
Gegenbauer Transformations Nikolski-Besov Spaces 
Generalized by Gegenbauer Operator and Their 

Approximation Characteristics

V.S. Guliyev1,2*, E.J. Ibrahimov2 and S.Ar. Jafarova3

1Ahi Evran University, Department of Mathematics, 40100, Kirsehir, Turkey
Email: vagif@guliyev.com

2Institute of Mathematics and Mechanics, AZ 1141 Baku, Azerbaijan
Email: elmanibrahimov@yahoo.com

3Azerbaijan State Economic University 6, Istiglaliyyat str., Baku AZ1001, Azerbaijan
Email: sada-jafarova@rambler.ru

Abstract In this paper we consider some problems of the theory of approximation of functions
on interval [0, ∞) in the metric of Lp,λ with weight sh2λ x using generalized Gegenbauer shifts.
We prove analogues of direct Jackson theorems for the modulus of smoothness of arbitrary order
defined in terms of generalized Gegenbauer shifts. We establish the equivalence of the modulus
of smoothness and K-functional, defined in terms of the space of the Sobolev type corresponding
to the Gegenbauer differential operator. We define function spaces of Nikol’skii-Besov type and
describe them in terms of best approximations. As a tool for approximation, we use some functions
classes of spectrum. In these classes, we prove analogues of Bernstein’s inequality and others for
the Gegenbauer differential operator. Our results are analogues of the results for generalized Bessel
shifts obtained in the work [30].

Keywords: Approximation of functions, generalized Gegenbauer shift, Gegenbauer transformation,
Nikol’skii-Besov type spaces, embedding theorems.

In the classical theory of approximation of functions on R = (−∞,∞) the shift operator f (x) 7→ f (x+ y),
x, y ∈ R. plays a central role. This shift operator is used in the construction of the moduli of continuity
and smoothness, which are the basic elements of the direct and inverse theorems of approximation theory.
Various generalizations of shift operators enable to state natural analogues of problems in approximation
theory. Groups and semigroups of operators on Banach spaces are generalizations of the shift operator.
Different problems of approximation theory on Banach spaces with groups and semigroups of operators
were considered in [1, 3, 5, 7, 44].

Generalized shift operator naturally follows from "addition theorem" for eigen functions of the dif-
ferential operators (for example, Legendre, Gegenbauer, Jacobi, Laguerre, Hermite and other). These
operators may not form a group or semigroup, but the generalized moduli of smoothness defined in terms
of them can be better adapted to the study of relations between the smoothness properties of functions
and the best approximations of these functions in weighted function spaces. Some results on the best
approximation of functions using generalized shift operators can be found in [1, 4, 22-26, 29-39, 45]. Note
that most of the papers on this topic deal with the approximation of functions by polynomials on a finite
segment. For the half-line, most popular examples are the generalized Bessel and Dunkl shifts (see for
example [4, 23, 30-32]). Fourier-Bessel and Fourier-Dunkl harmonic analysis, which deals with Bessel and
Dunkl integral transformations and their applications, are closely connected with the generalized Bessel
and Dunkl shift. Moreover, generalized Bessel shift is widely used in the potential theory and theory of
maximal functions (see, example [5, 11-13]). The file of constructions of the theory of generalized shift
operators generalize in the theory of transformation of operators (see for example [7]). We reduce only
these works which have at least some relation to the paper. In this paper the generalized Gegenbauer
shift are considered and by using this some questions of approximation theory of functions in [0,∞) in
the metric Lp,λ with weight sh2λ x are studied.
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1 The Properties of Generalized Gegenbauer Shift and Statement of Main
Results

For every p, 1 ≤ p < ∞, we denote by Lp,λ the Banach space of measurable functions f on R+ (defined up to 
their values on a set of measure zero) such that the norm

‖f‖p,λ ≡ ‖f (ch ) (·)‖p,λ =
(∫ ∞

0
|f(ch t)|p sh 2λ tdt

) 1
p

is finite.
For p =∞ we denote by L∞,λ the set of all functions f that are uniformly continuous and bounded

on R+. The norm in L∞,λ is defined by the formula

‖f‖∞,λ ≡ ‖f (ch ) (·)‖∞,λ = sup
t∈R+

|f(ch t)| .

Let
Dλ =

(
x2 − 1

) 1
2−λ d

dx
(
x2 − 1

)λ+ 1
2 d

dx (1.1)

be Gegenbauer differential operators.
The functions (see [9], for.(2.3) and (2.8), and also [11], p.1045, for. 8.936(1))

Pλα (ch x) = Γ (α+ 2λ) cosλπ
Γ (λ)Γ (α+ λ+ 1) (2ch x)−α−2λ

×F
(
α

2 + λ,
α

2 + λ+ 1
2 ; α+ λ+ 1; 1

ch 2 x

)
, x ≥ 0,

(1.2)

Cλα (ch x) =
√
π

Γ (α+ 2λ)
Γ (λ)Γ (α+ 1) (2sh x)

1
2−λ P

1
2−λ
α+λ−1(ch x)

= Γ (α+ λ)
Γ (λ)Γ (α+ 1)(2ch x)αF

(
−α2 , −

α

2 + 1
2; 1− α− λ; 1

ch2 x

)
, (1.3)

where P
1
2−λ
α+λ−1(ch x) is Legendre function, and F (α, β; γ; x) is Gauss’s hypergeometric function, are the

linearly independent solutions of equation

sh 2x y′′ (ch x) + (2λ+ 1) ch x y′ (ch x)− α (α+ 2λ) y (ch x) = 0. (1.4)

For the functions Pλα (ch x) and Cλα (ch x) the following formulas (see [9], p. 1939) are valid:

Pλα (ch x ch t− sh xsh t cos ϕ)

= Γ (2λ− 1)
Γ 2 (λ)

∞∑
n=0

(−1)n 4nΓ (α− n+ 1)Γ 2 (λ+ n) (2n+ 2λ− 1)
Γ (α+ 2λ+ n)

×shn x shn tPλ+n
α−n (ch x)Cλ+n

α−n(ch t)Cλ−
1
2

n (cos ϕ) ,

(1.5)

Cλα (ch x ch t− sh x sh t cos ϕ)

= Γ (2λ− 1)
Γ 2 (λ)

∞∑
n=0

(−1)n 4nΓ (α− n+ 1)Γ 2 (α+ n) (2n+ 2λ− 1)
Γ (a+ 2λ+ n)

×shn x shn t Cλ+n
α−n (ch x)Cλ+n

α−n(ch t)Cλ−
1
2

n (cos ϕ),

(1.6)

where α− n 6= −1,−2, . . . .
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Taking into account the following equation (see [11], p.844)

∫ π

0
C
λ− 1

2
n (cos ϕ) (sin ϕ)2λ−1 dϕ =


0, n ≥ 1,
Γ (λ)Γ

( 1
2
)

Γ
(
λ+ 1

2
) , n = 0

from (1.5) and (1.6) we obtain

Aλch tP
λ
α (ch x) =

Γ
(
λ+ 1

2
)

Γ (λ)Γ
( 1

2
) π∫

0
Pλα (ch x ch t− sh x sh t cos ϕ) (sin ϕ)2λ−1 dϕ

= Γ (2λ)Γ (α+ 1)
Γ (α+ 2λ) Pλα (ch t)Cλα (ch x) = Pλα (ch t)Qλα (ch x) ,

(1.7)

Aλch tQ
λ
α (ch x) =

Γ
(
λ+ 1

2
)

Γ (λ)Γ
( 1

2
) π∫

0
Qλα (ch x ch t− sh x sh t cos ϕ) (sin ϕ)2λ−1 dϕ

= Qλα(ch t)Qλα (ch x) .

(1.8)

In (1.7) and (1.8)

Qλα (ch x) = Γ (2λ)Γ (α+ 1)
Γ (α+ 2λ) Cλα (ch x) ,

where
Aλch tf (ch x) ≡ Ach tf (ch x)

= C (λ)
∫ π

0
f (ch x ch t− sh x sh t cos ϕ) (sin ϕ)2λ−1 dϕ, (1.9)

and

C (λ) =
Γ
(
λ+ 1

2
)

Γ (λ)Γ
( 1

2
) =

(∫ π

0
(sin ϕ)2λ−1 dϕ

)−1

are generalized Gegenbauer shift operator, follows from "addition theorem" (1.5) and (1.6) for Gegenbauer
functions naturally.

Here and further after c (a, b, ...) > 0 will denote the constants, dependent only on written parameter,
moreover this perhaps differs in different of formulas.

The generalized Gegenbauer shift operator possesses some properties which are analogues to generalized
Bessel shift operator in the work of Levitan [26]:

1) Linearity and homogeneity:

Ach t {a f (ch x) + bg (ch x)} = aAch t f (ch x) + bAch tg (ch x) ,

which follows from the integral property.
2) Positivity. Ach tf (ch x) ≥ 0, if f (ch x) ≥ 0, which is evident.
3) A1f(ch x) = f(ch x), Ach t1 = 1, which follows from (1.9).
4) If f (ch x) ≡ 0 for x ≥ a, then Ach tf (ch x) ≡ 0 for |x− t| ≥ a.
Indeed, ch x ch t− sh x sh t cos ϕ ≥ ch (x− t) ≥ |x− t| , from this the property 4) follows.
5) Lp,λ-boundedness. For any f ∈ Lp,λ, 1 ≤ p ≤ ∞, (see [14], Lemma 2)

‖Ach tf‖p,λ ≤ ‖f‖p,λ , t ∈ [0,∞) . (1.10)

6) The operator Ach t is continuous on Lp,λ.
7) Symmetry of the operator Ach t,

Ach tf (ch x) = Ach xf(ch t)

is evident.
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8) Commutativity. For every continuous functions f (ch x) and any really y, t ≥ 0 the following
equality is valid:

Ach yAch tf (ch x) = Ach tAch yf (ch x) .

9) The operator Ach t is self-adjoint (see [14], Lemma 3). This property is proved in [13].
For any f, g ∈ L1,λ the following equality is valid:∫ ∞

0
Ach tf (ch x) g(ch t) sh 2λ tdt =

∫ ∞
0

f(ch t)Ach tg (ch x) sh 2λ tdt.

