
On Reproducing Kernel and Applications

José Claudinei Ferreira and Estela Costa Ferreira

Institute of Exact Sciences, Federal University of Alfenas, Alfenas, Brazil
Email: jose.ferreira@unifal-mg.edu.br

Abstract Positive definite or reproducing kernel are common topics in recent branches of mathe-
matics. In this paper we brief review some facts about this subject and prove some technical results
related to convergence, representations by using integral operators, embedding properties, denseness
and strict positive definiteness. As an application point of view, we close the paper choosing a
special basis to approximate solutions to Volterra integral equations.
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1 Introduction

Let X be a non-empty set and K : X × X → C a positive definite kernel on X, that is, a function
satisfying the inequality

[
c1 . . . cn

] K(x1, x1) . . . K(x1, xn)
...

. . .
...

K(xn, x1) . . . K(xn, xn)


 c1

...
cn

 =
n∑

i,j=1
cicjK(xi, xj) ≥ 0, (1)

whenever n ≥ 1, x1, x2, . . . , xn is in X and c1, c2, . . . , cn is in C. This means that the quadratic form (1) is
nonnegative, in other words, the Hermitian matrix [K(xi, xj)]n×n has only nonnegative eigenvalues. If these
eigenvalues are always positive, then K is a strict positive definite kernel. Particularly, if κ(x) = K(x, x),
then

0 ≤ κ(x), |K(x, y)|2 ≤ κ(x)κ(y), x, y ∈ X. (2)
Positive definiteness may be used to guarantee that interpolation problems like

S(f)(x) =
n∑

i=1
ciK(x, xi), S(f)(xi) = yi, i = 1, 2 . . . , n,

where yi ≈ f(xi) is given in a table, has a unique solution. It also helps to find this solution by using
numerical methods to solve this kind of systems (see [3]). Another thing closely related to this problem is
to approximate a given function by another in some nice space like a reproducing kernel Hilbert spaces
(please see [4]).

For a fixed x ∈ X, let us write Kx to denote the function y ∈ X → K(y, x) ∈ C. The unique Hilbert
space HK containing the set

{Kx : x ∈ X},
with inner product given by

〈Kx,Ky〉K = K(y, x), x, y ∈ X,
is the reproducing kernel Hilbert space (RKHS) HK with the reproducing property:

f(x) = 〈f,Kx〉K , x ∈ X, f ∈ HK . (3)

Please see references [2,3,9,11,12,13] to more information on this subject.
This paper is organized as follows. In Section 2 we discuss some technical results on positive definite

and reproducing kernel (Hilbert spaces). In Section 3 we give the representation of solutions of “linear”
equations in reproducing kernel spaces. Section 4 is devoted to closing the paper talking about an
appropriate space to apply the previous results to approximate solutions of Volterra integral equations.
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2 On Reproducing Kernel Properties

We can talk about RKHS by using another point of view, as we briefly do next. Let H be a Hilbert space
of functions f : X → C for which the evaluation linear functional δx :→ C, given by

δx(f) = f(x), f ∈ H, x ∈ X,

is bounded. As we know, this means that

|f(x)| = ‖δx(f)‖H ≤ Cx‖f‖H, f ∈ H, x ∈ X,

to some constants Cx ≥ 0.
This and Riesz representation theorem produce the next well known result.

Lemma 2.1. The space H is a RKHS if, and only if, the all evaluation functional δx, x ∈ X, is bounded.
Also,

‖δx‖ = ‖Kx‖K =
√
〈Kx,Kx〉K =

√
K(x, x), x ∈ X,

and the reproducing kernel is unique.

Next results are important in approximation in RKHS (see [11,13]). We write C(X) to denote the set
of all complex continuous functions on X.

Lemma 2.2. If fn → f in HK . Then fn(x)→ f(x), uniformly on Y ⊂ X, when supx∈Y κ(x) <∞.

Proof. We just need to note that, if x ∈ X then

|fn(x)− f(x)| = |δx(fn)− δx(f)| = |δx(fn − f)| 6 ‖δx‖‖fn − f‖H.

