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Abstract Let Ω be a region in R2 and f be a positive C1 function satisfying

lim
u→0+

f (u) = ∞.

We consider the quasi-linear elliptic equations of the form

div (a (u) ∇u) = a′ (u)
2 |∇u|2 + f (u)

where a is a positive C1 function. Motivated by the thin film equations, a solution u is said to be a
point rupture solution if for some p ∈ Ω, u (p) = 0 and u (p) > 0 in Ω\ {p}. Our main result is a
sufficient condition on a and f for the existence of radial point rupture solutions.

Keywords: Thin film, point rupture solution, radial solution, singular elliptic equation, quasilinear
elliptic equation.

1 Introduction

Let Ω be a region in R2, and f be a smooth function defined on (0,∞) satisfying

lim
s→0+

f (s) =∞, (1.1)

we consider the quasi-linear elliptic equations of the form

div (a (u)∇u) = a′ (u)
2 |∇u|2 + f (u) (1.2)

where the terms depending upon a are formally associated with the functional∫
Ω

a (u) |∇u|2

which can be viewed as a minimizing problem in presence of a Riemannian metric tensor depending upon
the unknown u itself.

Motivated by the studies of thin film equations, a solution to (1.2) is said to be a point rupture
solution if for some p ∈ Ω, u (p) = 0 and u (x) > 0 for any x ∈ Ω\ {p}. Our main result is the existence
of a radial rupture solution:

Theorem 1. Assume that for some σ∗ > 0, a ∈ C1 [0, σ∗], f ∈ C1 (0, σ∗] are positive functions such that
for some positive constants m < M ,

m ≤ a (u) ≤M
holds for any u ∈ [0, σ∗] and f is monotone decreasing function on (0, σ∗] satisfying

u

G (u) f (u) ∈ L
1 [0, σ∗] (1.3)

where
G (u) =

∫ u

0

1
f (s)ds.
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Then there exists r∗ > 0 and a radial point rupture solution u0 to (1.2) in Br∗ (0) such that u0 = u0 (r) is
continuous on [0, r∗],

u0 (0) = 0, u0 (r) > 0 for any r ∈ (0, r∗] .

Moreover, u0 ∈ H1 (Br∗ (0)) and u0 is a weak solution to (1.2) in the sense that for any ϕ ∈ C∞0 (B1 (r∗)),∫
B1(r∗)

a (u0)∇u0∇ϕ+ a′ (u0)
2 |∇u0|2 ϕ+ f (u0)ϕ = 0.

When a ≡ 1, (1.2) is reduced to the simpler form

∆u = f (u)

and its rupture solution has been investigated in [4], [6] when f (u) = u−α−1, α > 1 which has application
to the van der Waals force driven thin films, in [5] with f satisfying the growth condition (1.3) and in
[2] when the space dimension ≥ 3. We also remark here that the uniqueness result for general functions
a and f is still open. (1.2) has also been studied by F. Gladiali and M. Squassina [1] where they are
interested in the so called explosive solutions.

2 Proof of the Main Result

We consider the quasi-linear equations of the form

div (a (u)∇u) = a′ (u)
2 |∇u|2 + f (u) (2.1)

in a region Ω ⊂ R2 where for some δ∗ > 0, a ∈ C1 [0, δ∗] and f ∈ C1 (0, δ∗] are positive functions such
that for some positive constants m < M ,

m ≤ a (u) ≤M holds for any u ∈ [0, δ∗] .

Let g be the unique solution to the Cauchy problem

g′ = 1√
a (g)

, g (0) = 0,

and let v be a solution to
∆v = h (v) (2.2)

where
h (v) = f (g (v))√

a (g (v))
.

Define
u = g (v) .

We have
∇u = g′ (v)∇v = 1√

a (g)
∇v,

hence
∇v =

√
a (u)∇u,

which leads to
∆v =

√
a (u)∆u+ 1

2
1√
a (u)

a′ (u) |∇u|2 .

Hence (2.2) implies √
a (u)∆u+ 1

2
1√
a (u)

a′ (u) |∇u|2 = f (u)√
a (u)
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which is equivalent to (2.1). Hence, (2.1) admits a point rupture solution if and only if (2.2) has a point
rupture solution.