For every f ∈ Lp,λ the differences of order k (k = 1, 2, ...) are defined by the formula

∆1
ch tf (ch x) = ∆ch tf (ch x) := Ach t f (ch x)− f (ch x) ,

∆k
ch tf (ch x) := Ach t

(
∆k−1
ch tf (ch x)

)
, k = 2, 3, ...

or

∆k
ch tf (ch x) :=

k∑
ν=0

(−1)k−ν
(
k
ν

)
Aνch tf (ch x) . (1.11)

For every natural number k the modulus ωk (f, δ)p,λ of order k in Lp,λ are defined by the formula

ωk (f, δ)p,λ := sup
0<t≤δ

∥∥∆k
ch tf

∥∥
p,λ

. (1.12)

We say that the function f ∈ Lp,λ has bounded spectrum of order ν, if f̂p(α) = 0 for α > ν (the definition
f̂p(α) see lower the formula (2.1)).

We denote by Dk
λ [0,∞) the class of functions which we apply the operator Dλ to them k−times, i.e.,

∃Dk
λf, k = 1, 2, ... .
Let Wm

p,λ, m = 1, 2, . . . , be the Sobolev space constructed for the differential operator Dλ, that is

Wm
p,λ :=

{
f ∈ Lp,λ : Dk

λf ∈ Lp,λ, k = 1, 2, ..,m
}
. (1.13)

We denote by M (ν, p, λ), ν > 0 the set of functions Φ (ch x) , x ∈ R, which satisfies the following
conditions:

1) Φ (ch x) is the spectrum of order ν;
2) Φ (ch x) belongs to the class Wm

p,λ.
The best approximation of an f ∈ Lp,λ by functions belonging to M (ν, p, λ) is defined as follows:

Eν (f) := inf
{
‖f − Φ‖p,λ : Φ ∈M (ν, p, λ)

}
. (1.14)

The symbol 0 ≤ a . b means that a ≤ cb, where c−some constant, which can dependent on some
parameters. The following theorem is an analogue of Jackson’s direct theorem in classical approximation
theory (see [41], ch. 5).
Theorem 1.1. Let f ∈Wm

p,λ. Then for all ν > 0 and m ∈ Z+ = {0, 1, 2, ...} , the inequality

Eν (f)p,λ . ν−2mωk

(
Dm
λ f,

1
v

)
p,λ

holds.
We define the K-functional Peetre construction for Lp,λ and Wm

p,λ by the formula:

K
(
f, t; Lp,λ;Wm

p,λ

)
:= inf

{
‖f − g‖p,λ + t ‖Dm

λ g‖p,λ : g ∈Wm
p,λ

}
,

where f ∈ Lp,λ and t > 0.
The symbol α (t) ' β (t) at t→ 0 means that there exists constants c1 and c2 such that

c1α (t) ≤ β (t) ≤ c2 α (t) .
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The next theorem shows that the modulus of smoothness is equivalent to the K-functional.
Theorem 1.2. For every δ > 0 the following correlation

K
(
f, δ2m; Lp,λ; Wm

p,λ

)
' ωm (f, δ)p,λ , t→ 0 (1.15)

holds.
The proofs of inverse theorems in approximation theory are based on various analogues of Bernstein’s

inequality. In this paper we obtain such analogues for the Gegenbauer differential operator Dλ.
Theorem 1.3. The following inequality is valid:

‖Dλf‖p,λ ≤ ν
2 ‖f‖p,λ (1.16)

for all f ∈M (ν, p, λ) .
Inequality (1.16) is an analogue of the classical Bernstein inequality for entire functions of exponential

type (see [28], p.117).
Let r > 0 be a real number and let k, m be non-negative numbers such that 2k > r − 2m > 0. We

denote by Hr
p,λ the set of all f ∈Wm

p,λ such that and

ωk (Dm
λ , δ)p,λ ≤ Afδ

r−2m, δ > 0 (1.17)

for some Af > 0. For f ∈ Hr
p,λ we define the seminorm as

hrp,λ (f) := sup
δ>0

ωk (Dm
λ , δ)p,λ

δr−2m . (1.18)

Hr
p,λ is a Banach space with norm (see section 5)

‖f‖Hr
p,λ

: = ‖f‖p,λ + hrp,λ (f) . (1.19)

In the next theorem we describe the space Hr
p,λ in terms of approximations by functions belonging to

M (ν, p, λ) . In particular, this theorem implies that the Hr
p,λ does not depend on k or m.

Theorem 1.4. If f ∈ Hr
p,λ, then

Eν (f)p,λ . ν−rhrp,λ (f) (1.20)

for ν ≥ 1.
Conversely, if f ∈ Lp,λ, then

Eν (f)p,λ ≤
Af
νr

(1.21)

for ν ≥ 1, where Af is a constant depending on f.
Let 1 ≤ q ≤ ∞, r > 0, and let k, m be non-negative integers such that 2k > r − 2m > 0. As in [27],

we say that a function f belongs to the Nikol’skii-Besov class Brp,q,λ ≡ Brp,q,λ(R+) if f ∈ Wm
p,λ and the

seminorm

brp,q,λ (f) :=



∞∫
0

(
ωk (Dm

λ f, δ)p,λ
)q

δ(r−2m)q
dδ
δ


1
q

, 1 ≤ q <∞,

sup
δ>0

ωk (Dm
λ f, δ)p,λ

δr−2m , q =∞

is finite. Note that Brp,q,λ is a Banach space with norm (see section 5)

‖f‖Br
p,q,λ

:= ‖f‖p,λ + brp,q,λ. (1.22)

Note that Brp,∞,λ = Hr
p,λ. Let Z+ = {0, 1, 2, ...}.
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Theorem 1.5. Let a > 1 be an arbitrary number. The function f ∈ Lp,λ belongs to Brp,q,λ if and only if
the seminorm

b̃rp,q,λ := (f)


( ∞∑
n=0

anrq
(
Ean (f)p,λ

)q) 1
q

, 1 ≤ q <∞,

sup
n∈Z+

anrEan (f)p,λ , q =∞

is finite. In this case the norm (1.21) is equivalent to the norm

‖f‖p,λ + b̃rp,q,λ (f) . (1.23)

The main purpose of this paper is to prove Theorems 1.1 - 1.5. In section 2 we study various properties
of Gegenbauer transformation in generalized functions classes, and also obtain some properties of the
convolution of functions in these classes. In particular we prove that the Gegenbauer transformation and
the convolution defined in the generalized function class are of generalized functions, i.e., they are linear
and continuous functions.

The paper is organized as follows:
Some auxiliary results are stared is Section 3 althogh some of them have independent interest. For

example, inequality (3.50) is the analogue of classical Nikol’skii-Stechkin inequality. From (3.51), assertion
of Theorem 1.3, which is an analogue of classical Bernstein’s inequality, follows. Proposition 3.17 and its
corollary are analogues of the classical Boas inequality. In section 4 Theorem 1.1 and 1.2 are proved. In
section 5 Theorem 1.4 and 1.5 are proved and also obtained various norms of the spaces Brp,q,λ.

2 The Gegenbauer Transformations

The Gegenbauer transformations of the functions Pλα (t) and Qλα (t) are defined as the following integral
transformations (see [18]):

FP f (t) 7→ f̂P (α) =
∫ ∞

1
f (t)Pλα (t)

(
t2 − 1

)λ− 1
2 dt, (2.1)

FQf (t) 7→ f̂Q(α) =
∫ ∞

1
f (t)Qλα (t)

(
t2 − 1

)λ− 1
2 dt. (2.2)

The inverse Gegenbauer transformations are defined by the following formulas:

F−1
P f̂P (α) 7→ f (x) = Cλ

∫ ∞
1

f̂P (α)Qλα (x)
(
α2 − 1

)λ− 1
2 dα, (2.3)

F−1
Q f̂Q(α) 7→ f (x) = Cλ

∫ ∞
1

f̂Q(α)Pλα (x)
(
α2 − 1

)λ− 1
2 dα, (2.4)

where

Cλ =
2 3

2−λΓ
( 1

2
)
Γ (λ+ 1) Γ

( 1
2 − λ

)
Γ
( 3

4 + λ
2
) (
Γ
(
λ+ 1

2
)
Γ
( 5

4 −
λ
2
)

cosπλ
)−1

2F1
(
1, 1

2 − λ; 5
4 −

λ
2 ; 1

2
)
−2 F1

(
1, 1

2 − λ; 5
4 −

λ
2 ; 1

4 −
λ
2
) .

The f̂P transformation (2.1) for any f ∈ Lp, λ (1 ≤ p ≤ ∞) exists that follows from the following
inequality (see [18], Lemma 5)

|f̂P (α) | . ‖f‖p, λα2λ−1. (2.5)

From this it follows that for any f ∈ Lp, λ (1 ≤ p ≤ ∞) lim
n→∞

f̂P (α) = 0. Particulary for p = 1 we
obtain the analogue of Riemann-Lebesgue lemma. On the other hand (see further lemma 3.3), if f and
Dk
λf belong to Lp, λ, then (̂

Dk
λf
)
P

(α) = (α (α+ 2λ))k f̂P (α) k = 1, 2, ... . (2.6)

From (2.5) and (2.6) we have
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|f̂P (α) | . ‖Dk
λf‖p, λα2λ−1 (α (α+ 2λ))−k . (2.7)

From this it follows that

‖f̂P ‖pp, λ =
∫ ∞

1
|f̂P (α) |p

(
α2 − 1

)λ− 1
2 dα

.
∫ ∞

1
α2λ−1 (α2 − 1

)λ− 1
2 α−2kdα .

∫ ∞
1

αλ−k−1 (α− 1)λ−
1
2 dα

=
∫ ∞

0
αλ−

1
2 (α+ 1)λ−k−1 dα =

Γ
(
λ+ 1

2
)
Γ
(
k − 2λ+ 1

2
)

Γ (k − λ+ 1) .

From this and from (2.5) we obtain that f̂P ∈ Lp, λ for 1 ≤ p ≤ ∞, as

‖f̂P ‖∞, λ = sup
1≤α<∞

|f̂P (α) | . ‖f‖p, λ.

Consider the function f̂Q in transformation (2.2). It is clear that for any function in Lp, λ f̂Q can not
exist from the formula (1.3).