Lemma 2.3. If HK ⊂ C(X) and {xi}i∈A is a dense set in X. Then the linear span of {K(·, xi)}i∈A is
dense in HK . This set is always linearly independent if, and only if, K is strict positive definite.

Proof. Let f ∈ HK be a continuous function and orthogonal to the set {Kxi}i∈A. It follows that

f(xi) = 〈f,Kxi〉K = 0

and hence f = 0. To finish just note that K is strict positive definite if, and only if,

g =
n∑

i=1
ciK(xi, ·) = 0⇐⇒ 〈g, g〉K =

n∑
i,j=1

cicjK(xi, xj) = 0⇐⇒ ci = 0, i = 1, 2, . . . , n.

A way to check if a Hilbert space is a reproducing kernel space is given in the next theorem.

Theorem 2.4. Let F(X) be an inner product space of functions for which δx is bounded, for all x ∈ X.
The a Hilbert space containing {F(X)} is a RKHS if, and only if, the convergence in this space implies
the pointwise convergence.

Proof. Let H be a Hilbert space containing F(X). If ‖fn − f‖H → 0 implies that fn(x)→ f(x) then our
hypothesis guarantees that |f(x)| ≤ Cx‖f‖H and H is a RKHS. The other side is trivial.

If we are working with a reproducing kernel Hilbert space HK , then on important property to check is
if it has continuous functions only. To analyze this question, we say that the set of functions {Kx : x ∈ X}
is locally equicontinuous if, for all x ∈ X, there is an open neighbourhood Ux such that {Ky : y ∈ Ux} is
equicontinuous.

The continuity of K is related to that of the feature map η : X → HK given by

η(x) = Kx, x ∈ X.

Also, there is an equivalence between the continuity of K and that of η. A weak version of the next result
can be founded in Lemma 2.1 in [5].
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Theorem 2.5. Let X be a topological space. The following facts are equivalents:
– The set of functions {Kx : x ∈ X} is (locally) equicontinuous;
– K is continuous;
– η is continuous.
Proof. Let z, w ∈ X and K(z, w) ∈ O, where O is an open set in C. If {Kx} is (locally) equicontinuous
and ε > 0, then there are open sets z ∈ A, w ∈ B in X, for which

|K(x, y)−K(x,w)| < ε, y ∈ B,

and
|K(x,w)−K(z, w)| = |K(w, x)−K(w, z)| < ε, x ∈ A.

Hence,

|K(x, y)−K(z, w)| ≤ |K(x, y)−K(x,w)|+ |K(x,w)−K(z, w)| < 2ε, x ∈ A, y ∈ B.

Pick ε > 0 such that the ball in C of radius 2ε centered in K(z, w) is a subset of O. It follows that

K(A×B) ⊂ O

and K is continuous.
Now, we suppose that K is continuous. Let (x, y) ∈ X ×X and ε > 0. There are open sets x ∈ Ux

and y ∈ Uy such that
|K(x, y)−K(z, w)| < ε, (z, w) ∈ Ux × Uy.

As so,

|K(z, y)−K(z, w)| ≤ |K(z, y)−K(x, y)|+ |K(x, y)−K(z, w)| < 2ε, (z, w) ∈ Ux × Uy.

It follows that {Kz : z ∈ Ux} is equicontinuous.
Also, if A is an open set in HK and g = η(x) ∈ A, for some x ∈ X. Let ε > 0 be such that the ball in

HK of radius
√

3ε centered in η(x) is a subset of A. There is an open set O ⊂ X for which x ∈ O and

|K(x, x)−K(y, z)| < ε, y, z ∈ O.

It follows that

|K(y, y)−K(y, x)| ≤ |K(y, y)−K(x, x)|+ |K(x, x)−K(y, x)| < 2ε, y ∈ O,

and
‖η(x)− η(y)‖2

K ≤ |K(x, x)−K(x, y)|+ |K(y, y)−K(y, x)| ≤ 3ε, y ∈ O.
This clearly means that η(O) ⊂ A and η is continuous. For the converse, we use the equality

K(x, y) = 〈η(y), η(x)〉K , x, y ∈ X.

If f ∈ HK then f(·) = 〈f, η(·)〉K and a similar calculation leads to the continuity of K.