Noticing that h (v) = f(g(v))√
a(g(v))

is not necessary monotone decreasing in v. However, the boundedness
of a and the monotone properties of f and g implies that

1√
M
f (g (v)) ≤ h (v) ≤ 1√

m
f (g (v)) for any v ∈

[
0, g−1 (δ∗)

]
,

i.e., h is bounded by two monotone decreasing functions.
We have the following existence result on rupture solutions to (2.2):

Proposition 1. Let σ∗ > 0 and h1, h2 ∈ C1 (0, σ∗] be monotone decreasing functions such that

0 < h1 ≤ h2 on (0, σ∗]

and
lim
v→0+

h1 (v) = lim
v→0+

h2 (v) =∞.

Let h ∈ C1 (0, σ∗] satisfy
h1 ≤ h ≤ h2 on (0, σ∗] .

Let
G1 (v) =

∫ v

0

1
h1 (s)ds. (2.3)

Assume in addition that
h2

h1
∈ L1 [0, σ∗] and

∫ v
0
h2(s)
h1(s) ds

G1 (v)h1 (v) ∈ L
1 [0, σ∗] . (2.4)

Then there exists r∗ > 0 and a radial point rupture solution v0 to

∆v = h (v) (2.5)

in Br∗ (0) such that v0 = v0 (r) is continuous on [0, r∗],

v0 (0) = 0, v0 (r) > 0 for any r ∈ (0, r∗] .

Moreover, v0 is monotone increasing and

G−1
1

(
1
4r

2
)
≤ v0 (r) ≤

∫ G−1
1 ( 1

4 r
2)

0

∫ v
0
h2(s)
h1(s) ds

G1 (v)h1 (v)dv for any r ∈ [0, r∗] .

For any σ ∈ (0, σ∗), we use vσ to denote the unique solution to the initial value problem{
vrr + 1

rvr = h (v) ,
v (0) = σ, v′ (0) = 0. (2.6)

Lemma 1. There exists rσ > 0 such that vσ is defined on [0, rσ] with vσ (rσ) = σ∗. Moreover, v′σ (r) > 0
on (0, rσ] and

G−1
(

1
4r

2
)
≤ vσ (r) ≤ σ +H

(
G−1

1

(
1
4r

2
))

on [0, rσ] . (2.7)

where

H (w) =
∫ w

0

∫ v
0
h2(s)
h1(s) ds

G1 (v)h1 (v)dv.
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Proof. For simplicity, we suppress the σ subscript in this proof. We write

vrr + 1
r
vr = h (v)

in the form of
(rvr)r = rh (v) ≥ 0,

so we have

rvr =
∫ r

0
sh (v (s)) ds ≥ 0.

In particular, v is monotone increasing and v can be extended whenever h (v) is defined and bounded.
Hence, there exists rσ > 0 such that vσ is defined on [0, rσ] with vσ (rσ) = σ∗. Since v is monotone
increasing and h1 is monotone decreasing, we have

rvr =
∫ r

0
sh (v (s)) ds ≥

∫ r

0
sh1 (v (s)) ds

≥ h1 (v (r))
∫ r

0
sds = 1

2r
2h1 (v (r)) ,

hence,
vr

h1 (v) ≥
1
2r.

Integrating again, we have

G1 (v (r)) ≥ G1 (σ) + 1
4r

2 ≥ 1
4r

2.

where

G1 (v) =
∫ v

0

1
h1 (s)ds.

Since G1 is continuous and strictly monotone increasing, G−1
1 is well defined and we have

v (r) ≥ G−1
1

(
1
4r

2
)
.

On the other hand, since h2 is monotone increasing,

rvr =
∫ r

0
sh (v (s)) ds ≤

∫ r

0
sh2 (v (s)) ds ≤

∫ r

0
h2

(
G−1

1

(
1
4s

2
))

sds.

Let v = G−1
1
( 1

4s
2), we have G1 (v) = 1

4s
2, and

1
h1 (v)dv = 1

2sds.