Let S be the space of test functions on [1,∞), that is, S is the set of all infinitely differentiable
functions ϕ (t), decaying as t → ∞, to zero together with all their derivatives, more rapidly than any
power of t−1. In this way for any test function ϕ (t) the following inequality (see [10], p.7) holds

|Dqϕ (t) | ≤ Cqr
(
1 + t2

)−r
with any integer q ≥ 0 and r ≥ 0, where the constant Cqr does not depend on t.

It is clear that the operator Dλ can apply to test functions infinite times, moreover the estimations

|Dm
λ ϕ (t) | .

(
1 + t2

)−r (2.8)

hold for arbitrary integer m ≥ 0 and r ≥ 0.
From (1.4) it follows that

Dm
λ Q

λ
α (x) = (α (α+ 2λ))mQλα (x) , α ∈ [1, ∞) , m = 1, 2 ... .

From this we have
Qλα (x) = (α (α+ 2λ))−mDm

λ Q
λ
α (x) .

In consideration of this equality in (2.2), we obtain

f̂Q (α) = (α (α+ 2λ))−m
∫ ∞

1
f (t)Dm

λ Q
λ
α (t)

(
t2 − 1

)λ− 1
2 dt

= (α (α+ 2λ))−m
∫ ∞

1
Qλα (t)Dm

λ f (t)
(
t2 − 1

)λ− 1
2 dt, (2.9)

where we use the self-adjointness of the operator Dλ (see [14], Lemma 4).
Applying inequality (2.8) at r > α+ 1 in (2.9) we have

|f̂Q (α) | . (α (α+ 2λ))−m
∫ ∞

1

Qλα (t)
(
t2 − 1

)λ− 1
2

(1 + t2)α+1 dt. (2.10)

The Gauss’s hypergeometric function 2F1
(
−α2 ,−

α
2 + 1

2 ; 1− α− λ; x−2) in the formula (1.3) exists
by appointed meaning of the parameters for all x ∈ [1, ∞) (see [11], p.1054). Therefore from (1.3) we
have the estimate

Qλα (x) = Γ (2λ)Γ (α+ 1)
Γ (α+ 2λ) Cλα (x) . α−λ (2x)α .
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Taking into account this inequality in (2.10) we obtain

|f̂Q (α) | . α−λ (α (α+ 2λ))−m
∫ ∞

1

(
t2 − 1

)λ− 1
2 (2t)α

(1 + t2)α+1 dt

. α−(2m+λ)
∫ ∞

1

(
t2 − 1

)λ− 1
2

t
dt . α−(2m+λ)

∫ ∞
1

t−
3
2 (t− 1)λ−

1
2 dt

= α−(2m+λ)
∫ ∞

0
tλ−

1
2 (t+ 1)λ−

3
2 dt =

Γ
(
λ+ 1

2
)
Γ (1− λ)

Γ
( 3

2
) α−(2m+λ).

From this it follows that

‖f̂Q‖∞, λ = sup
1≤α<∞

|f̂Q (α) | ≤ C <∞. (2.11)

On the other hand for 1 ≤ p <∞ we have

‖f̂Q‖p, λ =
(∫ ∞

1
|f̂Q (α) |p

(
α2 − 1

)λ− 1
2 dα

) 1
p

.

∫ ∞
1

(
α2 − 1

)λ− 1
2

α(2m+λ)p dα

 1
p

.

∫ ∞
1

(
α2 − 1

)λ− 1
2

α2m+λ dα

 1
p

.

(∫ ∞
0

αλ−
1
2

(α+ 1)2m+λ dα
) 1
p

=
(
Γ
(
λ+ 1

2
)
Γ (2m)

Γ
(
2m+ λ+ 1

2
) ) 1

p

≤ C <∞.

From this and (2.1) it follows that f̂Q ∈ Lp, λ for f ∈ S and 1 ≤ p ≤ ∞.
This shows that the transformations (2.1) and (2.3) also (2.2) and (2.4) are mutual inverse in S.

According to Theorem 2 in [18], for every function f in L1, λ, F−1
P FP f = f . On the other hand from the

symmetry property of the operator Ach t and formula (1.7) we have

f (x) = Cλ

∫ ∞
1

f̂P (α)Qλα (x)
(
α2 − 1

)λ− 1
2 dα

= Cλ

∫ ∞
1

(∫ ∞
1

f (t)Pλα (t)
(
t2 − 1

)λ− 1
2 dt

)
Qλα (x)

(
α2 − 1

)λ− 1
2 dα

=
∫ ∞

1

(
Cλ

∫ ∞
1

f (t)Qλα (t)
(
t2 − 1

)λ− 1
2 dt

)
Pλα (t)

(
α2 − 1

)λ− 1
2 dα

=
∫ ∞

1
f (α)Pλα (x)

(
α2 − 1

)λ− 1
2 dα,

that is, FPF−1
P = f .

Thus we obtain that
FPF

−1
P f = f = F−1

P FP f

for f ∈ L1, λ. Further taking into account (1.7) in (2.3) and (2.4) we obtain that F−1
P = F−1

Q ∈ L1, λ. As
in the case of FP we can write that for any f ∈ S

FQF
−1
Q f = f = F−1

Q FQf

and
F−1
P FP f = f = F−1

Q FQf. (2.12)

Since S ⊂ L1, λ, from above results we confine that (2.1) and (2.3) and also (2.2) and (2.4) are mutual
inverse in S.
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Let S′ be the set of continuous linear functionals on S, that is, S′ is the space of temperate generalized
functions. For f ∈ S′ and ϕ ∈ S we denote by f (ϕ) =< f, ϕ > the value of the functional f at ϕ. We
denote the spaces Lp,λ, 1 ≤ p ≤ ∞, in S′ by putting

< f,ϕ >:=
∫ ∞

1
f (t) ϕ (t)

(
t2 − 1

)λ− 1
2 dt (2.13)

for f ∈ Lp,λ and ϕ ∈ S.
The following Parseval equality holds for the Gegenbauer transformation (see [18], Lemma 8)∫ ∞

1
f (x) g (x)

(
x2 − 1

)λ− 1
2 dx = Cλ

∫ ∞
1

f̂P (α) ĝQ(α)
(
α2 − 1

)λ− 1
2 dα (2.14)

for f, g ∈ S.
From this it follows that if f ∈ S, then take place the equality:∫ ∞

1
f2 (x)

(
x2 − 1

)λ− 1
2 dx = Cλ

∫ ∞
1

f̂P (α) f̂Q(α)
(
α2 − 1

)λ− 1
2 dα, (2.15)

which we remind of the Parseval-Plancherel’s formula.
Equality (2.14) can be written as

< f, g >= Cλ < FP f, FQg > .

Taking into account (2.5), we transform last equality to form

< FP f, g >= 1
Cλ

< f, F−1
Q g >=< f,

∨
gQ >, (2.16)

where ∨gQ = 1
Cλ
F−1
Q g which follows from equality (2.12).

The Gegenbauer transformation can be extended to a class of functions wider than S.
We show that the Gegenbauer transformation FP f of generalized functions next are the generalized

functions, i.e. of continuous linear functionals, which defined by properties:
1) < FP f, ϕ+ ψ >=< FP f, ϕ > + < FP f ψ >, ϕ, ψ ∈ S,
2) < FP f, αϕ >= α < FP f, ϕ >, α ∈ R,
3) if ϕn → 0, then < FP f, ϕn >→ 0 at n→∞.
First two properties follow from the linearity property of the integrals. We will only prove the property

3).
The convergence to zero of the sequence ϕn ∈ S is defined by the condition: for any natural numbers

r and q and positive ε there exists a natural number such that whenever n ≥ n0 the inequality(
1 + x2)r ∣∣∣ϕ(q)

n (x)
∣∣∣ < ε (2.17)

holds (see [10]).
Then we have

< FP f, ϕn >=
∫ ∞

1
FP f(α)ϕn(α)

(
α2 − 1

)λ− 1
2 dα

=
∫ A

1
FP f(α)ϕn(α)

(
α2 − 1

)λ− 1
2

dα

+
∫ ∞
A

FP f(α)ϕn(α)
(
α2 − 1

)λ− 1
2

dα = J1 + J2. (2.18)

Since (see [18]) FP f(α)→ 0 as α→∞, we choose a number A so that for given ε > 0 the inequality

|FP f (α)| < ε for α > A

holds.
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Then
[J2] < ε

∫ ∞
A

|ϕn (α)|
(
α2 − 1

)λ− 1
2 dα. (2.19)

As ϕn ∈ S, then by definition we have

|ϕn(α)| ≤ cr
(1 + α2)r

, r = 1, 2, ... . (2.20)

Taking into account (2.20) in (2.19) we obtain

|J2| < cr ε

∞∫
A

(
α2 − 1

)λ− 1
2 dα

(1 + α2)r
= cr ε

∫ ∞
A

(α− 1)λ− 1
2 dα

(α+ 1)
1
2−λ (1 + α2)r

≤ cr ε
∫ ∞

0

(α− 1)λ− 1
2 dα

α2r+ 1
2−λ

= crB

(
λ+ 1

2 , 2r − 2λ
)
ε, (2.21)

where B (a, b) is of Euler integrals first type.
Since ϕn(α)→ 0 as n→∞, by (2.17) we have

|ϕn(α)| ≤ ε

(1 + α2)r
, r = 1, 2, ... .

From here we have

|J1| ≤ ε
∫ A

1

|FP f(α)|
(
α2 − 1

)λ− 1
2

(1 + α2)r
dα.

Take into account (2.5), we obtain

|J1| ≤ ε
∫ A

1

(α− 1)λ− 1
2 dα

(1 + α2)r α1−2λ ≤ ε cr

∫ A

1
(α− 1)λ− 1

2 dλ

= c(λ, r) ε (α− 1)λ+ 1
2 |A1 = c(λ, r)(A− 1)λ+ 1

2 ε. (2.22)

Taking into account (2.21) and (2.22) in (2.18), we obtain

< FP f, ϕn >→ 0 as n→∞.