Corollary 2.6. If K is continuous then HK ⊂ C(X).
Corollary 2.7. If X is a compact Haussdorf space, F is a bounded set in HK and all Kx are continuous.
Then {F} is compact in C(X). Particularly, the inclusion map i : HK ↪→ C(X) is compact.
Proof. If F is bounded set in HK then

|f(x)| ≤M
√
K(x, x), x ∈ X, f ∈ F(X),

and some M > 0.
To guarantee the equicontinuity of F we just note that

|f(x)− f(y)| ≤ |〈f,Kx −Ky〉K | ≤ ‖f‖K‖Kx −Ky‖K .

Since
‖Kx −Ky‖K = K(x, x) +K(y, y)−K(x, y)−K(y, x),

the result follows from Arzelà-Ascoli theorem.
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If we also assume that X is endowed with a convenient measure ν and the integral operator K :
L2(X, ν)→ L2(X, ν), given by

K(f)(x) =
∫

X

K(x, y)f(y) dν(y), f ∈ L2(X, ν), x ∈ X,

is well defined. If it is also bounded then we can find results dealing with the analysis of many questions
related to K and K in connection with the space HK . Note that if κ belongs to L1(X, ν) then inequality
(2) ensures that Kx belongs to L2(X, ν) and K is a self-adjoint compact (Hilbert-Schmidt) operator.

An important issue that helps us to understand better a RKHS is to describe conditions under
which it contains a copy of the range of K. We will assume that X is topological space endowed with a
strict positive measure ν, that is, a (complete) Borel measure for which two properties hold: every open
nonempty subset of X has positive measure and every x ∈ X belongs to an open subset of X with finite
measure. The need for the assumptions above on X and ν arises in technical arguments (see also [7,8] for
more details).

The first result needs the action of K on elements of L2
c(X, ν), the set of all functions in L2(X, ν)

having compact support. As so, in this section we assume that L2
c(X, ν) is dense in L2(X, ν) or κ belongs

to L1(X, ν). The proof we omit can be founded in [5].

Proposition 2.8. If every function in HK is ν-measurable then K(L2(X, ν)) ⊂ HK and

〈K(f), g〉K = 〈f, g〉2, g ∈ HK , f ∈ L2(X, ν).

It is easy to see from the previous results that K is L2(X, ν)-positive definite, that is,

〈K(f), f〉2 ≥ 0, f ∈ L2(X, ν).

In that case, if the function x ∈ X → Kx ∈ L2(X, ν) is continuous and the formula

K(f)(x) = 〈f,Kx〉2, f ∈ L2(X, ν), x ∈ X,

shows that the range of K is a subset of C(X). If K is a compact operator then a quite general version
of Mercer’s theorem along the lines of those proved in [6,7] holds for K. Precisely, K has spectral
representation

K(f) =
∞∑

n=1
λn〈f, φn〉2φn, f ∈ L2(X, ν),

with {φn} orthonormal in L2(X, ν) and λn ≥ λn+1 → 0. Also, {λnφn} ⊂ C(X) and

K(x, y) =
∞∑

n=1
λnφn(x)φn(y), x, y ∈ X, (4)

with absolute and uniform convergence on compact subsets of X.
These results enable us to prove the next important corollary (see [12] to another point of view). This

result improves some results we have done in [8] and can be founded in our recent paper [4].

Corollary 2.9. Let us assume that K has series representation like (4). Then it is strict L2-positive
definite, that is λn > 0, n = 1, 2, . . ., if, and only if, HK is dense in L2(X, ν).

Proof. Lemma 2.3 implies that {Kxi} is dense in HK (for all dense set {xi} in X). Hence, if f ∈ L2(X, ν)
is orthogonal to {Kxi} then

K(f)(xi) = 〈f,Kxi〉2 = 〈K(f),Kxi〉K = 0,

and follows that K(f) = 0. This means that K has no null eigenvalue if, and only if, f = 0. By spectral
theorem, this happens if, and only if, HK is dense in L2(X, ν).
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Remark 2.10. On the other side, the previous arguments also implies that {Kxi} is dense in L2(X, ν)
and K is strict L2-positive definite, if K has no null eigenvalue. As so, if

0 = g =
j∑

i=1
ciK

xi =
∞∑

n=1

(
λn

j∑
i=1

ciφn(xi)
)
φn =

∞∑
n=1
〈g, φn〉2φn.

