at this point ωτ=ωs with ωs the composition
of the super-efficient portfolio. Formally at this point we have:

ωτ = ωs = (µ0 −Rf ) Σ−1(µ−Rfu)
(µ−Rfu)TΣ−1(µ−Rfu) (51)

(ωTs )u = ωTτ u = uTωs = (µ0 −Rf ) uTΣ−1(µ−Rfu)
(µ−Rfu)TΣ−1(µ−Rfu) = 1 (52)

(µ0 −Rf ) = (µ−Rfu)TΣ−1(µ−Rfu)
uTΣ−1(µ−Rfu) (53)

This new expression of excess portfolio return will be implemented in the expression of ωs

ωs = (µ0 −Rf ) Σ−1(µ−Rfu)
(µ−Rfu)TΣ−1(µ−Rfu) (54)

=
(

(µ−Rfu)TΣ−1(µ−Rfu)
uTΣ−1(µ−Rfu)

)
Σ−1(µ−Rfu)

(µ−Rfu)TΣ−1(µ−Rfu) (55)

after simplification, we can conclude that the tangent portfolio P (ωs), consists of:

ωs = Σ−1(µ−Rfu)
uTΣ−1(µ−Rfu) (56)

We finally see that the constitution of a Tangent portfolio, depends only on µ0, therefore on the investor’s
preferences.

3 Presentation of the Downside Risk Method

As mentioned before, the Markowitz Mean-Variance model suffers from several flaws. The model is
valid only if returns are normally distributed (which is not always the case), or if investors have stated
preferences of the Mean-Variance type. Several researchers, such as Lee et al (2009), have pointed out
that variance is a dubious measure of risk because it treats upper and lower returns the same way, or
at a target value that may be the average return or a given return B called the “Benchmark” “Target
Rate of Return”. As a result, investors want to minimize below-average returns or generally returns below
a target rate of return. As a result, the mean-variance model becomes unable to adequately capture
the characteristics of portfolio returns and investors’ perceptions of risk. Therefore, the use of downside
risk measures seems to be necessary to better present investor preferences and to take into account the
asymmetry of returns.

Downside risk is therefore an indicator that takes into account only undesirable (or negative) returns.
It provides a synthetic measure of the frequency and intensity with which an investment has performed
below a predetermined threshold return. It is defined as the probability of obtaining a return below a
given value.

The objective of this model is to maximize the probability that the portfolio’s return will exceed a
certain minimum level of return, often referred to as the “benchmark threshold” or “disaster threshold”
terminology: Roy’s Safety-First measure, semi-variance, Lower Partial Moment, Value-at-Risk (VaR),
Conditional Value at Risk (CVaR).

3.1 Choice of an Optimal Portfolio in the Context of Downside Risk: Case of
Semi-Variance

In the Markowitz Mean-Variance method, the choice of an optimal portfolio is made by minimizing the
variance or maximizing the mean. Downside risk is chosen by minimizing the semi-variance. Thus we will
first present the mean-semi-variance model.
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The mean-semivariance model The basis of the mean-semivariance approach is mainly due to
Markowitz (1959) who tries to correct his error on the first method.

Let rit be the returns observed over time t=1,...,T . The semi variance of return of asset i with respect
to Benchmark B is given by the following expression:

Σ2
iB = E{[Min(ri −B, 0)]2} = 1

T

T∑
t=1

[Min(rit −B, 0)]2 (57)

when B = µ then we speak of Markowitz semi-variance given by:

SV = E{[Min(ri − µ, 0)]2} = 1
T

T∑
t=1

[Min(rit − µ, 0)]2 (58)

where µ is the average yield of the observations over time. The semi-covariance is given by:

ΣijB = 1
T

∑
t∈V

(rit −B)(rjt −B) (59)

where V is the set of t indices such that (Rpt − B) < 0. More explicitly, the semi-covariance between
assets i and j is given by:

Σij = E{Min(ri −B, 0)×Min(rj −B, 0)} = 1
T

T∑
t=1

[Min(rit −B, 0)×Min(rjt −B, 0)] (60)

This definition is generalizable to all Benchmarks and can be found in Estarda (2002,2007). Moreover,
the Semi-covariance matrix whose coefficients are Σij exogenous and symmetrical (Σij = Σji).

Choosing the optimal portfolio Here investors prefer assets with low semi-variance, i.e. assets with
less negative skewness (i.e. assets below average).