In this way, the Gegenbauer transformation FP f for f ∈ S′ next is the generalized function, i.e.
FP f ∈ S′. Therefore the formula (2.16) can be naturally extended on functions from S′, i.e., for f ∈ S′
by definition

< FP f, g >:= 1
Cλ

< f, F−1
P g >, g ∈ S. (2.23)

We note an important property of Gegenbauer transformation (see [14], Lemma 3.3): if f ∈ S′, then
the following inequality holds:(

D̂k
λf
)
P

(α) = (α (α+ 2λ))k f̂P (α), k = 1, 2... . (2.24)

In the class S, the operator Dλ is symmetric in the following sence (see [14], Lemma 4), i.e.,

< Dλ ψ,ϕ >=< ψ,Dλ ϕ >, ϕ, ψ ∈ S,

that is equivalent∫ ∞
0

(Dλψ) (ch x)ϕ (ch x) sh 2λ xdx =
∫ ∞

0
ψ (ch x) (Dλϕ) (ch x) sh 2λ xdx.

Reflections
ϕ 7→

∫ ∞
0

(Dλψ) (ch x) ϕ (ch x) sh 2λ xdx
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and
f 7→

∫ ∞
0

ψ(ch x)f (ch x) sh 2λxdx

define the continuous linear functionals on S. Denoting their over Dλ ψ and ψ, we rewrite the last equality
by form

(Dλ ψ) (ϕ) = ψ (Dλ ϕ) ,
or the same

< Dλ ψ,ϕ >=< ψ,Dλ, ϕ >, ψ ∈ S′, ϕ ∈ S. (2.25)
Since, right-hand side of (2.25) is defined for all ψ ∈ S′ and ϕ ∈ S, and representation ϕ→ ψ (Dλ ϕ)

is continuous on S, as superposition of two continuous functions, then we can define Dλ ψ of generalized
function ψ ∈ S′ by means of (2.25).

Obviously, that then Dλψ ∈ S′.
From inequalities (1.10), (2.5) and also of the self-adjoind of the operator Aλch t follows that for

ϕ ∈ L1,λ the equality holds:
< Aλch t f̂P , ϕ >=< f̂P , A

λ
ch t ϕ > .

Since f̂P (α) ∈ S′, then naturally extended the generalized Gegenbauer shift operator on generalized
functions space by formula

< Aλch tf, ϕ >:=< f,Aλch t ϕ >, f ∈ S′, ϕ ∈ S. (2.26)
Let a be arbitrary positive number. The dilation operator (see [16])

fa (ch x) =
f
(
ch x

a

)
sh2λ x

a

a sh2λ x
, a > 0 (2.27)

of the function in L1, λ preserve meaning of the integral, that is∫ ∞
0

fa (ch x) sh2λ xdx =
∫ ∞

0
f (ch x) sh2λ xdx. (2.28)

Really, ∫ ∞
0

fa (ch x) sh2λ xdx =
∫ ∞

0

f
(
ch x

a

)
sh2λ x

a

a sh2λ x
sh2λ xdx

=
∫ ∞

0
f
(
ch
x

a

)
sh2λ x

a
d
x

a
=
∫ ∞

0
f (ch x) sh2λ xdx.

From (2.29) it follows that

‖fa‖1, λ = ‖f‖1, λ. (2.29)
The following correlations is connect of the generalized Gegenbauer shift operator and of Gegenbauer

transformation (see [18], Lemma 1):(
Âch tf

)
P

(α) = f̂P (α)Qλα(ch t), α ∈ [1,∞) , t ∈ [0,∞) . (2.30)

The operators Ach t and Dλ commute, that is,

(DλAch tf) (ch x) = (Ach tDλf) (ch x) , f ∈ S. (2.31)

This equality is a particular case of more qeneral equality (see further Lemma 3.4)(
Akch tD

r
λf
)

(ch x) = (Dr
λAch tf) (ch x) , k, r = 1, 2, ..., f ∈ S, (2.32)

although it can be proved by application of the Gegenbauer transformation of both side of (2.32). Taking
into account (2.6) and (2.30), we have(

̂DλAch tf
)
P

(α) = α (α+ 2λ)
(
Âch tf

)
P

(α) = α (α+ 2λ)Qλα(ch t)f̂P (α)
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= f̂P (α)DλQ
λ
α(ch t) =

(
̂Ach tDλf

)
P

(α),

from this (2.32) follows.
The convolution of functions f and g on R+ is defined by the relation

(f ∗ g) (ch x) =
∫ ∞

0
g(ch t)Ach tf (ch x) sh 2λ tdt. (2.33)

The convolution has sense if the integral on the right-hand side of (2.28) is convergence. If f ∈ Lp,λ,
g ∈ L1,λ, then the convolution is defined and belong Lp,λ, 1 ≤ p ≤ ∞, as (see [18], Lemma 4)

‖f ∗ g‖p,λ ≤ ‖f‖p,λ · ‖g‖1,λ . (2.34)

From here, in particular it follows that for f, g ∈ S their convolution f ∗ g ∈ S.
We deriv some properties of the convolution.

1. The convolution is commutative, that is,

f ∗ g = g ∗ f. (2.35)

2. (
f̂ ∗ g

)
P

(α) = f̂P (α)ĝQ(α), (2.36)

from this and also (2.12) it follows that
3.

f ∗ g = F−1
P

(
f̂P ĝQ

)
. (2.37)

4.
Dr
λ (f ∗ g) = (Dr

λf) ∗ g = f ∗ (Dr
λg) , r = 1, 2..., (2.38)

which follows from (2.36) by using (2.6).
Indeed, (

D̂r
λf ∗ g

)
P

(α) =
(
D̂r
λf
)
P

(α) ĝQ (α) = (α (α+ 2λ)) f̂P (α)ĝQ(α)

= (α (α+ 2λ))r
(
f̂ ∗ g

)
P

(α) =
(

̂Dr
λ (f ∗ g)

)
P

(α).

From this and (2.35) it follows that (2.38).
5. It is associative, that is,

(f ∗ g) ∗ h = f ∗ (g ∗ h) .

Indeed, by using commutativity of the operator Ach t, we obtain

((f ∗ g) ∗ g) (ch x) =
∫ ∞

0
(f ∗ g) (ch t)Ach th (ch x) sh 2λ tdt

=
∫ ∞

0

(∫ ∞
0

f (ch x)Ach xg(ch t)sh 2λ xdx
)
Ach th (ch x) sh 2λ tdt

=
∫ ∞

0

∫ ∞
0

g (ch x)Ach xf(ch t)Ach th (ch x) sh 2λ x sh 2λ tdxdt

=
∫ ∞

0

∫ ∞
0

g (ch x)Ach tf (ch x)Ach xh(ch t)sh 2λ xsh 2λ tdxdt

=
∫ ∞

0
(g ∗ h) (ch t)Ach tf (ch x) sh 2λ tdt = (f ∗ (g ∗ h)) (ch x) .

These properties hold for f, g, h ∈ S.
In case then f ∈ S′ and g ∈ S the convolution f ∗ g is defined by formula

(f ∗ g) (ch x) :=< f,Ach xg >= f (Ach xg) , x ∈ R+. (2.39)
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The right-hand of (2.39) exist, so far as f is slow growing function, and Ach xg ∈ S on the strength
inequality (1.10). Moreover the reflection g 7→ f (Ach xg) is continuous as superposition two continuous
functions.
Theorem 2.1. Let f ∈ S′ and g ∈ S. Then their convolution u (ch x) = f (Ach xg) are generalized
function slow growing, i.e. u ∈ S′.
Proof. First we show, that u ∈ C∞. Using (2.33), we can write

Dk
λu (ch x)=

∞∫
0

f(ch t)Ach xDk
λg(ch t)sh 2λ tdt=f

(
Ach xD

k
λg
)
, k = 1, 2, . . . . (2.40)

As, g ∈ S, then Dk
λg exists and continuity for any k ∈ N. But then on the strength of continuous of the

operator Aλch x is continuous and the right-hand side (2.40), as superposition two continuous functions. In
this way u ∈ C∞.

We show that u is slow growing function. Taking into account of Taylor-Delsart formula (see [14],
Lemma 6), and also of Lemma 3.6 (see further), we obtain

Aλch tf (ch x) =
n−1∑
ν=0

Cν(ch t)Dν
λf (ch x) + Cn(ch t)Aλch tDn

λf (ch x) .

From here and from (2.39) we have

u (ch x) =
∫ ∞

0
g(ch t)Aλch tf (ch x) sh 2λ tdt

=
n−1∑
ν=0

Dν
λf (ch x)

∫ ∞
0

Cν(ch t)g(ch t) sh 2λ tdt

+
∫ ∞

0
Cn(ch t)Ach tDnf (ch x) g(ch t) sh 2λ tdt. (2.41)

Since
ch (x− t) ≤ ch x ch t− sh x sh t cos ϕ ≤ ch (x+ t) ,

then ∣∣Aλch t f (ch x)
∣∣ ≤ sup

1≤u≤ch (x+t)
|f (u)| .

But then ∣∣∣∣∫ ∞
0

Cn(ch t)Ach tDn
λf (ch x) g(ch t)sh 2λ tdt

∣∣∣∣
≤ sup

1≤u≤ch (x+t)
|Dn

λf (u)|
∫ ∞

0
Ck(ch t) |g(ch t)|sh 2λ tdt. (2.42)

Further, since (see [14], Lemma 5)

Ck(ch t) ≤ c (k, λ) (ch t− 1)k , k = 1, 2, ...,

but g ∈ S, that the integral ∫ ∞
0

Ck(ch t) |g(ch t)| sh 2λ tdt

exist. But then from (2.42) and (2.41) it follows that

u (ch x) .
n∑
ν=0

sup
1≤u≤ch(x+t)

Dν
λf (u) . (2.43)
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Since (see [14], Lemma 1)

Dλf (x) =
(
x2 − 1

)
f ′′ (x) + (2λ+ 1)xf ′ (x) ,

it follows that the convolution u (ch x) has growth polynomials from (2.43), i.e., it is a slow growing
function.

Thus the theorem is proved.

