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Abstract In this paper, we investigate the existence and uniqueness of solution to boundary value
problems for a class of nonlinear fuzzy factional differential equations involving the fuzzy gH-
fractional Caputo derivative. By means of the Schauder fixed point theorem in semi-linear spaces
and integral inequality technique, some qualitative results of solutions are obtained. An example
is provided from which new results are found.
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1 Introduction

The study of fuzzy differential equations forms a suitable setting for the mathematical modeling of
real world problems in which uncertainty or vagueness pervades. As from some concepts of generalized
fuzzy derivative begin to emerge in the mid-2000s, this field has developed rapidly and attracted much
attention of many scholars. In 2013, Khastan et al. studied the existence of solutions to a class of
first-order linear fuzzy differential equations subject to periodic boundary conditions (cf. [1]). In 2016,
Wang studied two-point boundary value problems for a class of first-order nonlinear fuzzy differential
equations (cf. [2]). Nowadays, the theory of fuzzy differential equations could be applicable in many areas,
for instance, physics, thermodynamics, biology, medicine, chemistry and many other fields of science (see
e. g., [3,4,5,6,7] and references contained therein).

In 2010, the concept of the solution to fuzzy fractional differential equations (FFDEs) was proposed
by Agarwal et al. (cf. [8]). In 2013, the classical Schauder fixed point theorem has been extended to
semi-linear Banach spaces and the authors discussed the existence and uniqueness of solution to the
following integral equations

u(t) = u0(t) ⊕ Iqf(t, u(t)), 0 < q < 1,

which provides a new way to consider FFDEs because semi-linear metric space is a generalization of
fuzzy number space (cf. [9]). The establishment of the basic theory of semi-linear metric space constructs
a new framework for fuzzy analysis. In 2014, Khastan et al. (cf. [10]) utilized the generalized Schauder
fixed point theorem to study the existence of solutions to FFDEs

Dqu(t) = f(t, u(t)), 0 < q < 1.

Meanwhile, many experts have made a great number of outstanding contributions in this vigorous and
interesting field under generalized Hukuhara differentiability. We can refer to papers [11,12,13,14,15] etc.

Boundary value problems for FFDEs, which are the combination of fuzzy analysis and boundary
value problems for fractional differential equations, are a very magical and practical field. However, the
works above are curbed in the order q ∈ (0, 1] as far as we know. In this paper, we initiate to consider
the existence and uniqueness of solution to a class of FFDEs

C
gHDq

∗u(t) = f(t, u(t)), 0 < t < T (1.1)

subject to boundary conditions

u(0) = λu(T ), u′
gH(0) = u0 ∈ E1

c , (1.2)
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where C
gHDq

∗ is the fuzzy gH-fractional Caputo derivative, q ∈ (1, 2] is a real number, f : [0, T ] × E1
c →

E1
c \ R is a continuous and compact fuzzy-valued function and λ ∈ (0, 1) ∪ (1, +∞) is a parameter. We

utilize Schauder fixed point theorem in semi-linear spaces to study the existence of solutions to boundary
value problems (1.1)–(1.2). This work is motivated by papers [2,9,10]. Most of all, this may be the first
time to consider such problem about “higher order” fuzzy fractional differential equations.

The remainder of this paper is organized as follows. In Section 2, we collect some basic definitions,
properties and lemmas about fuzzy set theory and fractional calculus theory. In Section 3, we investigate
the existence and uniqueness of solution to boundary value problems (1.1)–(1.2). In Section 4, an example
is given to illustrate our main results. In Section 5, conclusion and some recommendations for future
work are drawn.

2 Preliminaries

For convenience, we give some definitions and introduce the necessary notations and lemmas (see e. g.,
monographs [16,17,18,19] and references contained therein) which will be used in the following sections.

