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1 Introduction, Definitions and Preliminaries

Recently, the area of q−analysis has attracted serious attention of researchers. The great interest is due
to its applications in various branches of mathematics and physics, for example, in the areas of ordinary
fractional calculus, optimal control problems, q−difference and q−integral equations and in q−transform
analysis. The generalized q−Taylor formula in the fractional q−calculus was introduced by Purohit and
Raina [19]. The application of q−calculus was initiated by Jackson [9,10]. He was the first to develop the
q−integral and q−derivative in a systematic way. Later, geometrical interpretation of the q−analysis has
been recognized through studies on quantum groups. Simply, the quantum calculus is ordinary classical
calculus without the notion of limits. It defines q−calculus and h−calculus. Here h ostensibly stands
for Planck’s constant, while q stands for quantum. Mohammed and Darus [16] studied approximation
and geometric properties of these q−operators in some subclasses of analytic functions in compact
disk. Recently, Purohit and Raina [19,20] have used the fractional q−calculus operators in investigating
certain classes of functions which are analytic in the open disk, and Purohit [18] also studied these
q−operators, defined by using the convolution of normalized analytic functions and q−hypergeometric
functions. A comprehensive study on applications of q−calculus in the operator theory may be found
in [2]. Ramachandran et al. [21] have used the fractional q−calculus operators in investigating certain
bound for q−starlike and q−convex functions with respect to symmetric points.

In univalent function theory, all geometrically defined subclasses do have beautiful analytic charac-
terization defined in terms of differential inequality. So extending the existing subclasses in q-calculus
has numerous applications. To provide a unified approach to the study of various properties of certain
subclasses of A, we introduce a new class of analytic functions of complex order involving q-derivative of
f .

The q-difference operator denoted as Dqf(z) is defined by

Dqf(z) = f(z)− f(qz)
z(1− q) , (f ∈ A, z ∈ U − {0}),

and Dqf(0) = f
′(0), where q ∈ (0, 1). It can be easily seen that Dqf(z)→ f

′(z) as q → 1−.
Let A denote the class of all analytic functions f(z) normalized by the condition f(0) = f

′(0)− 1 = 0
which is of the form

f(z) = z +
∞∑
n=2

anz
n, (z ∈ U). (1)

If f(z) is of the form (1), a simple computation yields

Dqf(z) = 1 +
∞∑
n=2

1− qn

1− q anz
n−1, (z ∈ U). (2)
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The inverse function of (2) is given by

Dqg(w) = 1− (1 + q)a2w − (1 + q + q2)a3w
2 + 2(1 + q)2a2

2w
2 + · · · .

Let f and g be analytic in the open unit disk U . The function f is subordinate to g written as
f ≺ g in U , if there exists a function w analytic in U with w(0) = 0 and | w(z) |< 1; (z ∈ U) such that
f(z) = g(w(z)), (z ∈ U).

Let S denote the class of all functions in A which are univalent in U . The well known example in this
class is the Koebe function, k(z) defined by

k(z) = z

(1− z)2 = z +
∞∑
n=2

nzn.

Also, let P denote the class of functions of the form

p(z) = 1 +
∞∑
n=1

cnz
n (z ∈ U),

which are analytic and convex in U and satisfy the condition

Re(p(z)) > 0; (z ∈ U).

We denote by S∗, C, K and C∗ the familiar subclasses of A consisting of functions which are respectively
starlike, convex, close-to-convex and quasi-convex in U . Let S∗(α) and C(α) denote the well known
subclasses of S which are respectively defined as follows.

S∗(α) =
{
f ∈ A : Re

(
zf
′(z)

f(z)

)
> α; 0 ≤ α < 1

}

and

C(α) =
{
f ∈ A : Re

(
1 + zf

′′(z)
f ′(z)

)
> α; 0 ≤ α < 1

}
.

Using Alexander transform, it follows that f(z) ∈ C(α) if and only if zf ′(z) ∈ S∗(α).
One of the very interesting generalization of the function class S∗ is the so called starlike functions of

complex order b which satisfies the condition

1 + 1
b

(
zf
′(z)

f(z) − 1
)
≺ φ(z), (f ∈ A),

where φ ∈ P, the class of functions with positive real part and we denote it by Sb(φ). Similarly, let Cb(φ)
denote the class of functions in A satisfying the condition

1 + 1
b

zf
′′(z)
f(z) ≺ φ(z), (f ∈ A).

Note that Sb(1 + z/1− z) = Sb and Cb(1 + z/1− z) = Cb are the classes considered by Nasr and Aouf in
[17] and by Wiatrowski in [26]. Our favorite references of the field are [6,7,8] which covers most of the
topics in a lucid and economical style.

