
Fractional Order Model of Phytoplankton-toxic 
Phytoplankton-Zooplankton System 

Moustafa El-Shahed1, A. M. Ahmed2, Ibrahim. M. E. Abdelstar2,3 

1 Department of Mathematics, Faculty of Arts and Sciences Qassim University, P.O. Box 3771, Qassim, Unizah 
51911, Saudi Arabia 

2 Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City, P.O.Box: 11884, Cairo, Egypt 
3 Quantitative Methods Unit, Faculty of Business and Economics Qassim University, P.O.Box: 6633, Qassim, 

Buridah 51452, Saudi Arabia 
Email: elshahedm@yahoo.com 

Abstract. In this paper, a fractional-order model for phytoplankton-toxic phytoplankton-
zooplankton system is presented. This model consists of three components: phytoplankton, toxic 
phytoplankton, and zooplankton. The equilibrium points are computed and stability of the 
equilibrium points is analyzed. In addition, fractional Hopf bifurcation conditions for the model are 
proposed. The generalized Adams-Bashforth-Moulton method is used to solve and simulate the 
system of fractional differential equations. 
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1   Introduction 

Phytoplankton, are the autotrophic (self-feeding) components of the plankton community and a key 
part of seas, oceans and freshwater basin ecosystems. Most phytoplankton are very small. However, 
when present in high enough numbers, some varieties may be noticeable as colored patches on the water 
surface due to the presence of chlorophyll within their cells and accessory pigments (for example 
phycobiliproteins or xanthophylls) in some species. Phytoplankton also requires inorganic nutrients such 
as nitrates, phosphates, and sulfur which they convert into proteins, fats, and carbohydrates. In 
balanced ecological systems, phytoplankton provides food for a wide range of sea creatures including 
jellyfish, shrimp, whales, and snails. When too many nutrients are available, phytoplankton can produce 
extremely toxic compounds that have harmful effects on fish, shellfish, mammals, birds, and even people. 
Furthermore these blooms may grow out of control and form harmful algal blooms (HABs) this 
statistics according to NOAA's National Centers for Coastal Ocean Science [1,2]. 

Fractional differential equations have recently been proved to be an effective and valuable modeling 
tool in various fields of science and engineering. Indeed, we can find numerous applications in polymer 
rheology, regular variation in thermodynamics, aerodynamics, biophysics, blood flow phenomena, 
electrodynamics of complex medium, viscoelasticity, electroanalytical chemistry, biology, Bode analysis 
of feedback amplifiers, capacitor theory, electrical circuits, control theory, fitting of experimental data, 
etc. see for example [3,4,5], interest in fractional calculus and fractional differential equations has grown 
dramatically in recent decades [6,7]. The rest of this paper is organized as follows. Section 2 introduces a 
fractional order model and discusses the blondeness of the solutions of the model. Section 3 discusses the 
stability of the equilibrium points of the model. Section 4 simulates the dynamics of the system of 
fractional differential equations using Adams-Bashforth-Moulton algorithm. Section 5 summarizes this 
paper. 

2   Model Formulation 

Recently, it has been observed that using fractional order differential equations to model real life 
phenomena in different fields can be very successful [6,7,8]. The tritrophic food chain model for 
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phytoplankton, toxic phytoplankton and zooplankton can be written as a set of three nonlinear 
fractional differential equations as follows [9]: 
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where α
tD  is the Caputo fractional derivative and all the parameters are assumed to be non-negative. 

Lemma. All solutions of system (2.1) which initiate in +
3R  are uniformly bounded. 

Proof. To get blondeness of solutions of system (2.1), a function W  is defined as follows, 
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e
cW P T Z
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where { } { }= =1 1 2 2 1 2k max r ,r ,k min r , r ,m . By Lemma 9 [10], we have 
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where 
α

E  is the Mittag-Leffler function. Therefore, all solutions of the model (2.1) with initial 

conditions in ( ){ }= ∈ ≤ ≤ 1Ω P,T,Z W : 0 W W  remain in Ω  for all >t 0 . Thus, region Ω  is
positively invariant with respect to model (2.1). 

In the following, we will study the dynamics of system (2.1). 