Let E1 be the space of all fuzzy sets in R, that is, E1 is the space of all functions u : R → [0, 1]
satisfying the following conditions:

(i) u is normal, i. e., there exists x0 ∈ R, such that u(x0) = 1;
(ii) [u]0 = {x ∈ R|u(x) > 0} is compact;
(iii) u is a convex fuzzy-valued function, i. e., u(λx1 + (1 − λ)x2) ≥ min{u(x1), u(x2)} for any x1, x2 ∈ R

and λ ∈ (0, 1);
(iv) u is an upper semi-continuous function on R, i. e., u(x0) ≥ lim

x→x+
0

u(x) for any x0 ∈ R.

Usually, E1 is also called the space of fuzzy numbers. And R ⊆ E1 if real number set R is understood as
R = {χ{x}| x is usual real number}.

Define u and u respectively as the lower and upper branches of the fuzzy set u ∈ E1, respectively.
The set

[u]α = {x ∈ R|u(x) ≥ α} := [uα, uα]

is called the α-level set of the fuzzy set u, where α ∈ (0, 1]. From (i)-(iv), it follows that the α-level set
[u]α ∈ Kc(R) for all α ∈ [0, 1], where Kc(R) is the family of all nonempty, compact and convex subsets
of R.

The following operations, which are based on a generalized Zadeh’s extension principle, define a
semi-linear structure on E1:

– (u ⊕ v)(x) = sup
x1+x2=x

min{u(x1), v(x2)};

– (λu)(x) =

{
u(x/λ), λ ̸= 0,

χ{0}, λ = 0,

where u, v ∈ E1, λ ∈ R. The α-level set of fuzzy sets satisfies the following properties (see [17]):

– [u ⊕ v]α = [u]α + [v]α = [uα + vα, uα + vα];

– [λu]α = λ[u]α =

{
[λuα, λuα], λ ≥ 0,

[λuα, λuα], λ < 0.

Here, [u]α +[v]α means the usual addition of two subsets of R and λ[u]α means the usual product between
a scalar and a subset of R.

Lemma 2.1. [20]

(i) If we denote 0̂ = χ{0} then 0̂ ∈ E1 is neutral element with respect to ⊕, i. e., u ⊕ 0̂ = 0̂ ⊕ u = u, for
all u ∈ E1;

(ii) With respect to 0̂, none of u ∈ E1 \ R has inverse in E1(with respect to ⊕);
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(iii) For any a, b ∈ R, with a, b ≥ 0 or a, b ≤ 0 and any u ∈ E1, we have (a + b)u = au ⊕ bu. For general
a, b ∈ R, the above property does not hold;

(iv) For any λ ∈ R and any u, v ∈ E1, we have λ(u ⊕ v) = λu ⊕ λv;
(v) For any λ, µ ∈ R and any u, ∈ E1, we have λ(µu) = (λµ)u.

Lemma 2.2. Suppose that λ ∈ R, w ∈ E1 \ R, then

u = λ(u ⊕ w) (2.1)

and
v = λv ⊕ w (2.2)

have solutions in E1 \ R if and only if λ ∈ (−1, 1). In addition,

u =

{
λ

1−λ w, λ ∈ [0, 1),
λ2

1−λ2 w ⊕ λ
1−λ2 w, λ ∈ (−1, 0)

and v =

{
1

1−λ w, λ ∈ [0, 1),
1

1−λ2 w ⊕ λ
1−λ2 w, λ ∈ (−1, 0).