Now let f, g, h ∈ S. Using the Fubini theorem we show that

(f ∗ g) ∗ (h) =< f ∗ g, h >

=
∫ ∞

0

(∫ ∞
0

Aλch tf (ch x) g(ch t) sh 2λ tdt
)
h (ch x) sh 2λ xdx

=
∫ ∞

0

(∫ ∞
0

Aλch tf (ch x) h (ch x) sh 2λ xdx
)
g(ch t) sh 2λ tdt

=
∫ ∞

0

(∫ ∞
0

f (ch x)Aλch t h (ch x) sh 2λ xdx
)
g(ch t) sh 2λ tdt

=< g, f ∗ h >=< g ∗ f, h >=< f, g ∗ h >,

i.e.,
(f ∗ g) ∗ (h) = f ∗ (g ∗ h) .

If f ∈ S′ and g, h ∈ S, then right-hand side of the last equality is defined since g ∗ h ∈ S. Moreover,
the representation h 7→ f (g ∗ h) is continuous which is the superposition of two functions. In this way the
convolution of the generalized function f and a basic function g can be defined by the following equality

< f ∗ g, h >=< f, g ∗ h >, f ∈ S′, g, h ∈ S. (2.44)

We show that for all f ∈ S′ and g, h ∈ S the convolution is associative, that is,

(f ∗ g) ∗ h = f ∗ (g ∗ h) .

Indeed, if f ∈ S′, and g, h ∈ S, then

(f ∗ g) ∗ h (ch x) =
∫ ∞

0
(f ∗ g) (ch t)Aλch th (ch x) sh 2λ tdt

=
∫ ∞

0

(∫ ∞
0

f (ch x)Aλch xg(ch t)sh 2λ xdx
)
Aλch th (ch x) sh 2λ tdt

=
∫ ∞

0

∫ ∞
0

g (ch x)Aλch xf(ch t)Aλch x (ch x) sh 2λ xsh 2λ tdxdt

=
∫ ∞

0

∫ ∞
0

g (ch x)Aλch xf (ch x)Aλch x(ch t)sh 2λ xsh 2λ tdxdt

=
∫ ∞

0
(g ∗ h) (ch t)Aλch tf (ch x) sh 2λ tdt = f ∗ (g ∗ h) (ch x) . (2.45)

Since g, h ∈ S, that their convolution g ∗ h belongs to S, but the right-hand part of (2.45) according
to (2.44) it is convolution of the shift function f ∈ S′ and the test function g ∗ h ∈ S.

We show that the convolution of f ∈ S′ and g ∈ S is defined by formula (2.39). It remains to show
that the properties (2.35), (2.36) and (2.38) are provided.

Indeed, using (2.26) and (2.39) we obtain

(f ∗ g) (ch x) =< f, Aλch tg >=< Aλch tf, g >= (g ∗ f) (ch x) . (2.46)
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Further, using equalities (2.46), and also (1.7) and by changing the order of integration we obtain(
f̂ ∗ g

)
P

(α) =
∫ ∞

0
(f ∗ g) (ch x)Pλα (ch x) sh 2λ xdx

=
∫ ∞

0

(∫ ∞
0

g(ch t)Ach tf (ch x) sh 2λ tdt
)
Pλa (ch x) sh 2λ xdx

=
∫ ∞

0

(∫ ∞
0

f(ch t)Ach tPλa (ch x) sh 2λ tdt
)
g (ch x) sh 2λ xdx

=
∫ ∞

0

(∫ ∞
0

f(ch t)Pλα (ch t)sh 2λ tdt
)
g (ch x)Qλα (ch x) sh 2λ xdx = f̂P (α)ĝQ(α),

i.e., take place (2.36).
Using consistent of the formulas (2.40), (2.39), (2.25), (2.32) and (2.26), we obtain

Dr
λ (f ∗ g) = f (Ach xDr

λg) =< f,Ach xD
r
λg >= f ∗ (Dr

λg) =< Ach xf,D
r
λg >

=< Dr
λAch xf, g >=< Ach xD

r
λf, g >=< Dr

λf,Ach xg >= (Dr
λf) ∗ g,

i.e., take place (2.38).

3 Auxiliary Results

For the proof of Theorems 1.1 and 1.2 we need some auxiliary assertions.
We consider the function

Ck(chx) = −
chx∫
1

θ (chx, σ)Ck−1(σ)
(
σ2 − 1

)λ− 1
2 dσ , C0 = 1, k = 1, 2, . . . ,

where

θ (chx, σ) =

−
chx∫
σ

(
u2 − 1

)−λ− 1
2 du , 1 < σ < chx ,

0, for the other σ ,

R1(chs)f(chx) =
∫ chs

1
θ (chs, σ) (AσDλf) (chx)

(
σ2 − 1

)λ− 1
2 dσ,

and

Rk(chs)f(chx) =
∫ chs

1
θ (chs, σ) (Rk−1(σ)Dλf) (chx)

(
σ2 − 1

)λ− 1
2 dσ,

k = 2, 3, . . . (3.1)

The following assertion is just (see [13]):
Lemma 3.1. [14] If f ∈ Dn−1

λ [0,∞), then the Taylor-Delsarte’s formula is valid:

Rn(chs)f(chx) = Achtf(chx)−
n−1∑
k=0

Ck (ch s) Dk
λf(chx), n = 1, 2, ... ,

D0
λf (ch x) ≡ f (ch x) .

Lemma 3.2. Let f ∈ Lp,λ. Then the following equality is valid:(
Âkchtf

)
P

(α) = f̂P (α)
(
Qλα(cht)

)k
, k = 1, 2, . . . .
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Lemma 3.3. Let f ∈W k
p, λ, then(
D̂k
λf
)
P

(α) = (α (α+ 2λ))kf̂P (α) , k = 1, 2, . . . .

Lemma 3.4. If f ∈ S, then following equality is valid:(
AkchtD

r
λf
)

(chx) =
(
Dr
λA

k
chtf

)
(chx), k, r = 1, 2, ... .

Lemma 3.5. Following equality is valid:

AkchtRn (chs)f(chx) = Rn(chs)
(
Akchsf

)
(chx) , k = 1, 2, . . . .

Lemma 3.6. The following equality is valid:

Rn(chs)f(chx) = Cn(chs)AchsDn
λf(chx), n = 1, 2, . . . .

Lemma 3.7. If f ∈ Dk
λ[0,∞), then the following equality is valid:

∆k
ch sf(ch x) = Rk(ch s)

(
Ak−1
ch s f

)
(ch x) , k = 1, 2, . . . .

Lemma 3.8. If the function f ∈ Dk
λ[0,∞), then the following equality is valid:

∆k
ch sf(ch x) = Ck(ch s)Akch s

(
Dk
λf
)

(ch x) , k = 1, 2, . . . . (3.2)

Lemma 3.9. If f ∈ Dk
λ[0,∞), then the following equality is valid:

∆m
ch tD

k
λf(ch x) = Dk

λ∆
m
ch tf(ch x) , k = 1, 2, . . . ; m = 1, 2, . . . .

Lemma 3.10. For any function f ∈W k
p,λ, k = 1, 2, ..., 1 ≤ p ≤ ∞ the following inequality is valid:

∥∥∆k
ch t f

∥∥
p,λ
≤ Γ (2λ+ 1)
Γ (k + 1)Γ (2k + 2λ− 1) (ch t− 1)k

∥∥Dk
λf
∥∥
p,λ

. (3.3)

Proof. Since f ∈W k
p,λ, then from of the equality (3.2) it follows that∥∥∆k

ch tf
∥∥
p,λ
≤ Ck (ch t)

∥∥(Akch tDk
λ

)
f
∥∥
p,λ

.

Taking into account (1.10) and also the inequality (see [14], Lemma 5)

Ck (ch t) ≤ Γ (2λ+ 1)
Γ (k + 1)Γ (2k + 2λ− 1) (ch t− 1)k , (3.4)

we obtain∥∥∆k
ch tf

∥∥
p,λ
≤ Ck(ch t)

∥∥Dk
λf
∥∥
p,λ
≤ Γ (2λ+ 1)
Γ (k + 1)Γ (2k + 2λ− 1) (ch t− 1)k

∥∥Dk
λf
∥∥
p,λ

.

Thus Lemma 3.10 is proved.
Lemma 3.11. Let f ∈ L1,λ, g ∈W r

p,λ, 1 ≤ p ≤ ∞. If f is the spectrum of order ν, then their convolution
is the spectrum of order ν and belongs to the class M(ν, p, λ).
Theorem 3.1. For f ∈W r

p,λ, 1 ≤ p ≤ ∞ the following inequality is valid

Eν (f)p,λ . ν−2r ‖Dr
λf‖p,λ . (3.5)

Proof. We can write difference (1.11) in a form

−∆k
ch tf (ch x) = −

k∑
i=0

(−1)k−i
(
k
i

)
Aich tf (ch x)
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=
k∑
i=1

(−1)i−1 (k
i

)
Aich tf (ch x)− f (ch x) . (3.6)

Let ϕ (ch t) be the spectrum of order ν satisfied the condition∫ ∞
0

ϕ (ch t) sh 2λ tdt = 1, (3.7)

i.e., ϕ ∈M (1, 1, λ).
We consider the function

Φν (ch x) =
∫ ∞

0
ϕ (ch t)

(
−∆k

ch t
ν
f (ch x) + f (ch x)

)
sh 2λ tdt

=
k∑
i=1

(−1)i−1 (k
i

) ∫ ∞
0

ϕ (ch t) Aich t
ν
f (ch x) sh 2λ tdt. (3.8)

Since the operator Ach t is self-adjoint, we have∫ ∞
0

ϕ (ch t) Aich t
ν
f (ch x) sh 2λ tdt = ν

∫ ∞
0

ϕ (ch νt)Aich t f (ch x) sh 2λ νtdt

=
∫ ∞

0
Ach t

(
Ai−1
ch t f (ch x)

)(ν ϕ (ch νt) sh 2λ νt

sh 2λ t

)
sh 2λ tdt.

Taking into account commutativity of the operator Ach t

Ach tAch x = Ach xAch t,

we obtain ∫ ∞
0

Ach t

(
Ai−1
ch x ϕ 1

ν
(ch t)

)
f (ch t) sh 2λ tdt

=
∫ ∞

0
Ach x

(
Ai−1
ch t ϕ 1

ν

)
(ch t) f (ch t) sh 2λ tdt.