These are (ω1, ω2, ....., ωt, ..., ωm) the allocations assigned to the different assets that make up the
portfolio. The return on this portfolio is a linear combinasion of the returns of the other assets. In other
words, if rpt is the return of portfolio P at time t, we have:

rpt = ω1r1t + ω2r2t + .....+ ωmrmt (61)

where rjt is the return on asset j at time t.
Average-Semi-variance, the optimal portfolio is solution of the following minimization program:

Min DSR (ω1, ω2, ....., ωm) = 1
T

T∑
t=1

[min(rpt −B, 0)]2

s/c

m∑
j=1

ωjµj = E∗ ;
m∑
j=1

ωj = 1
(62)

where µj represents the estimated expected return on assets j, j=1,...,m and E∗ an expected return for
the portfolio.

The optimization program (62) can have the following matrix posting:{
Minω ω

TMω
ωTµ = E∗ ; ωT1 = 1 (63)

For the resolution of this program we will always use the Lagrange multiplier method and using the
Athayde recursive minimization procedure for m assets with Rjt = rjt −B.
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A choice of ω0 is used to start the procedure, an S0 observation set is selected in which the weight of
the ω0 portfolio had negative deviations. The positive semi-variance matrix is then defined by:

M0 = 1
T

∑
t∈S0


R1t
R2t
...

Rmt

 [R1tR2t · · ·Rmt
]

(64)

= 1
T

∑
t∈S0


(R1t)2 R1tR2t · · · R1tRmt
R2tR1t (R2t)2 · · · R2tRmt

...
...

. . .
...

RmtR1t RmtR2t · · · (Rmt)2

 (65)

The next step is to find ω1 which is the weight of the portfolio that solves the following minimization
problem:

minωω
TM0ω avec ωT1 = 1 (66)

where 1 is a vector and ωT transposes it from the vector ω. Using the Lagrange Method, the solution to
problem (66) is given by:

ω1 = M−1
0

1TM−1
0 1

(67)

With the new portfolio weight ω1, a new positive semidefinite matrix M1 is constructed as follows:

M1 = 1
T

∑
t∈S1


(R1t)2 R1tR2t · · · R1tRmt
R2tR1t (R2t)2 · · · R2tRmt

...
...

. . .
...

RmtR1t RmtR2t · · · (Rmt)2

 (68)

The next step is to find ω2 the portfolio weight that solves the following problem:

minωω
TM1ω avec ωT1 = 1 (69)

As previously a solution to this problem is given by:

ω2 = M−1
1

1TM−1
1 1

(70)

The process is repeated to construct a Mt matrix until the first satisfactory MF is obtained MF = MF+1.
The weight of the optimal portfolio obtained by the DSR method is given by:

ωF = M−1
F

1TM−1
F 1

(71)

3.2 Efficient Frontier

Using the Lagrange process, the optimal convergent portfolio weight is given by:

ωF+1 = αE∗ − λ
αθ − λ2 M

−1
F + θ − λE∗

αθ − λ2 M
−1
F 1 (72)

where α = 1TM−1
F 1, λ = µTM−1

F 1 et θ = µTM−1
F µ

The return expectation is given by µ = ωTF+1MF and the efficient frontier is obtained as follows:

DSR(ωF ) = α(E∗)2 − 2λE∗ + θ

αθ − λ2 (73)
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4 Application to Securities of a Financial Market

4.1 Description of the Database

In order to empirically examine the differences between the mean-variance model and the portfolio
optimization model in Downside Risk, we will use data from a global market index, the Morgan Stanley
Capital Indices (MSCI) database (CAC40), which includes more than 71 stocks. Among these stocks,
we used only 10 optimal stocks because they are characterized by asymmetric return distributions. The
security symbols used are shown in the table below.

Table 1. Table of securities and their respective symbols

AC Accor
AF Air France
BN DANONE
TA TOTAL
OR L’OREAL
RNO RENAULT
ML MICHELIN
UG PEUGOT
SGE SOCIÉTÉ GÉNÉRALE
SAF SAGEM

4.2 Analysis of Collinearity

The analysis of the correlation between assets allows for portfolio diversification, i.e. combining negatively
correlated assets to reduce the variance, without eroding the expected return.