Hence, ∫ r

0
h2

(
G−1

1

(
1
4s

2
))

sds = 2
∫ G−1

1 ( 1
4 r

2)

0

h2 (v)
h1 (v)dv.

Hence,

vr ≤
2
r

∫ G−1
1 ( 1

4 r
2)

0

h2 (s)
h1 (s)ds
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which yields

v (r) ≤ σ +
∫ r

0

2
s

[∫ G−1
1 ( 1

4 s
2)

0

h2 (t)
h1 (t)dt

]
ds

= σ +
∫ G−1

1 ( 1
4 r

2)

0

2
s

[∫ w

0

h2 (t)
h1 (t)dt

]
2

sh1 (w)dw

= σ +
∫ G−1

1 ( 1
4 r

2)

0

∫ w
0

h2(t)
h1(t) dt

G1 (w)h1 (w)dw

= σ +H

(
G−1

1

(
1
4r

2
))

where

H (w) =
∫ w

0

∫ s
0
h2(t)
h1(t) dt

G1 (s)h1 (s)ds

and we used substitution
w = G−1

1

(
1
4s

2
)
.

The bounds on vσ imply:

Corollary 1. There exists r∗ > 0 such that for any σ ∈
(

0, σ
∗

2

]
,

rσ ≥ r∗.

We can take

r∗ = 2

√
G1

(
H−1

(
σ∗

2

))
.

Proof. For any σ ∈
(

0, σ
∗

2

]
,

σ∗ = vσ (rσ) ≤ σ +H

(
G−1

1

(
1
4r

2
σ

))
≤ σ∗

2 +H

(
G−1

1

(
1
4r

2
σ

))
.

Hence,

H

(
G−1

1

(
1
4r

2
σ

))
≥ σ∗

2 .

Since the function H is strictly monotone increasing, we have

G−1
1

(
1
4r

2
σ

)
≥ H−1

(
σ∗

2

)
and since G1 is strictly monotone increasing, we have

rσ ≥ 2

√
G1

(
H−1

(
σ∗

2

))
.

The point rupture solution can be constructed as the limit of vσ as σ → 0.
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Proof of Proposition 1. For any ε > 0, vσ, σ ∈
(

0, σ
∗

2

]
is a family of uniformly bounded classical solutions

to
∆v = h (v) in Br∗ (0)\Bε (0) ,

hence by a diagonal argument, there exists a sequence {σk}∞k=1 ⊂
(

0, σ
∗

2

]
satisfying limk→∞ σk = 0, such

that vσk
→ v0 locally uniformly in Br∗ (0)\ {0} as k →∞. Now (2.7) implies

G−1
1

(
1
4r

2
)
≤ v0 (r) ≤ H

(
G−1

1

(
1
4r

2
))

on [0, r∗] .

Since
lim
r→0

H

(
G−1

1

(
1
4r

2
))

= 0,

it is not difficulty to see, from the bounds of vσ and v0, that vσk
→ v0 uniformly in Br∗ (0) as k →∞.

The above bounds also imply that v0 (0) = 0 and v0 (r) > 0 for any r ∈ (0, r∗]. Standard elliptic theory
implies that v0 ∈ C2,α (Br∗ (0) \ {0}) and

∆v0 = h (v0) in Br∗ (0) \ {0} .

Hence v0 is a rupture solution.

Remark 1. The above limit in the proof should be independent of the choice of {σk}∞k=1. Actually, we
expect that vσ → v0 uniformly on [0, r∗] as σ → 0. Unfortunately, we are unable to provide a proof here.

Even though v0 is continuous, its derivatives have singularity at the origin. Now we investigate the
behavior of v0 near the origin:

Lemma 2. The rupture solution v0 ∈ H1
loc (Br∗ (0)) and f (v0) ∈ H1

loc (Br∗ (0)) and

lim
r→0+

rv′0 (r) = 0. (2.8)

Proof. For any r ∈ (0, r∗), we have
(rv′0 (r))′ = rf (v0) > 0.