It follows that

0 =
j∑

i=1
ciφn(xi).

But this doesn’t looks sufficient to conclude that K is strict positive definite. Results in [12] guarantee
that the denseness of HK in C(X) is sufficient condition to the strict positive definiteness of K.

We finish this section with a way to construct reproducing kernels.
Let F(X) be a set of complex functions on X and H a Hilbert space. Suppose there is a function

h : X → H. Then we can define a linear transform L given by

L(f)(x) = 〈f, h(x)〉H, x ∈ X, f ∈ H.

This means that the evaluation functional δx is bounded on the range of L.

Lemma 2.11. The completion of the range of L is a RKHS with kernel

K(x, y) = 〈h(y), h(x)〉H, x, y ∈ X.

Also, L : H → L(H) has norm 1.

Proof. We first note that if f ∈ {h(x) : x ∈ X}⊥ then L(f) = 0. Also,

f =
n∑

i=1
cih(xi) =⇒ L(f)(x) =

n∑
i=1

ci〈h(xi), h(x)〉H =
n∑

i=1
ciK(x, xi) = u(x). (5)

We can then see that
K(x, y) = 〈h(y), h(x)〉H , x, y ∈ X,

is the reproducing kernel of L(H). Particularly, this means that

‖f‖H =
n∑

i,j=1
cicj〈h(xi), h(xj)〉H =

n∑
i,j=1

cicjK(xi, xj) = ‖u‖K = ‖L(f)‖K .

It follows that L : H → L(H) has norm 1.

Corollary 2.12. Ker(L) = {h(x) : x ∈ X}⊥, i. e. span{h(x) : x ∈ X} = Ker(L)⊥.

Proof. We saw that if f ∈ {h(x) : x ∈ X}⊥ then L(f) = 0, this means that Ker(L) ⊃ {h(x) : x ∈ X}⊥.
But, if L(f) = 0 then it is clear that f ⊥ h(x), for all x ∈ X. It follows that span{h(x) : x ∈ X} =
Ker(L)⊥.

Corollary 2.13. If u ∈ HK = L(H), then the unique f ∈ H, with ‖f‖H = ‖u‖K , is L∗(u).

Proof. Note that, if u = L(f) then

u(x) = 〈u,Kx〉K = 〈L(f),Kx〉K = 〈f, L∗(Kx)〉H = 〈f, h(x)〉H.

It follows that
L∗(Kx) = h(x), x ∈ X.

Equation 5 implies that
L∗L(f) = f

and L∗ acts like the inverse of L. But if g ∈ {h(x) : x ∈ X}⊥ then L(g + f) = L(f) = u and the result
follows.
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Corollary 2.14. If H is a RKHS with reproducing kernel R : X ×X → C then

L∗(u)(x) = f(x) = 〈L∗u,Rx〉H = 〈L∗u,Rx〉R = 〈u, LRx〉K , u ∈ HK .

Remark 2.15 (Laplace transform). If f ∈ L2(0,+∞) then its Laplace transform is given by

L[f ](s) =
∫ +∞

0
e−stf(t)dt = 〈f, h(s)〉L2 , 0 < s <∞,

where h(x)(y) = e−xy, x, y ∈ (0,+∞). The range of L is a RKHS with reproducing kernel

K(x, y) =
∫ +∞

0
e−xte−ytdt = 1

x+ y
, x, y ∈ (0,+∞).

Please take a look at [9] to application of this arguments on initial value problems.

3 On the Solution of Equations on RKHS

At the beginning of this work we talk about reproducing kernel Hilbert spaces in a natural way. These
spaces are our point of interest in writing this paper, because of his wide class of application (see
[5,6,10,12]).