It is well known that every function f ∈ S has an interval f−1, defined by

f−1 {f(z)} = z; (z ∈ U)

and
f
{
f−1(w)

}
= w ;

(
| w |< r0(f); r0(f) ≥ 1

4

)
.
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In fact, the inverse function f−1 is given by

f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · . (3)

A function f ∈ A is said to be biunivalent in U if both f(z) and f−1(z) are univalent in U .
The Bieberbach conjecture about the coefficient of the univalent functions in the unit disk was

formulated by Bieberbach [3] in the year 1916. The conjecture states that for every function f ∈ S, given
by (1), we have | an |≤ n for every n. Strict inequality holds for all n unless f is the Koebe function or
one of its rotation. For many years, this conjecture remained as a challenge to mathematicians. After the
proof of | a3 |≤ 3 by Löwner in 1923, Fekete-Szegö surprised the mathematicians with the complicated
inequality

∣∣a3 − µa2
2
∣∣ ≤


4µ− 3 when µ ≥ 1
1 + 2 exp

(
−2µ
1−µ

)
when 0 ≤ µ ≤ 1

3µ− 1 when µ ≤ 0,

which holds good for all values 0 ≤ µ ≤ 1. Note that this inequality region was thoroughly investigated
by Schaefer and Spencer [24].

Keogh and Merkes [12] obtained the following inequalities for the class of convex and starlike functions

∣∣a3 − µa2
2
∣∣ ≤ max

{
1
3 , |µ− 1|

}
and ∣∣a3 − µa2

2
∣∣ ≤ max {1, |3− 4µ|}

respectively. For a class functions in A and a real (or more generally complex) number µ, the Fekete-Szegö
problem is all about finding the best possible constant C(µ) so that

∣∣a3 − µa2
2
∣∣ ≤ C(µ) for every function

in A. Many papers have been devoted to this problem see [4,5,13,14,15].
Motivated by the concept introduced by Sakaguchi in [23], recently several subclasses of analytic

functions with respect to k-symmetric points were introduced and studied by various authors. In this
paper, we introduce a new subclass of spiralike biunivalent functions using subordination and we obtained
the estimates of the | a2 | and | a3 | for the functions belonging to this new subclass.

Definition 1.1. Let h(z) be a convex univalent function with h(0) = 1. A function f ∈ A is said to be
in the class Sλb (β, s, t, h) if and only if it satisfies the analytic condition,

eiβ
[
1 + 1

b

{
[(s− t)z]1−λDqf(z)
[f(sz)− f(tz)]1−λ − 1

}]
≺ h(z) cosβ + i sin β

and
eiβ
[
1 + 1

b

{
[(s− t)w]1−λDqg(w)
[g(sw)− g(tw)]1−λ − 1

}]
≺ h(w) cosβ + i sin β,

where (z ∈ U ; λ ≥ 0; −π2 < β < π
2 ; b ∈ C− {0}). and s, t ∈ Cwith s 6= t, | t |≤ 1.

Remark 1.1. On specializing the parameters and the function h(z), we obtain several new and well known
subclasses of analytic functions. Here we list a few of them.

1. If we let β = 0 andh(z) = 1 + γ−α
π i log

(
1−e2πi(1−α)\(γ−α)z

1−z

)
. then the class Sλb (β, s, t, h) reduces to the

form
α < Re

{
1 + 1

b

{
[(s− t)z]1−λDqf(z)
[f(sz)− f(tz)]1−λ − 1

}}
< γ.

which is analogues to the class introduced by Kuroki and Owa in [11].
2. If we let q → 1− and b = 1 in Sλb (β, s, t, h). then the class reduces to the class introduced and studied

by Altınkaya and Yalçın in [1].
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3. If we set h(z) = 1+(1−2α)z
1−z , 0 ≤ α < 1 in the class Sλb (β, s, t, h), we have Sλb (β, s, t, α) and defined as

Re

{
eiβ

{
[(s− t)z]1−λf ′(z)
[f(sz)− f(tz)]1−λ

}}
> α cosβ, z ∈ U

and

Re

{
eiβ

{
[(s− t)w]1−λg′(w)
[g(sw)− g(tw)]1−λ

}}
> α cosβ,

where g(w) = f−1(w), s, t ∈ C with s 6= t, | t |≤ 1. β ∈ (−π2 , −π2 ) andλ ≥ 0.