Hence, rv′0 (r) is monotone increasing in (0, r∗). Since rv′0 (r) ≥ 0 in (0, r∗),

β = lim
r→0+

rv′0 (r) ≥ 0

is well defined. If β > 0, we have for r sufficiently small, say r ∈ (0, r̃],

rv′0 (r) ≥ β

2

hence, for any r ∈ (0, r̃],

v0 (r) = v0 (r̃)−
∫ r̃

r

v′0 (r) dr ≤ v0 (r̃)−
∫ r̃

r

β

2rdr.

which contradicts to the fact that v0 is continuous at 0 if we let r → 0+. Hence β = 0 and (2.8) holds.
Next, for any ε ∈ (0, r∗/2), ∫

Br∗/2(0)\Bε(0)
h (v0) dx

=
∫
Br∗/2(0)\Bε(0)

∆v0dx

=
∫
∂Br∗/2(0)

∂v0

∂r
dsx −

∫
∂Bε(0)

∂v0

∂r
dsx.
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Since

lim
ε→0+

∣∣∣∣∣
∫
∂Bε(0)

∂v0

∂r
dsx

∣∣∣∣∣ = lim
ε→0

2πεv′0 (ε) = 0,

we have
lim
ε→0+

∫
Br∗/2(0)\Bε(0)

h (v0) dx =
∫
∂Br∗/2(0)

∂v0

∂r
dsx

hence, h (v0) ∈ L1
loc (Br∗ (0)). Similarly, for any ε ∈ (0, r∗/2),∫
Br∗/2(0)\Bε(0)

|∇v0|2 dx

= −
∫
Br∗/2(0)\Bε(0)

v0∆v0dx+
∫
∂Br∗/2(0)

v0v
′
0dsx −

∫
∂Bε(0)

v0v
′
0dsx

= −
∫
Br∗/2(0)\Bε(0)

v0h (v0) dx+
∫
∂Br∗/2(0)

v0v
′
0dsx −

∫
∂Bε(0)

v0v
′
0dsx,

Letting ε→ 0, we have

lim
ε→0+

∫
Br∗/2(0)\Bε(0)

|∇v0|2 dx = −
∫
Br∗/2(0)

v0h (v0) dx+
∫
∂Br∗/2(0)

v0v
′
0dsx,

hence |∇v0|2 ∈ L1
loc (Br∗ (0)) and v0 ∈ H1

loc (Br∗ (0)).

Now we are ready to prove our main theorem:

Proof of Theorem 1. Let σ∗ = g−1 (δ∗), and for any v ∈ (0, σ∗], define

h1 (v) = 1√
M
f (g (v)) and h2 (v) = 1√

m
f (g (v)) .

We have
h1 (v) ≤ h (v) = f (g (v))√

a (g (v))
≤ h2 (v)

on (0, σ∗]. It is easy to verify that the assumption on 1 holds for h. In particular, we have

h2

h1
=
√
M√
m
∈ L1 [0, σ∗] ,

and for any v ∈ (0, σ∗],

G1 (v) =
∫ v

0

1
h1 (s)ds. =

√
M

∫ v

0

1
f (g (s))ds

=
√
M

∫ v

0

√
a (g)

f (g (s))g
′ (s) ds

=
√
M

∫ g(v)

0

√
a (u)
f (u) du

≥
√
mM

∫ g(v)

0

1
f (u)du =

√
mMG (g (v)) ,

and ∫ v
0
h2(s)
h1(s) ds

G1 (v)h1 (v) =
√
M√
m

u

G1 (v) 1√
M
f (g (v))

≤
√
M

m

v

G (g (v)) f (g (v))

≤ M

m

g (v)
G (g (v)) f (g (v))
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where we used
g (v) ≥ 1√

M
v.

Hence, ∫ σ∗

0

∫ v
0
h2(s)
h1(s) ds

G1 (v)h1 (v)dv

≤
∫ σ∗

0

M

m

g (v)
G (g (v)) f (g (v))dv

=
∫ σ∗

0

M

m

g (v)
G (g (v)) f (g (v))

√
a (g)g′ (v) dv

≤ M
√
M

m

∫ δ∗

0

u

G (u) f (u)du.