Until the end of his section we discuss some facts about solutions of linear equations of the form

L(f)(x) = u(x), x ∈ X, f ∈ H, u ∈ HK , (1)

where L is a bounded linear operator. It follows from reproducing property that

L(f)(x) = 〈L(f),Kx〉K = 〈f, L∗Kx〉H = u(x), x ∈ X, f ∈ H, u ∈ HK ,

where L∗ is the adjoint of L.
In a first look we can think that this procedure is just useful to work with linear equations. But this

is not the case. You can see the paper [13] to a special case of equation

L(f)(x) = u(x) = G(x, f(x)).

3.1 H = HR is a Reproducing Kernel

To start this discussion we use Lemma 2.3, and assume that H = HR is also a reproducing kernel.

Lemma 3.1. Let L : HR → HK be a bounded linear operator, with HR ⊂ C(X). If {xi}i∈A is dense in
X then span{L(Rxi)}i∈A is dense in HK if, and only if, L has a dense range. Particularly, if L is one to
one and R is strict positive definite then {L(Rxi)}i∈A is linearly independent.

Proof. It follows from Lemma 2.3 that span{Rxi}i∈A is dense in HR. If L has a dense range in this space,
then all function g in HK has a function h = Lf , as close as you need of it, to some f ∈ HR. It follows
that there exists q in span{Rxi}i∈A, as close as you want of f . As so Lq is in span{L(Rxi)}i∈A and as
close as you need of h. The proof follows.

Corollary 3.2. Let L : HR → HK be a bounded injective linear operator, with HR ⊂ C(X). If {xi}i∈A

is dense in X and R is strict positive definite, then {L(Rxi)}i∈A is linearly independent in HK . If A ⊂ N
then you can orthonormalize this set to construct {Φi} as a basis to the range of L, by using Gram-Shmidt
process.

We may use the next result to understand how to handle with L∗.
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Corollary 3.3. Let L : HR → HK be a bounded one to one linear operator, with HK ⊂ C(X). If {xi}i∈A

is dense in X then span{L∗(Kxi)}i∈A is dense in HR. Particularly, if K is strict positive definite then
{L∗(Kxi)}i∈A is linearly independent. If A ⊂ N then you can find an orthonormal basis {Ψi} to HR,
where

Ψi =
i∑

j=1
βjiL

∗Kxj ,

by using Gram-Shmidt process. Also,

Lf(xi) = 〈Lf,Kxi〉K = 〈f, L∗Kxi〉R, f ∈ HR,

and
L∗Kxj (x) = 〈L∗Kxi , Rx〉R = 〈Kxi , LRx〉K = LRx(xi).

Now we can express the solution of (1), in this context, by using Parseval’s identity.

Theorem 3.4. If u(x) = Lf(x) = G(x, f(x)), with f ∈ HR, has only one solution, for all u ∈ HK .
Under conditions of Corollary 3.3 it holds,

f(x) =
∞∑

i=1
αiΨi(x),

with uniform convergence, where

αi = 〈f, Ψi〉R =
〈
f,

i∑
j=1

βjiL
∗Kxj

〉
R

=
〈
Lf,

i∑
j=1

βjiK
xj

〉
K

=
i∑

j=1
βjiLf(xj) =

i∑
j=1

βjiG(xj , f(xj)).

Problems like (2) motivates the next result.

Corollary 3.5. If Lf(x) = g(x) is a given function then

f(x) =
∞∑

i=1

 i∑
j=1

βjig(xj)

Ψi(x),

with uniform convergence.

We can rewrite results in this section to work with systems of equations (see [1], for instance).

4 Application to Volterra Integral Equations Theory

In this section we analyze some previous results to enable one to find the solution of Volterra integral
equations like

Lf(x) = A(x)f(x) +
∫ x

0
H(x, t)G(f(t))dt = u(x), (2)

with given continuous functions

A(x) = [aij(x)]n×n, H(x, t) = [hij(x, t)]n×n, f(x) = [fi(x)]n×1, u(x) = [ui(x)]n×1, t, x ∈ [0, 1].