Lemma 1.1. Let the function φ(z) given by φ(z) =
∞∑
n=1
Bnzn be convex in U . If h(z) ≺ φ(z)

(z ∈ U), then | hn |≤ | B1 |, n ∈ N = {1, 2, 3, . . .}.

Lemma 1.2. If p(z) = 1 + c1z + c2z
2 + · · · is a function with positive real part in U and µ is a complex

number ,then

| c2 − µc2
1 |≤ 2 max {1; | 2µ− 1 |} .

The result is sharp for the functions given by

p(z) = 1 + z2

1− z2 and p(z) = 1 + z

1− z .

2 Main Results

In this section, we obtain very interesting Fekete-Szegö inequalities for a certain subclass of analytic
functions.

Theorem 2.1. Let φ(z) = 1 +B1z +B2z
2 + · · ·withB1 6= 0. If f ∈ A satisfies the differential inequality

eiβ
[
1 + 1

b

{
[(s− t)z]1−λDqf(z)
[f(sz)− f(tz)]1−λ − 1

}]
≺ φ(z) cosβ + i sin β. (4)

Then ∣∣a3 − µa2
2
∣∣ ≤ | b | cosβ | B1 |

|κ1|
max

{
1,

∣∣∣∣∣B2

B1
+ κ1 κ2B1b cosβ e−iβ

[(1 + q) + (λ− 1)(s+ t)]2

∣∣∣∣∣
}
, (5)

where κ1 = (1 + q + q2) + (λ− 1)(s2 + st+ t2) and

κ2 =
{

[(1 + q) + (λ− 1)(s+ t)](1− λ)(s+ t)− λ(1−λ)
2 (s+ t)2

(1 + q + q2) + (λ− 1)(s2 + st+ t2) − µ

}
.

The result is sharp.

Proof. Let f ∈ A satisfy (4), then there exist Schwarz function w analytic in U with w(0) = 0 and
| w(z) |< 1 in U such that

eiβ
[
1 + 1

b

{
[(s− t)z]1−λDqf(z)
[f(sz)− f(tz)]1−λ − 1

}]
= φ(w(z)) cosβ + i sin β. (6)

Define p(z) by

p(z) = 1 + w(z)
1− w(z) = 1 + c1z + c2z

2 + · · · . (7)
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Since w(z) is a Schwarz function, it is clear that Rep(z) > 0 and p(0) = 1. Therefore

φ(z) = φ

(
p(z)− 1
p(z) + 1

)
= φ

(
1
2

[
c1z +

(
c2 −

c2
1
2

)
z2 +

(
c3 − c1c2 + c3

1
4

)
z3 + · · ·

])
= 1 + B1c1

2 z +
[
B1

2 (c2 −
c2

1
2 ) + B2c

2
1

4

]
z2 + · · · .

(8)

Now by substituting (8) in (6)

eiβ
[
1 + 1

b

{
[(s− t)z]1−λDqf(z)
[f(sz)− f(tz)]1−λ − 1

}]
=(

1 + B1c1

2 z + [B1

2 (c2 −
c2

1
2 ) + B2c

2
1

4 ]z2 + · · ·
)

cosβ + i sin β.

From this equation, we obtain

eiβ
1
b

[(λ− 1)(s+ t) + (1 + q)] a2 = B1c1

2 cosβ

eiβ
1
b

{[
(λ− 1)(s2 + st+ t2) + (1 + q + q2)

]
a3 −

λ(λ− 1)
2 (s+ t)2a2

2

+(λ− 1)(s+ t)[(1 + q) + (λ− 1)(s+ t)]a2
2

}
=
(
B1

2 (c2 −
c2

1
2 ) + B2c

2
1

4

)
cosβ.

Or, equivalently

a2 = e−iβB1c1b cosβ
2 [(1 + q) + (λ− 1)(s+ t)] ,

a3 =
e−iβb

(
B1C2

2 − B1C
2
1

4 + B2C
2
1

4

)
cosβ

(1 + q + q2) + (λ− 1)(s2 + st+ t2)−

{[(1 + q) + (λ− 1)(s+ t)](1− λ)(s+ t)− λ(1−λ)
2 (s+ t)2}a2

2
(1 + q + q2) + (λ− 1)(s2 + st+ t2) .

On simple computation, we have

a3 − µa2
2 =

e−iβb(B1C2
2 − B1C

2
1

4 + B2C
2
1

4 ) cosβ
(1 + q + q2) + (λ− 1)(s2 + st+ t2)−{

[(1 + q) + (λ− 1)(s+ t)](1− λ)(s+ t)− λ(1−λ)
2 (s+ t)2

(1 + q + q2) + (λ− 1)(s2 + st+ t2) − µ

}
×

{
e−iβB1c1b cosβ

2 [(1 + q) + (λ− 1)(s+ t)]

}2

.