3   Equilibrium Point and Stability 

In the following, we discuss the stability of the commensurate fractional ordered dynamical system: 
( ) ( )= ∈ ≤ ≤α

t 1 2 3D , , ,   α 0,1    1 3i ix f x x x i (3.1) 

Let ( )= * * *
1 2 3E , ,x x x  be an equilibrium point of system (3.1) and η= +*

i i ix x , where iη  is a small
disturbance from a fixed point. Then 
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System (3.2) can be written as: 
 =α

tDη Jη   (3.3) 

where ( )=
T

1 2 3η η ,η ,η  and J  is the Jacobian matrix evaluated at the equilibrium points. Using 
Matignon's results [11], it follows that the linear autonomous system (3.3) is asymptotically stable if 

( ) >α πarg λ
2

 is satisfied for all eigenvalues of matrix J  at the equilibrium point ( )= * * *
1 2 3 E , ,x x x . If 

( )Φ = + + +₁ ₂ ₃3 2x x a x a x a , let ( )D Φ  denote the discriminant of a polynomial Φ , then 
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Following [3, 11, 12, 13], we have the proposition. 

Proposition 3.1. One assumes that E  exists in +
3 R . 

1. If the discriminant of ( ) Φ x , ( ) D Φ is positive and Routh-Hurwitz is satisfied, that is, 

( )Φ > > > >1 3 1 2 3 0, 0, 0,D a a a a a , then E  is locally asymptotically stable. 
2. If ( ) <D Φ    0,  )⎡> > = ∈ ⎣1 2 1 2 3   0, 0, ,α  0,1a a a a a  then E  is locally asymptotically stable. 

3. If ( )D Φ  < 0, <1 2
2     0, 0,α    
3

a a , then E  is unstable. 

4. The necessary condition for the equilibrium point E to be locally asymptotically stable is >3  0a . 
To evaluate the equilibrium points, let 

 α α α= = =0, 0, 0t t tD P D T D Z   
Then 

1. The first trivial equilibrium point is ( )=0 0,0,0E . The point 0E  always exists. 
2. The second equilibrium point is ( )=1 1  ,0,0E H . The point 1E  always exists. 
3. The third equilibrium point is ( )=2 20, ,0E H . The point 2E  always exists. 
4. The fourth equilibrium point is ( )=3 3 3, ,0E P T , where 
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 is the basic reproduction number, see [9]. 

The point 3E  exists if >1 1R  and >0 1R . 

5. The fifth equilibrium point is ( )=4 4 4,0,E P Z , where =4  
mP
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point 4E  exists if <*
0 1R  and 
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6. The sixth interior equilibrium point is ( )=5 5 5 5, ,E P T Z , where 
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Following Javidi[9], the equilibrium point 0E  is a saddle point, 1E  is locally asymptotically stable if 
<0R 1  and >*

0R 1 . The equilibrium point 2E  is locally asymptotically stable if <1R 1  and 3E  is 

locally asymptotically stable if 
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Javidi[9] introduced the following theorem: 
Theorem 3.1. The equilibrium 4E  is locally asymptotically stable if 
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If one takes the same parameters as in [9] which are used in figure 1 [9] except 1,e H  (because the 
condition of theorem 8 must be satisfied), where we take = =1  1.75, 0.8e H , then we get 
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and 
 = − <Π 1.410612245 0   

in this case, the eigenvalues of 4E  are 

 λ λ λ= − = − ±41 42 43  0.58, , 0.5142857143 0.5938459912i   

and 
 α = −* 0.54555821   
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which contradicts with the fact that the critical value α *  must be in the interval ( )0,1 . 
The Jacobian matrix ( )4J E  evaluated at an interior equilibrium point 4E  is given as: ( )4 4,0,P Z   
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Figure 1. For various initial conditions and α , the trajectory of system converges to the equilibrium point E1. 