We suppose that this equation has a unique solution f : [0, 1] → Rn (this section has glimpses from
[1,11,13]). We assume (by simplicity) G(f(t)) = C(t)f(t), with C(t) = [cij(t)]n×n (we may look it as an
approximation to the nonlinear case G(u) = c1 + c2u+ r(u), with |r(u)|/|u| ' 0 if u ' 0). We can then
rewrite (2) as

A(x)f(x) +
∫ x

0
H(x, t)f(t)dt = u(x). (3)
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Note that, if A(x) has inverse on [0, 1], then this equation is like

f(x) +
∫ x

0
H(x, t)f(t)dt = u(x).

It is clearly that the operator Tu : C[0, 1]→ C[0, 1], given by

Tu(f)(x) = u(x)−
∫ x

0
H(x, t)f(t)dt,

is well defined and we can apply Banach fixed point theorem to T j
u , for some big j ∈ N, to see that there

exists a unique continuous function f , such that

Tu(f)(x) = f(x), x ∈ [0, 1].

4.1 Choosing a Reproducing Kernel

Suppose now that H is continuous and ∂H/∂x is in L2[0, 1]. Denote by W [0, 1] the space of absolutely
continuous functions f , with f ′ ∈ L2[0, 1] and inner product given by

〈f, g〉W = f(0)g(0) +
∫ 1

0
f ′(x)g′(x)dx.

We can show that the functions u in W [0, 1] have the form

u(x) = u(0) +
∫ x

0
u′(s)ds, x ∈ [0, 1].

Denote also byW [0, 1] the space of functions f(x) = (f1(x), f2(x), . . . , fn(x)), x ∈ [0, 1], with fi ∈W [0, 1],
for all i = 1, 2, . . . , n, and inner product with similar form, where f(x)g(x) denote the usual inner product
of f(x) and g(x) in Rn.
Remark 4.1. Since all polynomial function is in W [0, 1], it follows that this set is dense in C[0, 1]. This is
a very important property of a space in approximation theory ([12]).

It is clear that
d Tu(f)(x)

dx = u′(x)−H(x, x)f(x)−
∫ x

0

∂ H(x, t)
∂x

f(t)dt.

This means that if u ∈ W [0, 1] then Tu(f) ∈ W [0, 1] and we can write Tu : C[0, 1] → W [0, 1]. Hence,
Tu(f) = f has a unique solution in W [0, 1]. This means that Tu : W [0, 1]→W [0, 1], has a unique fixed
point, if u ∈W [0, 1].

Now we can then define the bijective linear operator L : W [0, 1]→W [0, 1], given by

L(f)(x) = f(x) +
∫ x

0
H(x, t)f(t)dt. (4)

The problem of finding the fixed point of Tu is the same as to solve the functional linear equation
L(f) = u, for a given u ∈W [0, 1]. Particularly

Tu(f) = f ⇐⇒ L(f) = u.

The next result is to guarantee that each coordinate of functions in W [0, 1] is in a reproducing kernel
Hilbert space with strict positive definite kernel

K(x, y) = 1 +min(x, y) =
{

1 + y, x ≥ y
1 + x, x < y

.

This enables one to use the arguments in Section 2 to approximate solution of Volterra integral
equations, by using a numerical procedure to calculate the αi in expressions of Theorem 3.4 and
truncating the series.
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Lemma 4.2. If f ∈W [0, 1] then |f(x)| ≤ (1 +
√
x) ‖f‖W .

Proof. We put fi(x) = fi(0)+
∫ x

0 f ′i(s)ds for each coordinate of f ∈W [0, 1]. Hence f(x) = f(0)+
∫ x

0 f ′(s)ds.
It follows that

|f(x)| ≤ |f(0)|+
∫ x

0
|f ′(s)|ds.

But

|f(0)| ≤

√
|f(0)|2 +

∫ 1

0
|f ′(s)|2ds = ‖f‖W

and ∫ x

0
|f ′(s)|ds ≤

√
x

∫ 1

0
|f ′(s)|2ds ≤

√
x

√
|f(0)|2 +

∫ 1

0
|f ′(s)|2ds =

√
x ‖f‖W .

Lemma 4.3. The operator L : W [0, 1]→ C[0, 1] is bounded.

Proof. Lema 4.2 implies that, if f ∈W [0, 1] then |f(x)| ≤ 2‖u‖W and hence

|L(f)(x)| ≤ 2
(

1 +
∫ x

0
|H(x, t)|dt

)
‖f‖W

.