Proof. Necessity has been given by [2, Lemma 2]. Here we only discuss the sufficiency. On the one
hand, set u1 = λ

1−λ w ∈ E1 \R when λ ∈ [0, 1). From Lemma 2.1, for the right-hand side of fuzzy algebraic
equation (2.1), we have

λ(u1 ⊕ w) = λ

(
λ

1 − λ
w ⊕ w

)
= λ2

1 − λ
w ⊕ λw = λ

1 − λ
w = u1,

which means u1 is a solution to equation (2.1) when λ ∈ [0, 1). On the other hand, let u2 = λ2

1−λ2 w⊕ λ
1−λ2 w

when λ ∈ (−1, 0). For the right-hand side of equation (2.1), we have

λ(u2 ⊕ w) = λ3

1 − λ2 w ⊕ λ2

1 − λ2 w ⊕ λw = λ

1 − λ2 w ⊕ λ2

1 − λ2 w = u2,

which means u2 is a solution to equation (2.1) when λ ∈ (−1, 0). Therefore, equation (2.1) has solution
when λ ∈ (−1, 1). As a similar argument as above, we can discuss fuzzy algebraic equation (2.2). So we
omit here. The proof is completed.

As a generalization of Hausdorff-Pompeiu metric on compact and convex set, a metric d on E1 can
be defined by

d(u, v) = sup
α∈[0,1]

dH([u]α, [v]α) = sup
α∈[0,1]

max{|uα − vα|, |uα − vα|},

where u, v ∈ E1 and dH is the Hausdorff-Pompeiu metric.

Definition 2.1. [21] Let u, v ∈ E1. If there exists unique fuzzy number w ∈ E1 such that v ⊕ w = u,
then w is called the H-difference of u and v, which is denoted u ⊖ v.

Lemma 2.3. [17,18] If u, v, x, y ∈ E1, then

(i) d(u ⊕ x, v ⊕ x) = d(u, v);
(ii) d(λu, λv) = |λ|d(u, v), λ ∈ R;

(iii) d(u ⊕ x, v ⊕ y) ≤ d(u, v) + d(x, y);
(iv) d(λu, µu) = |λ − µ|d(u, 0̂), λ, µ ≥ 0;
(v) d(u ⊖ x, v ⊖ y) ≤ d(u, v) + d(x, y), provided the differences u ⊖ x and v ⊖ y exist;

(vi) (E1, d) is a complete metric space.

Denote E1
c as the space of fuzzy number u ∈ E1 with the property that the function α → [u]α is

continuous in the meaning of the Hausdorff-Pompeiu metric on [0, 1]. According to Theorem 3.1 in [22],
we know (E1

c , d) is a complete metric space. Let CE[a, b] denote a space of fuzzy-valued functions which
are continuous on [a, b]. Then

(
CE([a, b],E1

c

)
, D
)

is a complete metric space, where

D(u, v) := sup
t∈[0,1]

d(u(t), v(t)).

Next, we list some definitions and lemmas about relative compactness in E1
c .
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Definition 2.2. [22] A subset A ⊆ E1
c is said to be compact-supported if there exists a compact set

K ⊆ R such that [y]0 ⊆ K for all y ∈ A.

Definition 2.3. [22] A subset A ⊆ E1
c is said to be level-equicontinuous at α0 ∈ [0, 1] if for all ε > 0,

there exists δ > 0 such that |α − α0| < δ implies dH([y]α, [y]α0) < ε, for all y ∈ A.

A is level-equicontinuous on [0, 1] if A is level-equicontinuous at α for all α ∈ [0, 1].

Lemma 2.4. (Arzelá-Ascoli Theorem)[22, Theorem 4.1] Let M be a compact metric space, N be a
metric space and E ⊆ CE(M, N). Then E is relatively compact if and only if

(i) E equicontinuous;
(ii) For every a ∈ M , the set E(a) = {f(a)|f ∈ E} is relatively compact in N .

Lemma 2.5. [22, Theorem 4.5] Let A be a compact-supported subset of E1
c. Then the following

assertions are equivalent:

(a) A is a relatively compact subset of (E1
c , d);

(b) A is level-equicontinuous on [0, 1].

Definition 2.4. [10] A continuous function f : [0, 1] × E1
c → E1

c is said to be compact if for every
subinterval I ⊆ [0, 1] and every bounded subset A ⊆ E1

c , then f(I × A) is relatively compact in (E1
c , d).