Then from (3.8) we have

Φν (ch x) = (Kν ∗ f) (ch x) =
∫ ∞

0
(Ach xKν) (ch t) f (ch t) sh 2λ tdt, (3.9)

where

Kν (ch t) =
k∑
i=1

(−1)i−1
(
k
i

) (
Ai−1
ch t ϕ 1

ν
(ch t)

)
. (3.10)

Taking into account that
k∑
i=1

(−1)i−1
(
k
i

)
= 1, inequality (1.10) and (3.10) we obtain

‖Kν‖1,λ ≤
∥∥∥ϕ 1

ν

∥∥∥
1,λ

= ‖ϕ‖1,λ = 1,

while the dilation operator ϕ 1
ν
is an automorphism of L1,λ.

Since Kν ∈ L1,λ, by Lemma 3.11 the operator Φν is of the spectrum of order ν, i.e., Φν ∈M (p, ν, λ),
moreover is an entire function of exponential type (see proof of the Lemma 3.11).

Let f ∈W r
p,λ. Using Lemma 3.10 and taking into account (3.7) and (3.8), we obtain

‖Φνf − f‖p,λ ≤ c (λ, r)
∫ ∞

0

∥∥∥∆r
ch t

ν
f (ch(·))

∥∥∥
p,λ

ϕ (ch t) sh 2λ tdt
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≤ c (λ, r) ‖Dr
λ f‖p,λ

∫ ∞
0

(
ch

t

ν
− 1
)r

ϕ (ch t) sh 2λ tdt

≤ c(λ, r) ‖Dr
λ f‖p,λ

∫ ∞
0

(
sh

t

2ν

)2r
ϕ (ch t) sh 2λ tdt

≤ c(λ, r)ν−2r ‖Dr
λ f‖p,λ

∫ ∞
0

(sh t)2r+2λ
ϕ (ch t) dt. (3.11)

In the capacity of the function ϕ (ch t) we take the function

ϕ (ch t) = 2
B
(
λ+ 1

2 , r + 1
2
) (ch t)−2λ−2r−1

.

Then (see [11], p. 361) using of formula∫ ∞
0

(sh x)2µ−1
ch xdx

(1 + a sh 2x)ν
= 1

2a
−µB (µ, ν − µ) , (ν > µ > 0) , a > 0 (3.12)

at µ = λ+ 1
2, ν = r + λ+ 1 and a = 1, we obtain

∫ ∞
0

ϕ (ch t) sh 2λ tdt = 2
B
(
λ+ 1

2 , r + 1
2
) ∫ ∞

0

sh 2λ t ch tdt
(ch t)2r+2λ+2 = 1.

On the other hand, taking in the formula (3.12) µ = r + λ+ 1
2, ν = r + λ+ 1 and a = 1 we obtain

∞∫
0

ϕ (ch t) (sh t)2λ+2r dt=
∞∫

0

(sh t)2λ+2r
ch tdt

(ch t)2r+2λ+2 = 1
2B

(
r + λ+ 1

2 ,
1
2

)
. (3.13)

Taking into account (3.13) in (3.11), we have

‖Φνf − f‖p,λ ≤ c(λ, r)ν
−2r ‖Dr

λf‖p,λ ,

from this the assertion of Theorem 3.12 follows.
Let K

(
f, t; Lp,λ; Wm

p,λ

)
be K- Peetre functional constructing on the spaces Lp,λ and Wm

p,λ, f ∈
Lp,λ, t > 0. For brevity we take

Km (f, t)p,λ := K
(
f, t2m; Lp,λ; Wm

p,λ

)
. (3.14)

The modulus ωk (f, t)p,λ of smoothness of order k is defined on Section 1 by the formula (1.12)

ωk (f, t)p,λ = sup
0<h≤t

∥∥∆k
ch h f

∥∥
p,λ

.

Proposition 3.1. The modulus of smoothness ωk (f, t)p,λ, k ∈ N, 1 ≤ p ≤ ∞ has the following properties:

1. ωk (f, t)p,λ is a non-decreasing function of t ∈ [0,∞),
2. ωk (f + g, t)p,λ ≤ ωk (f, t)p,λ + ωk (g, t)p,λ,
3. ωk (f, t)p,λ ≤ 2k ‖f‖p,λ ,
4. if f ∈ Lp,λ, 1 ≤ p ≤ ∞, then lim

t→0
ωk (f, t)p,λ = 0,

5. if ν ≤ k, then ωk (f, t)p,λ ≤ 2k−νων (f, t)p,λ,
6. if f ∈Wm

p,λ, then for any k > m the following inequality is valid:

ωk (f, t)p,λ . t2m ωk−m (Dm
λ f, t)p,λ ,
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7. if f ∈W k
p,λ, then the inequality is valid:

ωk (f, t)p,λ ≤ 2k
(
sh

t

2

)2k ∥∥Dk
λ f
∥∥
p,λ

.

We define a family of the operators Pnν with ν > 0 by the formula P ′vf = A′
ch 1

v
f ,

Pnν f ≡ Pνf = Anch 1
ν
f −

n−1∑
k=1

Ck

(
ch

1
ν

)(
An−1
ch 1

ν

Dk
λf
)
, n = 2, 3, · · · . (3.15)

Proposition 3.2. Let f ∈M(ν, p, λ), 1 ≤ p ≤ ∞, ν > 0. Then Pνf ∈M(ν, p, λ).
Proposition 3.3. Let f ∈ Lp,λ, 1 ≤ p ≤ ∞, ν > 0. For every t ∈

(
0, 1

ν

)
the following inequalities hold:

‖Dm
λ Pν (f)‖p,λ .

(
sh

t

2

)−2m
‖∆m

ch t f‖p, λ , (3.16)

and if f ∈Wm
p,λ, then

‖∆m
ch t Pν (f)‖p,λ .

(
sh

t

2

)2m
‖Dm

λ f‖p,λ . (3.17)

Proof. Using the equality (3.2) and also Lemmas 3.2 and 3.3, we obtain(
∆̂m
ch t f

)
P

(α) = Cm (ch t)
(

̂Amch t (Dm
λ f)

)
P

(α)

= Cm (ch t)
(
D̂m
λ f
)
P

(α)
(
Qλα (ch t)

)m
= (α (α+ 2λ))m Cm (ch t) f̂P (α)

(
Qλα (ch t)

)m
. (3.18)

Consider the Gegenbauer transform of Dm
λ (Pνf). Using (2.6) and (3.18) we write(

D̂m
λ Pνf

)
P

(α) = (α (α+ 2λ))m
(
P̂νf

)
P

(α)

=
(α (α+ 2λ))m Cm (ch t) P̂νfP (α)

(
Qλα (ch t)

)m
Cm (ch t) (Qλα (ch t))m

=

(
̂∆m
ch tPνf

)
P

(α)

Cm (ch t) (Qλα (ch t))m
. (3.19)

Using the equality (3.19) inverse Gegenbauer transform and taking into account we have

Dm
λ Pνf (ch x) = ∆m

ch tPνf (ch x)
Cm (ch t) (Qλα (ch t))m

. (3.20)

From (1.3) it follows that the function Qλα (ch t) is increasing. Moreover

lim
t→∞

Qλα (ch t) =∞

and from the formula (see [9], p. 1934)

Qλα (ch t) = F

(
−α, α+ 2λ; λ+ 1

2 , sh
2 t

2

)
, 0 ≤ sh t

2 ≤ 1

This function takes its minimal value at t = 0 (see [17], p. 1053). We have the following

min Qλα (ch t) = Qλα (1) = F

(
−α, α+ 2λ; λ+ 1

2; 0
)

= 1. (3.21)
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On the other hand (see [14], Lemma 5)

c1 (m,λ)
(
sh

t

2

)2m
≤ Cm (ch t) ≤ c2 (m,λ)

(
sh

t

2

)2m
. (3.22)

Taking into account (3.21) and (3.22) in (3.20), we have

‖Dm
λ (Pνf)‖p,λ .

(
sh

t

2

)−2m
‖∆m

ch tPνf‖p,λ .

From Lemmas 3.7 and 3.1 it follows that

Pνf(chx) = f(chx) +4nch 1
ν
f(chx) (3.23)

then from (1.10) we have

‖Pνf‖p,λ = ‖f +4nch 1
ν
f‖p,λ ≤ (2n + 1)‖f‖p,λ.

From this taking into account the commutativity of the operator Ach t, we obtain

‖Dm
λ (Pνf)‖p,λ .

(
sh
t

2

)−2m
‖Pν (∆m

ch tf) ‖p,λ .

(
sh
t

2

)−2m
‖∆m

ch tf‖p,λ,

then the inequality (3.16) is proved.
Now, let f ∈Wm

p,λ. From (3.18) we have

̂(∆m
ch t (Pν f))

P
(α) = Cm (ch t)

(
̂Amch tD
m
λ (Pνf)

)
P

(α). (3.24)

Applying the inverse transformation F−1
P to equality (3.24), we obtain

∆m
ch tPνf = Cm(ch t)Amch tDm

λ (Pνf)

= Cm (ch t)Amch tDm
λ

(
f +∆m

ch 1
ν
f
)

= Cm (ch t)Amch t
(
Dm
λ f +∆m

ch 1
ν
Dm
λ f
)
,

from where taking into account (3.22) and (1.10), we have

‖∆m
ch t Pνf‖p,λ .

(
sh

t

2

)2m
‖Amch tDm

λ f‖p,λ .

(
sh

t

2

)2m
‖Dm

λ f‖p,λ , (3.25)

then the inequality (3.17) is proved.
Thus Proposition 3.3 is proved.
Here is a useful corollary that follows from inequality (3.16) and the definition of the modulus of

smoothness.
Corollary 3.1. For f ∈ Lp,λ, 1 ≤ p ≤ ∞, ν > 0, m ∈ N the following inequality holds

‖Dm
λ (Pνf)‖p,λ . ν2mωm

(
f,

1
ν

)
p,λ

. (3.26)

Then it follows from the fact that

1
sh 2m 1

2ν
≤ 1( 1

2ν
)2m = 4m ν2m.

The following proposition and corollary can be regarded as analogous of the classical Boas inequality
(see [41], p. 266).
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Proposition 3.4. Let f ∈Wm
p,λ, 1 ≤ p ≤ ∞, ν > 0. For every numbers δ and t such that 0 < δ < t <

1
ν

the following inequality (
sh

δ

2

)−2m
‖∆m

ch δf‖p,λ .