So the growth condition in (1.3) implies that,∫ u
0
h2(v)
h1(v) dv

G1 (u)h1 (u) ∈ L
1 [0, σ∗] .

Proposition 1 implies the existence of a rupture solution v0 to (2.5), hence

u0 = g (v0)

is a rupture solution to (1.2). The properties for v0 imply that u0 ∈ H1
loc (B1 (r∗)), f (u0) ∈ L1

loc (B1 (r∗))
and

lim
r→0+

ru′0 (r) = 0.

For any any ϕ ∈ C∞c (Br∗ (0)), we have∫
Br∗ (0)

a (u0)∇u0∇ϕdx = lim
ε→0+

∫
Br∗ (0)\Bε(0)

a (u0)∇u0∇ϕdx

= lim
ε→0+

(
−
∫
Br∗ (0)\Bε(0)

div (a (u0)∇u0)ϕdx−
∫
∂Bε(0)

(
a (u0) ∂u0

∂r
ϕ

)
dsx

)

= lim
ε→0+

(∫
Br∗ (0)\Bε(0)

(
a′ (u0)

2 |∇u0|2 + f (u0)
)
ϕdx−

∫
∂Bε(0)

(
a (u0) ∂u0

∂r
ϕ

)
dsx

)

=
∫
Br∗ (0)

(
a′ (u0)

2 |∇u0|2 + f (u0)
)
ϕdx.

Hence u0 is a weak solution to (1.2) in Br∗ (0).

We discuss several examples at the end of this section to get a better understanding of the technical
assumption on the growth rate of h in (2.4).

Example 1.
h (v) = b (v) v−α

where α > 0 is a constant and b (v) satisfies

B1 ≤ b (v) ≤ B2

for some constants 0 < B1 < B2. If we take

h1 = B1v
−α and h2 = B2v

−α,

we have ∫ v
0
h2(s)
h1(s) ds

G1 (v)h1 (v) = (1 + α)B2

B1
∈ L1 [0, 1] .
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Example 2. For some 0 < p < 1,
h (v) = b (v) vp+1e

1
vp

and b (u) satisfies
B1 ≤ b (v) ≤ B2

for some constants 0 < B1 < B2. If we take

h1 = B1v
p+1e

1
vp and h2 = B2v

p+1e
1

vp ,

we have ∫ v
0
h2(s)
h1(s) ds

G1 (v)h1 (v) = B2p

B1vp
∈ L1 [0, 1] .

Example 3.
f (v) = 1

2

[(
1 + sin 1

v

)
v−α +

(
1− sin 1

v

)
v−β

]
where

0 < α < β < α+ 1.
We take

f1 (v) = v−α, f2 (v) = v−β ,

then we have for any v ∈ (0, 1],
h1 (v) ≤ h (v) ≤ h2 (v) .

Hence, ∫ v
0
h2(s)
h1(s) ds

G1 (v)h1 (v) =
∫ v

0 s
α−βds
1

1+αv
= 1 + α

1 + α− β
vα−β ∈ L1 [0, 1]

since α−β > −1. In this example, h can’t be expressed as a product of a bounded function and a monotone
function.
Example 4. This example shows that our result is not optimal. Let

h (v) = 2v3e
2
v

which is monotone decreasing near the origin and

lim
v→0+

h (v) =∞.

Taking
h1 (v) = h2 (v) = h (v) ,

we have ∫ v
0
h2(s)
h1(s) ds

G1 (v)h1 (v) = v

2v3e
2
v

∫ v
0

1
2s3 e−

2
s ds

= e−
2
v

v2
∫ v

0
1
s3 e−

2
s ds

= e−
2
v

1
4 (v2 + 2v) e− 2

v

= 4
v (2 + v) 6∈ L

1 (0, σ]

for any σ > 0. However, let
v = −1

ln r ,

we have
vr = 1

r ln2 r
, vrr = − 1

r2 ln2 r
− 2 1

r2 ln3 r
,

and so
urr + 1

r
ur = −2 1

r2 ln3 r
= 2v3e

2
v = h (v)

Hence v = −1
ln r is a rupture solution to ∆v = h (v) even if the technical assumption is not satisfied.
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