Theorem 3.2. The equilibrium 4E  is locally asymptotically stable for all ( )α ∈ 0,1  if the following 
condition holds 
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Proof. The characteristic equation corresponding to the equilibrium 4E  is given by 
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Then all the eigenvalues corresponding to the equilibrium 4E  are negative real number or complex 

number with negative real part then the condition ( ) > =4
α πarg λ ; 1,2,3

2i i  satisfied for all 

=4λ , 1,2,3i i . This completes the proof.  
The Jacobian matrix ( )5J E  evaluated at an interior equilibrium point 5E  is given as: 

 ( )

⎛ ⎞
− − −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= − − −
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎝ ⎠

1
5 5 5

1

2
4 5 5 5

2

5 5

 

 

0

r
P aP cP

H
r

J E bT T T
H

eZ Z

  

The characteristic equation of ( )5J E  is 
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The characteristic equation (3.4) has the following roots 
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Theorem 3.3. With respect to system (2.1), if 
σ

σ σ
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0 , the following statements can be 

obtained. 
(a)The equilibrium 5E  is locally asymptotically stable, for any ( )α ∈ 0,1 .  
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concluded that Theorem 3.3 is true. 
It can be concluded from the statements of theorem 3.4 that the positive equilibrium is locally 

asymptotically stable if and only if ( )α α∈ * 0, . At α α= *  a Hopf bifurcation is expected to occur. As 

increases above the critical value α * , the positive equilibrium is unstable, and a limit cycle is expected 
to appear in the proximity of 2E  due to the Hopf bifurcation phenomenon. 

The analysis of periodic solutions in fractional dynamical systems is a new research topic that is 
generating great interest. Thus far, research indicates that exact periodic solutions in time invariant 
fractional systems are non-existent. In terms of its application, the limit cycle detected in numerical 
simulations of a simple fractional neural network cannot represent an exact periodic solution of the 
system. Other research studies have also provided numerical evidence of limit cycles. 

4   Numerical Method and Simulation 

Because most fractional-order differential equations lack exact analytic solutions, approximation and 
numerical techniques must be used. There exist several different analytical and numerical methods for 
solving fractional-order differential equations. For numerical solutions of system (2.1), one can use the 
generalized Adams-Bashforth-Moulton method. To give the approximate solution by means of this 
algorithm, consider the following nonlinear fractional-order differential equation [10, 14-23]: 
                       ( ) ( )( )α = ,tD y t f t y t , ≤ ≤0 t T                                (4.1)  
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Diethelm et al. used the predictor-corrector scheme [14, 15], based on the Adams-Bashforth-Moulton 
algorithm, to integrate Eq. (4.1). By applying this scheme to the fractional-order model for a tritrophic 

model consisting of phytoplankton, toxic phytoplankton and zooplankton, and setting = =n
Th ,t nh
N

, 
+= … ∈n 0,1,2, ,N Z , one can discretize Eq. (4.1) as follows: 
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In this section, the dynamical behavior of the proposed model (2.1) has been discussed numerically 
using MATLAB. For the parameters set, = = = =1 2  0.08, 0.22, 0.1, 0.8,r r a b  
= = = =2  1.35, 0.63, 0.8, 0.13c e m H  and =1H 1 . Now, for this data, it is seen that = <0R 0.2750 1  

and = >*
0R 1.2698 1 . So according to stability conditions the equilibrium point ( )=1E 1,0,0  is locally 

asymptotically stable. In Figure 2, we considered four different initial values of the phytoplankton, toxic 
phytoplankton and zooplankton. All trajectories starting from different initial values approach to the 
equilibrium point ( )=1E 1,0,0 . 
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Figure 2. For various initial conditions and a, the trajectory of system converges to the equilibrium point E1. 

All the details related to initial values are shown in the legend. Again for the set of parametric values 
= = = = = = = =1 2 20.01, 0.22, 0.1, 0.8, 1.35, 0.63, 0.8, 0.5r r a b c e m H  and =1 H 0.1 , it is seen that 
= <1R 0.2 1 . From fig. 3, it is seen that the equilibrium point ( )=2 2E 0,H ,0  is locally asymptotically 

stable for =α  0.85,0.75  and 0.65 . In fig. 4 the trajectory of system (2.1) is shown when 
= = = = = = = = =1 2 2 1   0.5, 0.92, 0.2, 0.5, 1.35, 0.63, 0.8, 0.9 and H 0.6r r a b c e m H . In this case 
= >0R 3.0667 1  and = >*

0R 2.7778 1  and the equilibrium point ( )=3E 0.4351,0.6872,0  is locally 
asymptotically stable. Again, the following set of parameters is considered: such as 