Table 2. Pearson correlation matrix at the 5% threshold between assets

AC AF BN TA OR RNO ML UG SGE SAF

AC 1.00 0.35 0.29 0.40 0.40 0.10 0.46 0.28 0.45 0.35
AF 0.40 1.00 0.52 0.38 0.35 0.39 0.35 0.27 0.23 0.42
BN 0.32 0.24 1.00 0.28 0.56 0.30 0.21 0.32 0.58 0.51
TA 0.30 0.45 0.46 1.00 0.25 0.50 0.67 0.24 0.45 0.17
OR 0.40 0.42 0.48 0.54 1.00 0.40 0.17 0.37 0.40 0.23
RNO 0.36 0.53 0.28 0.34 0.45 1.00 0.37 0.17 0.20 0.12
ML 0.24 0.29 0.17 0.47 0.22 0.37 1.00 0.25 0.37 0.41
UG 0.23 0.40 0.20 0.47 0.37 0.37 0.40 1.00 0.47 0.27
SGE 0.20 0.25 0.36 0.30 0.40 0.29 0.25 0.37 1.00 0.21
SAF 0.18 0.21 0.29 0.14 0.25 0.47 0.42 0.14 0.23 1.00

4.3 Results of the Mean-Variance Model

Table 3 below presents the different risk results according to the Mean-Variance model obtained by
varying the expected return to the investor. It can be seen that risk is an increasing function of return.

The Mean-Variance (M-V) efficient frontier includes portfolios that represent the best relationship
between return and risk. By varying the expected return, we obtain the Mean-Variance efficient frontier
described by the graph below:
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Table 3. Table presenting the risk results for the Mean-Variance model

P1 P2 P3 P4 P5 P6 P7 P8 P9

Return 0,50% 0,60% 0,70% 0,80% 0,90% 1% 1,10% 1,20% 1,30%
Standard 3,352% 3,362% 3,368% 3,371% 3,72% 3,73% 3,782% 3,8% 3,86%

Figure 1. Smooth efficient frontier Mean-Variance

However, the mean-variance model is questionable because it considers variance as a measure of risk
that is relevant only when the distribution of returns is normal. However, the results show that the returns
on the selected securities are asymptotically distributed. Moreover, with variance, above-average returns
are taken into account in the calculation of risk, which is contradictory to investors’ perception of risk. In
order to overcome this shortcoming, we propose the Downside Risk method whose optimization model is
given above.

4.4 Results in the Context of Downside Risk

We begin our analysis by looking at the following Table 4. It shows the difference between the standard
deviation and the Downside Risk Deviation (DSR). We use two target return rates, namely the risk-free
rate and the zero value. The results obtained indicate that the Downside Risk for all target returns
are lower than the standard deviations of all securities. The results also show that as the target rate of
return increases, so does the risk. Although the Downside Risk deviation increases as the target rate of
return increases, the results show that it always remains below average. There are not too many surprises
because all these securities all have positive averages. SAGEM has a standard deviation of zero, so the
Downside Risk is also zero.

Tables 5 and 6 below present the risk obtained by varying the expected returns. Note that by varying
the expected returns desired by investors, the measure of Downside Risk for a given target rate of return
is better relative to the standard deviation.

The level of risk measured by the Downside Risk deviation for (τ = 0) optimal portfolios is lower than
the Mean-Variance and Mean-Semivariance models for (τ = RF ). The results imply that for the same
level of expected return on optimal portfolios, the mean-semivariance model for (τ = 0) reduces risk by
(0, 22%) relative to the mean-semivariance model for (τ = RF ) and (1.63%) relative to the mean-variance
model.

With respect to the efficient frontier, Figure 2 shows that the change in the target rate of return has an
impact on the efficient frontier. This graph shows the efficient frontiers obtained in the mean-semivariance
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Table 4. Statistics showing standard deviation and Downside Risk

Secutities average standard ×10−3 DSR× 10−3(τ = RF ) DRS × 10−3(τ = 0)

AC 0.05 10.00 8.50 6.23
AF 0.03 1.80 1.60 1.26
BN 0.01 5.70 4.60 3.52
TA 0.04 4.60 3.60 3.51
OR 0.03 17.70 15.60 13.57
RNO 0.19 2.73 1.73 1.32
ML 0.12 178.00 122.00 115.00
UG 0.15 1.10 1.01 0.85
SGE 0.20 2.94 1.18 1.04
SAF 0.25 0.00 0.00 0.00

Table 5. Table presenting the DSR for a target rate of return equal to 0

Return 0.50% 0.60% 0.70% 0.80% 0.90% 1% 1.10% 1.20% 1.30%

DSR (τ = 0) 1.717 1.718 1.719 1.721 1.724 1.725 1.727 1.729 1.732

model relative to the two minimum acceptable rates of return 1. We find that the efficient frontier moves
to the right by increasing the benchmark rate of return from 0% to the risk-free rate. Indeed, the increase
in the target rate of return leads to the choice of riskier portfolios for the same level of return. Such a
result is consistent with the characteristics of Downside Risk.