Lemma 4.4. W [0, 1] is a Hilbert space.

Proof. Let {fj} be a Cauchy sequence in W [0, 1]. As so, given ε > 0, there exists J ∈ N such that if
j, l > J , then

‖fj − fl‖2
W = |fj(0)− fl(0)|2 +

∫ 1

0
|f ′j(x)− f ′l (x)|2dx < ε.

Previous lemma implies that
|fj(x)− fl(x)| ≤ 2‖fj − fl‖W < ε.

Since each coordinate of fj and f ′j is in C[0, 1] and L2[0, 1] respectively, which are Cauchy sequences,
there exist f and g, with coordinates in C[0, 1] and L2[0, 1] respectively, such that fj → f uniformly and∫ 1

0
|f ′j(x)− g(x)|2dx→ 0.

If
h(x) = f(0) +

∫ x

0
g(s)ds

which is uniformly continuous, then

‖fj − h‖2
W = |fn(0)− f(0)|2 +

∫ 1

0
|f ′j(x)− g(x)|2dx→ 0

and f = h a.e..
It follows that W [0, 1] is a Hilbert space.

Theorem 4.5. If W [0, 1] is a set of scalar functions then it is a reproducing kernel Hilbert space with
kernel

K(x, y) = 1 +min(x, y) =
{

1 + y, x ≥ y
1 + x, x < y

.
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Proof. It follows from Lemma 4.2 that, for all x ∈ [0, 1], the linear functional δx : W [0, 1]→ R, given by
δx(f) = f(x) is bounded. Since W [0, 1] is a Hilbert space, it follows that it is a RKHS.

Since uy = Ky is continuous with derivative

u′y(x) =
{

0, x ≥ y
1, x < y

,

in L2[0, 1]. This means that

uy(x) = uy(0) +
∫ x

0
u′y(s)ds

is absolutely continuous in [0, 1].
On the other side,

〈f,Kx〉W = f(0)K(0, x) +
∫ 1

0
f ′(s)u′x(s)ds

= f(0)(1 + 0) +
∫ x

0
f ′(s)u′x(s)ds+

∫ 1

x

f ′(s)u′x(s)ds

= f(0) +
∫ x

0
f ′(s)ds

= f(x)

The proof follows.

Corollary 4.6. If f = (f1, f2, . . . , fn) ∈W [0, 1] then

fi(x) = 〈fi,K
x〉W , x ∈ [0, 1].

Corollary 4.7. If f ∈W [0, 1] and

K =


K 0 . . . 0
0 K . . . 0
...

...
. . .

...
0 0 . . . K


n×n

,

then
f(x)v = 〈f,Kxv〉W , f ∈W [0, 1], v ∈ Rn.

Since K in the previous result is a reproducing kernel, it follows that it is positive definite. To prove
the next result about the strict positiveness of K, we need the following lemma.

Lemma 4.8. If A = [ai,j ]l×l, with

aij = min(bi, bj) =
{
bi, i < j
bj , i ≥ j

, 0 < b1 < b2 < · · · < bl,

then A is strict positive definite.

Proof. If A = [b1] then it is clearly (strict) positive definite. Suppose by a inductive argument that it
holds for some j ≥ 1 and let l = j + 1. It follows from Chiï¿ 1

2 ’s rule that

detA = bl
1 det


b2/b1 − 1 b2/b1 − 1 . . . b2/b1 − 1
b2/b1 − 1 b3/b1 − 1 . . . b3/b1 − 1

...
. . .

...
...

b2/b1 − 1 b3/b1 − 1 . . . bl/b1 − 1

 > 0.

The proof follows from the fact that a matrix is (strict) positive definite if, and only if, all principal
submatrix is (strict) positive definite, which means that its determinant positive.
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We may use Corollary 2.9 to guarantee that K is strict L2-positive definite (see also Corollary 2.2 in
[8], Corollary 7 in [12] or [4]). But we prove this here directly.

Theorem 4.9. K is a strict L2-positive and positive definite kernel on [0, 1]2.