= = = == = = = =1 2 2 11.8, 0.22, 0.2, 0.5, 1.35, 1.63, 0.8, 0.9 and H 0.6r r a b c e m H . For these parametric 
values, it is seen that 

 
⎛ ⎞⎛ ⎞⎜ ⎟= − + − =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

2

* *
0 0

1 1 1

m m 2mR 0.818 1,R 2 0.1044 0
 r r r

  

and 

 
⎡ ⎤⎛ ⎞

− − − = − <⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

*
0 2

1

c bmR 1 r 0.2681 0
r e

  

According to the theorem 3.3, the equilibrium point ( )=4E 0.4908,0,0.2427 , is locally asymptotically 
stable. Now, the following parametric values have been considered to discuss the dynamical behavior of 
the fractional order model taking α as a bifurcation parameter. 

= = = = = = = = =1 2 2 1  0.08, 0.3, 0.1, 0.4, 0.79, 4.8, 0.8, 0.46 and H 1r r a b c e m H . In this case 
α =* 0.9794388315 . From fig.5.1, it is seen that the trajectory of system (2.1) converges to the 
equilibrium point ( )=5 0.2195,0.2534,0.047E  forα = 0.95 . Fig.5.2 shows that the trajectory of system 
(2.1) converges to an asymptotically stable limit cycle ( )=5  0.2195,0.2534,0.047E  for α =  0.99 . These 
two different behavior are shown in Figures 6-1 and 6-2 for phytoplankton, toxic phytoplankton and 
zooplankton respectively. From Fig.7, it is clear that the approximate solutions depend continuously on 
the fractional derivative α . 
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Figure 3. For various initial condition and α , the trajectory of system converges to the equilibrium point E2. 

 

Figure 4. For various initial conditions andα , the trajectory of system converges to the equilibrium 
point E3. 

5   Conclusion 

In [9], the authors introduced a fractional order phytoplankton toxic-phytoplankton zooplankton system 
and provide some numerical simulations. In [9, 24-27], the authors used a particular numerical scheme 
according to Atanackovic and Stankovich in [28, 29]. This method is not proved to be convergent and 
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deserves more study as already pointed out in [30]. Even assuming the convergence of the method, the 
numerical scheme produces for small value of the time step increment, numerical results which are not 
in accordance with the expected theoretical behavior. In particular, the stability of the equilibrium 
points and positivity of the solutions are not preserved. Previous research has shown that the process of 
transforming a classical model into a fractional one is very sensitive to the order of differentiation α ; 
for instance, a small change in α  may result in a substantial change in the final result. From the 
numerical, it is clear that the approximate solutions depend continuously on the fractional derivative α . 
In this paper, we introduced the same figures in [9] but we used Adams-Bashforth-Moulton algorithm. 
The approximate solutions ( ) ( )P t ,T t  and ( )Z t  are displayed in Figure 2 for the order of the 
fractional derivative α =  0.95 . The results show that the concentrations of phytoplankton, toxic 
phytoplankton and zooplankton all reach their equilibrium values as time passes. An important feature 
of the fractional-order model is that it controls the speed at which the solution to equilibrium is reached. 
It follows from Theorem 3.2, that α =* 0.985237 . From Theorem 3.3, it is known that when α α< * , 
the trajectories converge to the equilibrium point, as shown in Fig. 5-1, whereas when α  is increased to 
exceed α * , the origin loses its stability, and a Hopf-type bifurcation occurs, as shown in Fig. 5-2. 
Furthermore, Fig. 6-2 illustrates that the system (2.1) has a stable cycle trajectory. 

 

Figure 5-1. For various initial conditions and α =0.95, the trajectory of system converges to the equilibrium 
point E5. 
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Figure 5-2. For various initial conditions and α =0.99, the trajectory of system converges to an asymptotically 
stable limit cycle around E5. 

 

Figure 6-1. For various initial conditions and α =0.95, the trajectory of system converges to the equilibrium 
point E5. 
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Figure 6-2. For various initial conditions and α =0.99, the trajectory of system converges to an asymptotically 
stable limit cycle around E5. 

 

Figure 7. The trajectory of system depend continuously on the fractional derivative α . 
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