Figure 2. Efficient frontiers in the DSR framework

1 A minimum acceptable rate of return is the minimum profit an investor expects to make from an investment,
taking into account the risks of the investment and the opportunity cost of undertaking it instead of other
investments. An investment has been a successful one if the actual rate of return is above the minimum
acceptable rate of return. If it is below, it’s seen as an unsuccessful investment and you might, as an investor,
pull out of the investment.
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Table 6. Table showing the DSR for the target rate of return equal to Rf

Return 0.50% 0.60% 0.70% 0.80% 0.90% 1% 1.10% 1.20% 1.30%

DSR (τ = RF ) 1.941 1.951 1.954 1.955 1.956 1.957 1.958 1.962 1.975

Figure 3 shows the difference between the mean-variance efficient frontier and the mean-semivariance
(M-SV) efficient frontiers for the target rates of return considered. This graph shows that the mean-
semivariance efficient frontier clearly dominates the mean-variance frontier derived from the mean-variance
model. Indeed, for a given expected rate of return, mean-semivariance efficient portfolios are less risky
than those derived by the mean-variance model. Furthermore, we find that the observed gap between the
mean-semivariance efficient frontier and the mean-variance efficient frontier decreases with the target
rate of return. Indeed, the difference observed between these two types of frontiers is attributed to the
asymmetry in securities returns and investors’ perceptions of risk not captured by the mean-variance
model.

Figure 3. Efficient frontiers of the two models

5 Conclusion

In this article we have realized and found an efficient portfolio and a smooth efficient frontier by the
downside risk method. After determining an efficient portfolio by the mean-variance model, we found that
the mean-variance model is not a good risk measurement for a portfolio. The Markowitz Mean-Variance
model uses variance as a risk measurement, and since variance is symmetric (i.e., the true value treats
positive data as well as negative data), we introduced the Downside Risk measure to address this issue.
This model gives hope to investors because it takes into account only returns below a target rate of return
to predict risk.

After application, it can be seen that the efficient Downside Risk portfolio is less risky than the one
obtained by minimizing the variance. This is in line with our expectations.

14 Advances in Analysis, Vol. 5, No. 1, October 2020

AAN Copyright © 2020 Isaac Scientific Publishing



References

1. H. C. Jimbo, I. S. Ngongo, N. G. Andjiga, and T. Suzuki, "Portfolio Optimization Under Cardinality
Constraints: A comparative Study," Open Journal of Statistics, vol.7, pp.731-742, 2017.

2. H. C. Jimbo, and M. J. Craven, "Optimizing Stock Investment Portfolio with Stochastic Constraints," Journal
of Nonlinear and Convex Analysis, vol.1, pp.127-141, 2011.

3. H. Markowitz, "portfolio selection," The Journal of finance, vol.7, N◦1, pp.77-79, 1952.
4. H. Markowitz, "Mean-variance analysis in portfolio choice and capital markets," Basil Blackwell, Oxford, 1987.
5. E. Ballestro, "Stochastic goal programming: A Mean-variance appreach," European Journal of Operational

Research, pp.479-581, 2001.
6. E. Ballestro, "Mean-Semivariance Effecient Frontier: A Downside Risk Model for Portfolio Selection," Applied

Mathemetical Finance Volume, pp.1-15, 2005.
7. J. Estarda, "Mean-Semivariance Behavior: An Alternative Behavioral Model," Journal of Emerging Market

Finance, pp.231-248, 2004.
8. J. Estarda, "Semivariance Optimisation: A Heuristic Approach," Journal of Applied Finance, pp.57-72, 2008.
9. P. Athayde, F. Delbaen, J. Eber, and D. Heath, "Coherent Measures of Risk,"Mathemetical Finance, pp.203-228,

1999.
10. G. Athayde, "Building a Mean-Downside Risk Portfolio Frontier", Developments in Forescast Combinaison

and Portfolio Choice, 2001.
11. G. Athayde, "The mean-downside risk portfolio frontier: A Non-Parametric approch," Advances in portfolio

construction and implementation, 2003.
12. A. Bergonzat A, and F. Cavals, "Garanties en cas de vie sur contrats multisupports," Mémoire d’actuariat,

ENSAE, 2006.
13. P. Bougerol, "Modèles stochastiques et Applications à la finance", 2011.
14. P. Briand, "Le modèle de Black Scholes", 2003.
15. C. Acerbi, "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of

Banking and Finance, vol.2, N◦1, pp.1505-1518, 2002.
16. M. Denuit, and A. Charpentier, "Mathématiques de l’assurance non vie: Principes fondamentaux de la théorie

du risque," Economica, 2004.
17. C. Partrat C, J. Besson, "Assurance non-vie: Modélisation,simulation," Economica, 2005.

Advances in Analysis, Vol. 5, No. 1, October 2020 15

Copyright © 2020 Isaac Scientific Publishing AAN