Definition 2.5. [17, Definition 2.4.1] The Aumann integral of a fuzzy-valued function F : I → E1

over I is defined levelwise[∫
I

F (t)dt

]α

=
∫

I

Fα(t)dt =
{∫

I

g(t)dt : g ∈ S(Fα)
}

for all α ∈ (0, 1], where S(Fα) is the subset of all integrable selections of set-valued mapping Fα.

Lemma 2.6. [23] Let F, G : I → E1 be integrable and λ ∈ R. Then

(i)
∫

I
(F ⊕ G) =

∫
I

F ⊕
∫

I
G;

(ii)
∫

I
(λF ) = λ

∫
I

F ;
(iii) d(F, G) is integrable on I;
(iv) d

( ∫
I

F,
∫

I
G
)

≤
∫

I
d(F, G).

Definition 2.6. [10, Definition 2.10] Let F ∈ CE(a, b]
∩

LE(a, b]. The fuzzy fractional integral of
order q > 0 of F is defined as

IqF (t) = 1
Γ (q)

∫ t

a

(t − s)q−1F (s)ds, t ∈ (a, b)

provided that the integral in the right-hand side is pointwise well-defined. For q = 1 we obtain I1F (t) =∫ t

a
F (s)ds, that is, the classical integral operator.

Lemma 2.7. [24] Let F : [a, b] → E1 be an integrable fuzzy function and p, q > 0, then

IpIqF (t) = Ip+qF (t).

Definition 2.7. [25,26] Given two fuzzy numbers u, v ∈ E1, the generalized Hukuhara difference
(gH-difference for short) is the fuzzy number w, if it exists, such that

u ⊖gH v = w ⇐⇒

{
(i) u = v ⊕ w,

or (ii) v = u ⊕ (−1)w.

It is easy to show that (i) and (ii) are both valid if and only if w is a crisp number.
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Definition 2.8. [26] Let t0 ∈ (a, b) and h be such that t0 +h ∈ (a, b). Then the generalized Hukuhara
derivative of a function F : (a, b) → E1 at t0 is defined as

F ′
gH(t0) = lim

h→0

1
h

[F (t0 + h) ⊖gH F (t0)]. (2.3)

If F ′
gH(t0) ∈ E1 satisfying (2.3) exists, we say that F is generalized Hukuhara differentiable (gH-

differentiable for short) at t0.

Remark 2.1. Let F : [a, b] → E1. One says F is twice gH-differentiable at t0 ∈ (a, b), if F ′
gH(t)

exists on a neighborhood of t0 as a fuzzy-valued function and it is gH-differentiable at t0. Similarly, we
can define higher order gH-derivatives of fuzzy-valued function.

Definition 2.9. [26] Let F : [a, b] → E1 and t0 ∈ (a, b) with F α(t) and F
α(t) both differentiable at

t0. We say that F is (i)-gH-differentiable at t0 if[
F ′

gH(t0)
]α = [(F α)′(t0), (F α)′(t0)], 0 ≤ α ≤ 1,

and F is (ii)-gH-differentiable at t0 if[
F ′

gH(t0)
]α = [(F α)′(t0), (F α)′(t0)], 0 ≤ α ≤ 1.

Definition 2.10. [11, Definition 3.1] Let F
(m)
gH ∈ CE[a, b]

∩
LE[a, b]. The fuzzy gH-fractional Caputo

differentiability of fuzzy-valued function F is defined as following:(C

gH
Dq

∗F
)
(t) = (Im−qF

(m)
gH )(t) = 1

Γ (m − q)

∫ t

a

(t − s)m−q−1F
(m)
gH (s)ds,

where m − 1 < q ≤ m, m ∈ N+ and t ≥ a.