Proof. Let f ∈ C[0, 1] be a non null function. By simplicity we assume that f is a real function. Denote
by

F (x) =
∫ x

0
f(s)ds, G(x) =

∫ x

0
F (s)ds.

As so, ∫ x

0
yf(y)dy = xF (x)−G(x),

∫ x

0
f(s)G(s)ds = F (x)G(x)−

∫ x

0
[F (x)]2dx,

and

|G(1)|2 =
∣∣∣∣∫ 1

0
F (x)dx

∣∣∣∣2 ≤ ∫ 1

0
|F (x)|2dx.

It follows that∫ 1

0

∫ 1

0
K(x, y)f(x)f(y)dxdy =

∫ 1

0

∫ 1

0
f(x)f(y)dxdy +

∫ 1

0

∫ x

0
yf(x)f(y)dydx

+
∫ 1

0

∫ 1

x

xf(x)f(y)dydx

= F (1)2 +
∫ 1

0
f(x)

∫ x

0
yf(y)dydx+

∫ 1

0
xf(x)

∫ 1

x

f(y)dydx

= F (1)2 +
∫ 1

0
f(x) [xF (x)−G(x)] dx+

∫ 1

0
xf(x) [F (1)− F (x)] dx

= F (1)2 −
∫ 1

0
f(x)G(x)dx+ F (1)

∫ 1

0
xf(x)dx

= F (1)2 −
[
F (1)G(1)−

∫ 1

0
[F (x)]2dx

]
+ F (1) [F (1)−G(1)]

= 2F (1)2 − 2F (1)G(1) +
∫ 1

0
[F (x)]2dx

= [F (1)−G(1)]2 + |F (1)|2 +
∫ 1

0
[F (x)]2dx− |G(1)|2

≥ [F (1)−G(1)]2 + |F (1)|2

If 2F (1)2 − 2F (1)G(1) +
∫ 1

0 [F (x)]2dx = 0, then (particularly) F (1) = G(1) = 0 and
∫ 1

0 [F (x)]2dx = 0.
This means that F (x) = 0 and this implies f(x) = 0 (one thing that can’t happens). The proof of (strict)
L2-positive definiteness follows.

Now, let j ∈ N and x1 < x2 < · · · < xj ∈ [0, 1]. It follows that

[K(xi, xj)] =


1 + x1 1 + x1 . . . 1 + x1
1 + x1 1 + x2 . . . 1 + x2

...
...

. . .
...

1 + x1 1 + x2 . . . 1 + xj


The strict positive definiteness of K follows from the previous Lemma.

To finish this section and the paper we write two examples of RKHS. The same argument of Remark
4.1 may be used to see that the first one is dense in C[0, 1]. We can then apply Corollary 2.9 to guarantee
that it is strict L2-positive definite or use results in [12] to see that this kernel is strict positive definite.
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Remark 4.10. We denote byWj [0, 1] the space of functions f : [0, 1]→ C with f ′, f ′′, . . . , f (j−1) absolutely
continuous and f (j) ∈ L2[0, 1]. If this space is endowed with the inner product

(f, g)Wj = f(0)g(0) + f ′(0)g′(0) + · · ·+ f (j−1)(0)g(j−1)(0)
∫ 1

0
f (j)(x)g(j)(x)dx,

then it is a RKHS.
If j = 2, the kernel is

R(x, y) =


1 + xy + xy2

2 − y3

6 , y ≤ x

1 + xy + x2y

2 − x3

6 , y > x

Next we give an example of RKHS with a non strictly L2-positive definite kernel.
Remark 4.11. The subspace H ⊂W [0, 1], with f(0) = f(1), is a RKHS with Mercer kernel

K2(x, y) = min(x, y)− xy =

y(1− x), y ≤ x

x(1− y), y > x
, x, y ∈ [0, 1].

Direct calculations show that the associated integral operator has

λn = 1
n2π2 , φn(x) = sen(nπx), n = 1, 2, . . . ,

as eigenvalues and eigenfunctions respectively. Since {φn} is orthonormal but not a basis to L2[0, 1], we
can see that H is not dense there and that 0 is an eigenvalue. This means, by Corollary 2.9, that K is not
strict positive definite.
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