(
sh

t

2

)−2m
‖∆m

ch tf‖p,λ (3.27)

is valid.
Proof. From (3.2) we have:

∆m
ch δf (ch x) = Cm (ch δ) Amch δDm

λ f (ch x) (3.28)

and
∆m
ch tf (ch x) = Cm (ch t) Amch tDm

λ f (ch x) . (3.29)

Then the following equalities follow:

‖∆m
ch δf‖p,λ = Cm (ch δ) ‖Amch δDm

λ f‖p,λ ,

‖∆m
ch tf‖p,λ = Cm (ch t) ‖Amch tDm

λ f‖p,λ .

From the continuity of the operator Ach t in Wm
p,λ, we have

lim
t→0
‖∆m

ch t f/Cm (ch t)‖p,λ = lim
δ→0
‖∆m

ch δ f/Cm (ch δ)‖p,λ = ‖Dm
λ f‖p,λ .

Since t→ 0 involve δ → 0 that

‖∆m
ch t f‖p,λ /Cm (ch t) ∼ ‖∆m

ch δ f‖p,λ /Cm (ch δ) ïðè t→ 0, δ → 0

from this it follows that 0 < δ < t <
1
ν

Cm (ch t) ‖∆m
ch δ f‖p,λ ∼ Cm (ch δ) ‖∆m

ch t f‖p,λ .

Taking into account (3.22), we obtain (3.27).
Thus Proposition 3.4 is proved.

Corollary 3.2. Let f ∈Wm
p,λ, 1 ≤ p ≤ ∞, ν > 0, m ∈ N. For any t ∈

(
0, 1

ν

]
inequality

‖Dm
λ f‖p,λ .

(
sh

t

2

)−2m
‖∆m

ch t f‖p,λ (3.30)

is valid. Taking into account of the continuity of operator Ach t in Wm
p,λ and also relation (see [14], Lemma

5)
Cm (ch t) ∼ c (m,λ) (ch t− 1)m at t→ 0,

where
c (m,λ ) = 1

m! (2λ+ 1) (2λ+ 3) .... (2λ+ 2m− 1) .

From (3.28) we have

lim
δ→0

∥∥∥∥ ∆m
ch δf

Cm (ch δ)

∥∥∥∥
p,λ

= lim
δ→0
‖∆m

ch δ (Dm
λ f)‖p,λ = ‖Dm

λ f‖p,λ .

If we take limit as δ → 0 in (3.27), then we obtain (3.30).
Inequality (3.30) is an analogue of the classical Nikol’skii-Stechkin inequality (see [29], [41]).
Taking into account that sh t

2 ≥
t

2 from (3.30) we obtain

‖Dm
λ f‖p,λ .

(
2
t

)2m
2m ‖f‖p, λ .
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Putting here t = 1
ν
, we have the inequality

‖Dm
λ f‖p,λ . ν2m ‖f‖p,λ . (3.31)

From this at m = 1 the assertion of Theorem 1.3 follows.
Proposition 3.5. Let f ∈Wm

p,λ, 1 ≤ p ≤ ∞, and ν > 0. For any number δ and t such that 0 < δ < t <
1
ν

the following inequality holds:(
sh

δ

2

)2m
‖∆m

ch δPν f‖p,λ .

(
sh

t

2

)−2m
‖∆m

ch δPν f‖p,λ . (3.32)

Proof. Changing into (3.28) f by Pν (f) we have

∆m
ch δPνf (ch x) = Cm (ch δ)Amch δDm

λ Pνf (ch x) .

From here taking into account the inequalities (3.23) and (3.30), we obtain

‖∆m
ch δPνf‖p,λ ≤ Cm (ch δ) ‖Dm

λ Pνf‖p,λ

.

(
sh

δ

2

)2m(
sh

t

2

)−2m
‖∆m

ch tPνf‖p,λ ,

from here (3.32) follows.
Thus Proposition 3.5 is proved.

Lemma 3.12. Let g ∈Wm
p,λ, 1 ≤ p ≤ ∞, t > 0. Then the following estimate holds:

ωm (g, t)p,λ .

(
sh

t

2

)2m
‖Dm

λ g‖p,λ . (3.33)

Proof. Let u ∈ (0, t] , ν = 1
t
. From equality

∆m
chug = ∆m

chu (g − Pνf) +∆m
chuPνf,

using consecutive the inequalities (1.10), (3.17) and Theorem 3.1 we obtain

‖∆m
chug‖p,λ ≤ 2m ‖g − Pνf‖p,λ + ‖∆m

chuPνf‖p,λ

≤ 2mEν (f)p,λ +
(
sh

u

2

)2m
‖Dm

λ g‖p,λ . t2m ‖Dm
λ g‖p,λ

+
(
sh

t

2

)2m
‖Dm

λ g‖p,λ .

(
sh

t

2

)2m

‖Dm
λ g‖p,λ ,

from this the inequality (3.33) follows .
Thus Lemma 3.12 is proved.

Proposition 3.6. For any function f ∈ Lp,λ, 1 ≤ p ≤ ∞ and number m ∈ N, t > 0 the inequality is
valid:

ωm (f, t)p,λ . Km (f, t) . (3.34)

Proof. Let g ∈Wm
p,λ. Using smoothness property of the modulus and Lemma 3.12, we obtain

ωm (f, t)p,λ ≤ ωm (f − g, t)p,λ + ωm (g, t)p,λ

. ‖f − g‖p,λ +
(
sh

t

2

)2m
‖Dm

λ g‖p,λ . ‖f − g‖p,λ + t2m ‖Dm
λ g‖p,λ ,

as sh t ∼ t at t→ 0. Taking the infimum over all g ∈Wm
p,λ, we obtain inequality (3.34).

Thus Proposition 3.6 is proved.
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4 Proof of the Theorems 1.1 and 1.2.

We now prove an analogue of Jackson’s direct theorem, from which we shall deduce Theorem 1.1.
Theorem 4.1. For f ∈ Lp,λ, 1 ≤ p ≤ ∞, k ∈ N, ν > 0 the following inequality holds

Eν (f)p,λ ≤ ωk

(
f,

1
ν

)
p,λ

. (4.1)

Proof. Since
Eν (f)p,λ ≤ ‖f − Pνf‖p,λ ,

∥∥∥∆k
ch 1

ν
f
∥∥∥
p,λ
≤ ωk

(
f,

1
ν

)
p,λ

,

then it is enough to prove the inequality

‖f − Pνf‖p,λ ≤
∥∥∥∆k

ch 1
ν
f
∥∥∥
p,λ

. (4.2)

for prove (4.1). From (3.23) we have

Pνf (ch x) = ∆n
ch 1

ν
f (ch x) + f (ch x) ,

from this (4.2) follows. Thus Theorem 4.1 is proved.
Proof of Theorem 1.1. Let f ∈Wm

p,λ. Taking in Theorem 4.1 k+m instead of k, we obtain the following
inequality

Eν (f)p,λ ≤ ωk+m

(
f,

1
ν

)
p,λ

. (4.3)

From the smoothness property of the modulus it follows that

ωk+m (f, t)p,λ . ν−2mωk

(
Dm
λ f,

1
ν

)
p,λ

,

from where we have
Eν (f)p,λ . ν−2mωk

(
Dm
λ f,

1
ν

)
p,λ

.

Thus the proof of the theorem is completed.
Proof of Theorem 1.2. We ought to justice of the correlation

Km (f, t) ' ωm (f, t)p,λ , t→ 0. (4.4)

If we take g = Pνf , ν > 0, then from the definition of Km (f, t) it follows that

Km (f, t) ≤ ‖f − Pνf‖p,λ + t2m ‖Dm
λ (Pνf)‖p,λ . (4.5)

Using inequality (3.26) in (4.5), we obtain

Km (f, t) . Eν (f)p,λ + ν2mωm

(
f,

1
ν

)
p,λ

.
(

1 + (tν)2m
)
ωm

(
f,

1
ν

)
p,λ

. (4.6)

Putting in (4.6) ν = 1
t
, we obtain

Km (f, t) . ωm (f, t)p,λ . (4.7)

The correlation (4.4) follows from (3.34) and (4.7).
Theorem 1.2 is proved.
In the following proposition which will be derived from Theorem 1.2, we state for ωm (f, t)p,λ.

Advances in Analysis, Vol. 2, No. 3, July 2017 189

Copyright © 2017 Isaac Scientific Publishing AAN



Proposition 4.1. For f ∈ Lp, λ, t > 0, δ > 0 the relation

ωm (f, δt)p,λ . max
{

1, δ2m}ωm (f, t)p,λ (4.8)

is valid.
Proof. Let 0 < δ ≤ 1, then the definition of functional we have

Km (f, δt) = inf
{
‖f − g‖p,λ + (δt)m ‖Dm

λ f‖p,λ : g ∈Wm
p,λ

}
≤ inf

{
‖f − g‖p,λ + tm ‖Dm

λ f‖p,λ : g ∈Wm
p,λ

}
.

And at δ > 1
Km (f, δt) ≤ inf

{
δ2m ‖f − g‖p,λ + δ2mtm ‖Dm

λ f‖p,λ : g ∈Wm
p,λ

}
= δ2m inf

{
‖f − g‖p,λ + tm ‖Dm

λ f‖p,λ : g ∈Wm
p,λ

}
= δ2mKm (f, t) .

From this and (4.4), (4.8) follows.

5 Nikol’skii-Besov Space and Their Approximation Characteristics. The
Embeddings Theorems

In this section we deal with the spaces Hr
p,λ and Brp,q,λ of Nikol’skii-Besov type and describe them in

terms of the best approximation by functions on class M (ν, p, λ). The definition of spaces Hr
p,λ and Brp,q,λ

can be found in Section 1. We will show that these spaces are Banach spaces. For these at first we will
prove the completeness of the space Lp,λ.
Proposition 5.1. The space Lp,λ, 1 ≤ p <∞ is complete.
Proof. Let {fn(chx)} , n ∈ N be the sequence of functions in the space Lp,λ[0,∞] such that

‖fn − fm‖p,λ → 0 as n,m→∞.

From this it follows that
∞∫

0

|fn(chx)− fm(chx)|p sh2λxdx→ 0 as n,m→∞.