Definition 2.11. [11, Definition 3.4] Let F : [a, b] → E1 be fuzzy gH-fractional Caputo differentiable
at t0 ∈ (a, b). We say that F is CF [(i)-gH]-differentiable at t0 if[(C

gH
Dq

∗F
)
(t0)

]α

= [(CDq
∗F α)(t0), (CDq

∗F
α)(t0)], 0 ≤ α ≤ 1,

and F is CF [(ii)-gH]-differentiable at t0 if[(C

gH
Dq

∗F
)
(t0)

]α

= [(CDq
∗F

α)(t0), (CDq
∗F α)(t0)], 0 ≤ α ≤ 1,

where CDq
∗ is the Caputo fractional derivative of a real-valued function.

According to Definition 2.10, we can get the following lemma immediately.

Lemma 2.8. Let F have ⌈q⌉th-order Caputo gH-derivative and q > 1, where ⌈q⌉ denotes the ceiling
function of the number q. Then (C

gH
Dq

∗F
)
(t) =

(C

gH
Dq−1

∗ F ′
gH

)
(t).

Remark 2.2. From the lemma above, it is not difficult to see
(C

gH
Dq

∗F
(m)
gH

)
(t) =

(C

gH
Dq+m

∗ F
)
(t)

if F
(m)
gH (t) and

(C

gH
Dq+m

∗ F
)
(t) exist for m ∈ N and q ∈ R+. But, it is not always true for the case(C

gH
Dq1

∗ · C
gHDq2

∗ F
)
(t) =

(C

gH
Dq1+q2

∗ F
)
(t) where q1, q2 ∈ R+, even

(C

gH
Dq1+q2

∗ F
)
(t) exists.

Lemma 2.9. [11] Let 0 < q ≤ 1 and t0 ∈ R, initial value problem{
C
gHDq

∗u(t) = f(t, u(t)),
u(t0) = u0 ∈ E1

is equivalent to the following integral equation

u(t) ⊖gH u(t0) = 1
Γ (q)

∫ t

t0

(t − s)q−1f(s, u(s))ds. (2.4)
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Remark 2.3. In particular, two cases of existence of the generalized H-difference imply that equation
(2.4) is actually a unified formulation of the following integral equations

u(t) = u0 ⊕ 1
Γ (q)

∫ t

t0

(t − s)q−1f(s, u(s))ds

if u(t) is CF [(i)-gH]-differentiable and

u(t) = u0 ⊖ −1
Γ (q)

∫ t

t0

(t − s)q−1f(s, u(s))ds

if u(t) is CF [(ii)-gH]-differentiable.

Remark 2.4. Take q = 1 in Lemma 2.9. Then we immediately get a similar result in integer order
case.

Lemma 2.10. Let 1 < q ≤ 2. Assume that f : [0, T ] × E1 → E1 is a continuous function. A
fuzzy-valued function u : [0, T ] → E1 is a solution to the initial value problem

C
gHDq

∗u(t) = f(t, u(t)), (2.5)
u(0) = k1 ∈ E1, (2.6)
u′

gH(0) = k2 ∈ E1 (2.7)

if and only if u satisfies one of the following fuzzy integral equations:

u(t) = k1 ⊕ k2t ⊕ 1
Γ (q)

∫ t

0
(t − s)q−1f(s, u(s))ds, (2.8)

where u is (i)-gH-differentiable and u′
gH is CF [(i)-gH]-differentiable, or

u(t) = k1 ⊕ k2t ⊖ −1
Γ (q)

∫ t

0
(t − s)q−1f(s, u(s))ds,

where u is (i)-gH-differentiable and u′
gH is CF [(ii)-gH]-differentiable, or

u(t) = k1 ⊖ (−1)
[
k2t ⊕ 1

Γ (q)

∫ t

0
(t − s)q−1f(s, u(s))ds

]
,

where u is (ii)-gH-differentiable and u′
gH is CF [(i)-gH]-differentiable, or

u(t) = k1 ⊖ (−1)
[
k2t ⊖ −1

Γ (q)

∫ t

0
(t − s)q−1f(s, u(s))ds

]
,

where u is (ii)-gH-differentiable and u′
gH is CF [(ii)-gH]-differentiable.