Therefore

a3 − µa2
2 = B1e

−iβb cosβ
2κ1

{c2 − ϑc2
1}

where

ϑ = 1
2

{
1− B2

B1
− κ1κ2B1b cosβe−iβ

[(1 + q) + (λ− 1)(s+ t)]2

}
.
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On rearranging the terms and taking modulus both sides, our result now follows by application of
Lemma1.2. The result is sharp for the functions{

[(s− t)z]1−λDqf(z)
[f(sz)− f(tz)]1−λ

}
= φ(z2)

and {
[(s− t)z]1−λDqf(z)
[f(sz)− f(tz)]1−λ

}
= φ(z).

This completes the proof of the Theorem 2.1.

Corollary 2.2. Let φ(z) = 1+B1z+B2z
2 + · · · . with B1 6= 0. If f ∈ A satisfies the differential inequality

α ≤ Re
{

1 + 1
b

[
zf ′(z)
f(z) − 1

]}
< γ. (9)

Then

| a3 − µa2
2 | ≤

(β − α)√
2π

√
1− cos

(
n(1− α
β − α

)
max

{
1; B2

B1
+ (1− 2µ)bB1

}
.

The result is sharp.
Proof. Let

φ(z) = 1 + β − α
π

i log
(

1− e2πi((1−α)/(β−α)) z

1− z

)
.

Clearly, it can be seen that φ(z) maps U onto a convex domain conformally and is of the form

h(z) = 1 +
∞∑
n=1

Bnz
n

where Bn = β−α
nπ i

(
1− e2nπi((1−α)/(β−α))) . From the equivalent subordination condition proved by

Kuroki and Owa in [11], the inequality (9) can be rewritten in the form

1 + 1
b

[
zf ′(z)
f(z) − 1

]
≺ φ(z).

Following the steps as in Theorem 2.1, we get the desired result.

Corollary 2.3. [25] Let φ(z) = 1+B1z+B2z
2+· · · . with B1 6= 0. If f satisfies the following subordination

condition
1 + 1

b

[
zDqf(z)
f(z) − 1

]
≺ φ(z) (b ∈ C − {0}),

then
| a3 − µa2

2 | ≤
| B1b |

([3]q − 1) max
{

1;
∣∣∣∣B2

B1
+ B1b

[2]q − 1

(
1− [3]q − 1

[2]q − 1µ
)∣∣∣∣} .

The result is sharp.
Proof. The result follows if we let β = 0, λ = 0, t→ 0 and s→ 1 in Theorem3.1 The result sharp for
the function

zDqf(z)
f(z) = φ(z2) and zDqf(z)

f(z) = φ(z).

Taking q → 1− in the corollary 2.3, we obtain the Fekete szegö inequality for functions belonging to
the class of starlike function of complex order b.
Corollary 2.4. (See Ravichandran et al. [22]) Let φ(z) = 1 + B1z + B2z

2 + · · · . with B1 6= 0. If f(z)
belongs to the class of starlike function of complex order b . Then

| a3 − µa2
2 | ≤

| B1 || b |
2 max

{
1;
∣∣∣∣B2

B1
+ (1− 2µ)B1b

∣∣∣∣} .
The result is sharp.
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3 Coefficient Inequalities Of Biunivalent Functions

We begin this section with finding the coefficient estimates of Sλb (β, s, t, h) .

Theorem 3.1. Let f(z) be of the form (1) and suppose that f(z) is in the class Sλb (β, s, t, h). then

| a2 |≤

√
2b | B1 | cosβ

| 2(λ− 1)(s+ t)[(1 + q) + (λ− 1)(s+ t)] + 2[(λ− 1)(s2 + st+ t2) + (1 + q + q2)]− λ(λ− 1)(s+ t)2 |

and

| a3 |≤
2b | B1 | cosβ

| 2(λ− 1)(s+ t)[(1 + q) + (λ− 1)(s+ t)] + 2[(λ− 1)(s2 + st+ t2) + (1 + q + q2)]− λ(λ− 1)(s+ t)2 |

Proof. Let f ∈ Sλb (β, s, t, h) and g denote that inverse of f to U . It follows from the Definition1.1 that
there exist functions p(z), q(z) ∈ P(the class of function with positive real part), such that

eiβ
[
1 + 1

b

{
[(s− t)z]1−λDqf(z)
[f(sz)− f(tz)]1−λ − 1

}]
= p(z) cosβ + i sin β (10)

and
eiβ
[
1 + 1

b

{
[(s− t)w]1−λDqg(w)
[g(sw)− g(tw)]1−λ − 1

}]
= q(w) cosβ + i sin β (11)