From the sequence {fn(chx)} we choose a subsequence {fnk(chx)} such that

A =
∞∑
k=1

∞∫
0

∣∣fnk+1(chx)− fnk(chx)
∣∣p sh2λx dx <∞.

Then, for any ` ∈ N, we can write
∞∫

0

(∑̀
k=1

∣∣fnk+1(chx)− fnk(chx)
∣∣)p sh2λx dx

≤
∑̀
k=1

∞∫
0

∣∣fnk+1(chx)− fnk(chx)
∣∣p sh2λ dx ≤ A.

By the Lebesgue’s dominated convergence theorem as `→∞, we obtain
∞∫

0

( ∞∑
k=1

∣∣fnk+1(chx)− fnk(chx)
∣∣)p sh2λxdx ≤ A. (5.1)
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Therefore,
∞∑
k=1

∣∣fnk+1(chx)− fnk(chx)
∣∣ <∞ for a.e. x ∈ [0,∞).

Hence, in view of the completeness of real axis, the sequence {fnk(chx)} is convergent for a.e. x ∈ [0,∞).
Denote by f the measurable function defined as

f(chx) =
{

lim
k→∞

fnk(chx) for a.e.x ∈ [0,∞),
0, otherwise.

Thus we have proved that fnk(chx)→ f(chx) for a.e. x ∈ [0,∞). By Minkowski inequality and inequality
(5.1), for all k ∈ N we have

‖fnk‖p,λ =

∥∥∥∥∥fn1 +
k−1∑
ν=1

(
fnν+1 − fnν

)∥∥∥∥∥
p,λ

≤

∥∥∥∥∥|fn1 |+
k−1∑
ν=1

∣∣fnν+1 − fnν
∣∣∥∥∥∥∥
p,λ

≤ ‖fn1‖p,λ +

∥∥∥∥∥
k−1∑
ν=1

∣∣fnν+1 − fnν
∣∣∥∥∥∥∥
p,λ

≤ ‖fn1‖p,λ +A.

Passing to the limit as k →∞, we obtain that

‖fnk‖p,λ ≤ const, a.e. f ∈ Lp,λ[0,∞).

Let us now show that
‖f − fnk‖p,λ → 0 as k →∞.

Indeed taking into account (5.1) we have

‖f − fnk‖p,λ =

∥∥∥∥∥
∞∑
ν=k

(
fnν+1 − fnν

)∥∥∥∥∥
p,λ

≤

∥∥∥∥∥
∞∑
ν=k

∣∣fnν+1 − fnν
∣∣∥∥∥∥∥
p,λ

≤

∥∥∥∥∥
∞∑
ν=1

∣∣fnν+1 − fnν
∣∣∥∥∥∥∥
p,λ

≤ A
1
p .

By the Lebesgue’s dominated convergence theorem

‖f − fnk‖p,λ → 0 as k →∞.

Finally, we prove that the sequence {fnk(chx)} is convergent in Lp,λ. Since the sequence {fnk(chx)} is
fundamental, it follows that for a given ε > 0 there exists a number Nε such that, for all m,n > Nε

‖fn − fm‖p,λ <
ε

2 .

Choose the number nk > Nε so that
‖f − fnk‖p,λ <

ε

2 .

But then we have
‖f − fn‖p,λ ≤ ‖f − fnk‖p,λ + ‖fn − fnk‖p,λ < ε.

The proof of Proposition 5.1 is complete.
Now we prove the completeness of the space Hr

p,λ. By inequality (3.31) for all fn, fm ∈ Hr
p,λ we have

‖Ds
λfn −Ds

λfm‖p,λ = ‖Ds
λ (fn − fm)‖p,λ . ‖fn − fm‖p,λ . (5.2)

We will show that Hr
p,λ is a Banach space with the norm

‖f‖Hr
p,λ

= ‖f‖p,λ + sup
δ>0

ωk (Ds
λf, δ)p,λ
δr−2s . (5.3)
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We can write

‖fn − fm‖Hr
p,λ

= ‖fn − fm‖p,λ + sup
δ>0

ωk (Ds
λfn −Ds

λfm, δ)p,λ
δr−2s . (5.4)

Since (see Proposition 3.1 property 3)

ωk (Ds
λf, δ)p,λ ≤ 2k ‖Ds

λf‖p,λ , (5.5)

then

ωk (Ds
λf, δ)p,λ
δr−2s . ‖Ds

λf‖p,λ . (5.6)

At δ ≥ 1 the inequality (5.6) is obvious, but for 0 < δ < 1 it is submitted to condition 2m−1 < 1
δ < 2m

(evidently, m ≥ 1). Taking into account (5.2) and (5.6) in (5.4), we obtain

‖fn − fm‖Hr
p,λ
≤ ‖fn − fm‖p,λ + ‖Ds

λfn −Ds
λfm‖p,λ . ‖fn − fm‖p,λ . (5.7)

Let for every ε > 0, ‖fn − fm‖p,λ < ε, at n,m > N . Then from (5.7) it follows that

‖fn − fm‖Hr
p,λ

< ε, for n, m > N.

Because of completeness of the space Lp,λ we are able to write

‖fn − f‖Hr
p,λ
≤ ‖fn − f‖p,λ < ε, ïðè n > N,

from this the completeness of the space Hr
p,λ follows.

Now we show that Brp,q,λ is a Banach space. Let for the class Brp,q,λ for every ε > 0

‖fn − fm‖Br
p,q,λ

= ‖fn − fm‖p,λ +
(∫ ∞

0

ωk (Ds
λfn −Ds

λfm, δ)
q
p,λ

δ(r−2s)q
dδ
δ

) 1
q

< ε,

(n,m > N, k ≥ 1; s = 1, 2, ...).

By the Lebesgue’s dominated convergence theorem as m→∞, we obtain

‖fn − f‖Br
p,q,λ

= ‖fn − f‖p,λ +
(∫ ∞

0

ωk (Ds
λfn −Ds

λf, δ)p,λ
δ(r−2s)q

dδ
δ

) 1
q

< ε

for n > N . Then the completeness of the space Brp,q,λ follows. For these spaces the invested theorems are
obtained. Let c1, c2, .... denote positive constants that are different in different places and can depend on
some parameters.

To prove inverse theorems of approximation theory we use inequalities of Bernstein type. Moreover
for the inequality (3.31) we need still one inequality of Bernstein type.
Lemma 5.1. For Φ ∈M (ν, p, λ) and t > 0 the following inequality holds

‖∆m
ch tΦ‖p,λ . (νt)2m ‖Φ‖p,λ . (5.8)

Proof. From inequalities (3.3) and (3.31) it follows that

‖∆m
ch t Φ‖p,λ . t2m ‖Dm

λ Φ‖p,λ . (tν)2m ‖Φ‖p,λ . (5.9)

Inequality (5.9) implies that (5.8) holds. Thus Lemma 5.1 is proved.

In what follows k, s ∈ Z+, r > 0, 2k > r − 2s, ν ≥ 1, 1 ≤ q ≤ ∞.
We put for brevity ‖ · ‖ := ‖ · ‖p,λ.
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Proof of Theorem 1.4 the same now of the Theorem 1.2 in [13].
Let

h̃rp,λ(f) : = sup
ν≥1

νrEν(f)p,λ.

It follows from Theorem 1.4 that f ∈ Lp,λ belongs to Hr
p,λ if and only if h̃rp,λ(f) <∞, and the norm

in Hr
p,λ is equivalent to the norm

1 ‖f‖Hr
p,λ

:= ‖f‖p,λ + h̃rp,λ(f).

In particular for different k, s are such that 2k > r− 2s > 0, the spaces Hr
p,λ coincide and their norms

are equivalent.
In the following theorem we obtain various equivalent norms in the spaces Brp,q,λ. In particular some

of them will follow Theorem 1.5. As before let r > 0 , a > 1 be real number, k and s be arbitrary non
negative integers such that 2k > r − 2s > 0. We shall say that a function f(x) belongs to the space
jBrp,q,λ , j = 1, 2, 3, 4, if f ∈ Lp,λ and the seminorm jbrp,q,λ, is finite, where

1brp,q,λ(f) :=


(∞∫

0

(ωk(Dsλf,δ)
p,λ)q

δ(r−2s)q
dδ
δ

) 1
q

if 1 ≤ q <∞ ,

sup
δ>0

ωk(Dsλf,δ)
p,λ

δr−2s if q =∞,

2brp,q,λ (f) : =


(
a∫
0

(ωk(Dsλf,δ)
p,λ)q

δ(r−2s)q
dδ
δ

) 1
q

if 1 ≤ q <∞ ,

sup
0<δ≤a

δ−(r−2s)ωk (Ds
λf, δ)p,λ if q =∞ ,

3brp,q,λ (f) : =


(
∞∑
j=0

ajrq (Eaj (f)p,λ)q
) 1
q

if 1 ≤ q <∞ ,

sup
j∈Z+

ajrEaj (f)p,λ if q =∞ ,

4brp,q,λ (f) : =


inf
(
∞∑
j=0

ajrq ‖Qaj‖
q
p,λ

) 1
q

if 1 ≤ q <∞ ,

inf sup
j∈Z+

ajr ‖Qaj‖p,λ if q =∞ .

The infimum is taken over all representations of f in the form of series

f(x) =
∞∑
j=0

Qaj (x) , Qaj (x) ∈M(aj , p, λ)

convergent in Lp,λ. The jBrp,q,λ are Banach spaces with respect to the norms

‖f‖jBr
p,q,λ

: = ‖f‖p,λ +j brp,q,λ.

Theorem 5.1. The spaces jBrp,q,λ, j = 1, 2, 3, 4 coincide and their norms (5.19) are equivalent (that is,
the Banach spaces jBrp,q,λ are equivalent).

We mark that Theorem (1.5) follows from the equivalence of the Banach spaces 1Brp,q,λ and 3Brp,q,λ.

For brevity we use the notation jBr := jBrp,q,λ, jb := jbrp,q,λ, EN (f) : = EN (f)p,q,λ, ‖f‖ := ‖f‖p,λ and
so on. The expression V1 ↪→ V2 means that the Banach space V1 is embedded in the Banach space V2.

Proof of Theorem 5.1 is analogous of the Theorem 5.1 from [13].
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