Proof. According to Lemma 2.8, equation (2.5) can be rewritten as(C

gH
Dq−1

∗ u′
gH

)
(t) = f(t, u(t)).

Without loss of generality, we only discuss the case that u is (i)-gH-differentiable and u′
gH is CF [(i)-gH]-

differentiable. The proofs of the other cases are similar.
Notice continuity of f : [0, T ] × E1 → E1 and u : [0, T ] → E1. According to Lemma 2.9 and Remark

2.3, equation (2.5) with the condition (2.7) is equivalent to

u′
gH(t) = k2 ⊕ Iq−1f(t, u(t)) = k2 ⊕ 1

Γ (q − 1)

∫ t

0
(t − s)q−2f(s, u(s))ds. (2.9)
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From Remark 2.4 and initial condition (2.6), equation (2.9) is equivalent to

u(t) = k1 ⊕ k2t ⊕ I1Iq−1f(t, u(t)).

According to Lemma 2.7, we get
u(t) = k1 ⊕ k2t ⊕ Iqf(t, u(t)),

that is, equation (2.8). Conversely, condition u′
gH(0) = k2 is assured by equation (2.9). Meanwhile,

equation (2.8) apparently satisfies (1.1) as well as condition (1.2). The proof is completed.
At the end of this part, we give Schauder fixed point theorem in semi-linear spaces and generalized

Gronwall inequality, which are fundamental in the proofs of our main results.

Lemma 2.11. (Schauder fixed point theorem in semi-linear spaces)[9, Theorem 3.4] Let B be a
nonempty, closed, bounded and convex subset of a semi-linear Banach space S having the cancellation
property and suppose P : B → B is a compact operator. Then P has at least one fixed point in B.

Lemma 2.12. (Generalized Gronwall inequality)[27, Theorem 1] Suppose q > 0, a(t) is a nonnegative
function locally integrable on 0 ≤ t < T (some T ≤ +∞) and g(t) is a nonnegative, nondecreasing
continuous function defined on 0 ≤ t < T , g(t) ≤ M (constant), and suppose u(t) is nonnegative and
locally integrable on 0 ≤ t < T with

u(t) ≤ a(t) + g(t)
∫ t

0
(t − s)q−1u(s)ds

on this interval. Then

u(t) ≤ a(t) +
∫ t

0

[ ∞∑
n=1

(
g(t)Γ (q)

)n

Γ (nq)
(t − s)nq−1a(s)

]
ds, 0 ≤ t < T.

3 Main Results

At the beginning of this section, we give integral representation of boundary value problems (1.1)–(1.2).
Before this, we give the definition of solutions to these problems.

Definition 3.1. A function u ∈ CE([0, T ],E1
c

)
is said to be a CF [(m-n)-gH]-differentiable solution

(m and n can be taken as i or ii) to boundary value problems (1.1)–(1.2), if u is (m)-gH-differentiable
and u′

gH is CF [(n)-gH]-differentiable on the entire interval [0, T ] as well as u satisfies (1.1)–(1.2).

Lemma 3.1. A fuzzy-valued function u : [0, T ] → E1
c is a solution to the problems (1.1)–(1.2) if and

only if u satisfies one of the following fuzzy integral equations:

(K1)

u(t) = Λ1 ⊕ u0t ⊕ 1
Γ (q)

∫ t

0
(t − s)q−1f(s, u(s))ds, t ∈ [0, T ] (3.1)

if λ ∈ (0, 1), u is (i)-gH-differentiable and u′
gH is CF [(i)-gH]-differentiable, or

(K2)

u(t) = Λ2 ⊕ u0t ⊖ −1
Γ (q)

∫ t

0
(t − s)q−1f(s, u(s))ds, t ∈ [0, T ]

if λ ∈ (0, 1), u is (i)-gH-differentiable and u′
gH is CF [(ii)-gH]-differentiable, or