[
s, t ∈ C with s 6= t, | t |≤ 1; b ∈ C− {0}; λ ≥ 0, β ∈

(
−π
2 ,

π

2

)]
where p(z) ≺ h(z) and q(w) ≺ g(w) have the forms

p(z) = 1 + p1z + p2z
2 + · · ·

and
q(w) = 1 + q1w + q2w

2 + · · · .

respectively. It follows from (10) and (11), we deduce

eiβ
1
b

[(λ− 1)(s+ t) + (1 + q)]a2 = p1 cosβ, (12)

eiβ
1
b

{
[(λ− 1)(s2 + st+ t2) + (1 + q + q2)]a3 −

λ(λ− 1)
2 (s+ t)2a2

2

+(λ− 1)(s+ t)[(1 + q) + (λ− 1)(s+ t)]a2
2

}
= p2 cosβ,

(13)

and
− eiβ 1

b
[(λ− 1)(s+ t) + (1 + q)]a2 = q1 cosβ, (14)

eiβ
1
b

{
2[(λ− 1)(s2 + st+ t2) + (1 + q + q2)]a2

2 −
λ(λ− 1)

2 (s+ t)2a2
2

+(λ− 1)(s+ t)[(1 + q) + (λ− 1)(s+ t)]a2
2 − [(λ− 1)(s2 + st+ t2) + (1 + q + q2)]a3

}
= q2 cosβ.

(15)

From (12) and (14) we obtain
p1 = −q1.

By adding (13) and (15), we get
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eiβ
1
b

{
2(λ− 1)(s+ t)[(1 + q) + (λ− 1)(s+ t)] + 2[(λ− 1)(s2 + st+ t2) + (1 + q + q2)]

−λ(λ− 1)(s+ t)2
}
a2

2 = (p2 + q2) cosβ.
(16)

Since p, q ∈ h(U), applying Lemma1.1, we have

| pm |=|
pm(0)
m! |≤| B1 |, m ∈ N (17)

and
| qm |=|

qm(0)
m! |≤| B1 |, m ∈ N . (18)

Applying (17), (18) and Lemma1.1 for the coefficients p1, p2, q1 and q2, we readily get

| a2 |≤

√
2b | B1 | cosβ

| 2(λ− 1)(s+ t)[(1 + q) + (λ− 1)(s+ t)] + 2[(λ− 1)(s2 + st+ t2) + (1 + q + q2)]− λ(λ− 1)(s+ t)2 |
.

Subtracting (15) from (13) we have

eiβ
1
b

{
2[(λ− 1)(s2 + st+ t2) + (1 + q + q2)]a3 − 2[(λ− 1)(s2 + st+ t2)

+(1 + q + q2)]a2
2

}
= (p2 − q2) cosβ.

(19)

Or, equivalently

a3 = e−iβb(p2 + q2) cosβ
2(λ− 1)(s+ t)[(1 + q) + (λ− 1)(s+ t)] + 2[(λ− 1)(s2 + st+ t2) + (1 + q + q2)]− λ(λ− 1)(s+ t)2

+ e−iβb(p2 − q2) cosβ
2[(λ− 1)(s2 + st+ t2) + (1 + q + q2)] .

Applying (17), (18) and Lemma1.1 once again for the coefficients p1, p2, q1 and q2, we readily get

| a3 |≤
2b | B1 | cosβ

| 2(λ− 1)(s+ t)[(1 + q) + (λ− 1)(s+ t)] + 2[(λ− 1)(s2 + st+ t2) + (1 + q + q2)]− λ(λ− 1)(s+ t)2 |
.

This completes the proof of Theroem3.1.

Remark 3.1. We note that all the results of Altınkaya and Yalçın[1] can be obtained if we let q →
1− and b = 1 in Theorem3.1.

4 Conclusion

We have obtained the upper bound for the initial coefficients of a subclass biunivalent functions. Various
well-known and new results could be obtained as a special case of our results. Since we have defined a
class involving q− derivative of f , interesting q- analogue of the Sălăgean, Hohlov and Dziok-Srivastava
operators could be defined and used to study various subclasses of the analytic functions. It would be
more interesting to extend our study to the class of non-analytic functions.

Acknowledgments. The authors thank the referee for valuable comments and suggestions on the
earlier version of this paper. Particularly, we thank for the comments leading to an improvement in the
introduction and preliminaries.
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