(K3)

u(t) = Λ1 ⊖ (−1)
[
u0t ⊕ 1

Γ (q)

∫ t

0
(t − s)q−1f(s, u(s))ds

]
, t ∈ [0, T ] (3.2)

if λ ∈ (1, +∞), u is (ii)-gH-differentiable and u′
gH is CF [(i)-gH]-differentiable, or
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(K4)

u(t) = Λ2 ⊖ (−1)
[
u0t ⊖ −1

Γ (q)

∫ t

0
(t − s)q−1f(s, u(s))ds

]
, t ∈ [0, T ]

if λ ∈ (1, +∞), u is (ii)-gH-differentiable and u′
gH is CF [(ii)-gH]-differentiable,

where
Λ1 = λ

1−λ

(
u0T ⊕ 1

Γ (q)
∫ T

0 (T − s)q−1f(s, u(s))ds
)

and
Λ2 = λ

1−λ

(
u0T ⊖ −1

Γ (q)
∫ T

0 (T − s)q−1f(s, u(s))ds
)

.

Proof. Let u(0) = u1 ∈ E1
c . Then, the proof of this lemma is just divided into two cases for the sake

of clarity.
Case 1. λ ∈ (0, 1). Firstly, we consider situation (K1). By the Lemma 2.10, with initial conditions

u(0) = u1 and u′
gH(0) = u0, equation (1.1) is equivalent to the fuzzy integral equation

u(t) = u1 ⊕ u0t ⊕ 1
Γ (q)

∫ t

0
(t − s)q−1f(s, u(s))ds, t ∈ [0, T ]. (3.3)

To meet boundary value condition u(0) = λu(T ), equation (3.3) must satisfy

λ

(
u1 ⊕ u0T ⊕ 1

Γ (q)

∫ T

0
(T − s)q−1f(s, u(s))ds

)
= u1. (3.4)

By Lemma 2.2, equation (3.4) has solution

u1 = λ

1 − λ

(
u0T ⊕ 1

Γ (q)

∫ T

0
(T − s)q−1f(s, u(s))ds

)
= Λ1.

By substituting Λ1 into (3.3), we get (3.1). Conversely, equation (3.1) apparently satisfies (1.1) as well
as condition (1.2). For situation (K2), the proof is quite similar to situation (K1) and so is omitted.

Case 2. λ ∈ (1, +∞). Firstly, we consider situation (K3). By the Lemma 2.10, with initial conditions
u(0) = u1 and u′

gH(0) = u0, equation (1.1) is equivalent to the fuzzy integral equation

u(t) = u1 ⊖ (−1)
[
u0t ⊕ 1

Γ (q)

∫ t

0
(t − s)q−1f(s, u(s))ds

]
, t ∈ [0, T ]. (3.5)

To meet boundary value condition u(0) = λu(T ), equation (3.5) must satisfy

λ

(
u1 ⊖ (−1)

[
u0T ⊕ 1

Γ (q)

∫ T

0
(t − s)q−1f(s, u(s))ds

])
= u1,

which is equivalent to

u1 = 1
λ

u1 ⊕ (−1)

[
u0T ⊕ 1

Γ (q)

∫ T

0
(t − s)q−1f(s, u(s))ds

]
. (3.6)

By Lemma 2.2, equation (3.6) has solution

u1 = λ

1 − λ

(
u0T ⊕ 1

Γ (q)

∫ T

0
(T − s)q−1f(s, u(s))ds

)
= Λ1.

By substituting Λ1 into (3.5), we get (3.2). Conversely, equation (3.2) apparently satisfies (1.1) as well
as condition (1.2). For situation (K4), the proof is quite similar to situation (K3) and so is omitted. The
proof is completed.
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Corollary 3.1. If λ = 0, boundary value problems (1.1)–(1.2) degenerate into the following initial
value problem {

C
gHDq

∗u(t) = f(t, u(t)),
u(0) = 0̂, u′

gH(0) = u0 ∈ E1 (3.7)

and it is equivalent to

u(t) = u0t ⊕ 1
Γ (q)

∫ t

0
(t − s)q−1f(s, u(s))ds

if u is (i)-gH-differentiable and u′
gH is CF [(i)-gH]-differentiable, or

u(t) = u0t ⊖ −1
Γ (q)

∫ t

0
(t − s)q−1f(s, u(s))ds

if u is (i)-gH-differentiable and u′
gH is CF [(ii)-gH]-differentiable.

In the following, we impose growth conditions on f which allow us to establish some results for
existence and uniqueness of solution to boundary value problems (1.1)–(1.2).

Theorem 3.1. Suppose that λ ∈ (0, 1) and

(H1) f : [0, T ] × E1
c → E1

c \ R is a given continuous and compact fuzzy-valued function;
(H2) M := sup

(t,u)∈[0,T ]×E1
c

d(f(t, u), 0̂) < +∞.

Then boundary value problems (1.1)–(1.2) have at least one CF [(i-i)-gH]-differentiable solution or CF [(i-
ii)-gH]-differentiable solution.

Proof. Let S = CE([0, T ],E1
c

)
. Then S is a semi-linear Banach space having the cancellation property

with respect to ⊕. Define a set B ⊂ S by

B = {u ∈ S|D(u, 0̂) ≤ R} (3.8)

for some fixed R > 0. It is easy to know that B is a nonempty, closed, bounded and convex subset of S.
Choose R = T

1−λ d(u0, 0̂) + MT q

(1−λ)Γ (q+1) + 1. Then, the proof of this theorem is just divided into two cases
for the sake of clarity.

Case 1. u is (i)-gH-differentiable and u′
gH is CF [(i)-gH]-differentiable. From situation (K1) of Lemma

3.1, boundary value problems (1.1)–(1.2) are equivalent to integral equation

u(t) = Λ1 ⊕ u0t ⊕ 1
Γ (q)

∫ t

0
(t − s)q−1f(s, u(s))ds, t ∈ [0, T ].

Then, we define the operator A1 : B → S by

(A1u)(t) := Λ1 ⊕ u0t ⊕ 1
Γ (q)

∫ t

0
(t − s)q−1f(s, u(s))ds, t ∈ [0, T ].

In order to apply Lemma 2.11, we separate the proof into the following three steps.
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Step 1. A1 maps B into itself. For any u ∈ B and t ∈ [0, T ], from Lemmas 2.3 and 2.6 as well as (H2),
we have

d(A1u(t), 0̂) = d
(

Λ1 ⊕ u0t ⊕ 1
Γ (q)

∫ t

0 (t − s)q−1f(s, u(s))ds, 0̂
)

≤ λ
1−λ d(u0T, 0̂) + λ

(1−λ)Γ (q) d
( ∫ T

0 (T − s)q−1f(s, u(s))ds, 0̂
)

+d(u0t, 0̂) + 1
Γ (q) d

( ∫ t

0 (t − s)q−1f(s, u(s))ds, 0̂
)

≤ λ
1−λ d(u0T, 0̂) + λ

(1−λ)Γ (q)
∫ T

0 (T − s)q−1d
(
f(s, u(s)), 0̂

)
ds

+d(u0t, 0̂) + 1
Γ (q)

∫ t

0 (t − s)q−1d
(
f(s, u(s)), 0̂

)
ds

≤ λ
1−λ d(u0T, 0̂) + λM

(1−λ)Γ (q)
∫ T

0 (T − s)q−1ds + d(u0t, 0̂) + M
Γ (q)

∫ t

0 (t − s)q−1ds

= λ
1−λ d(u0T, 0̂) + λM

(1−λ)Γ (q+1) T q + d(u0t, 0̂) + M
Γ (q+1) tq

≤ T
1−λ d(u0, 0̂) + MT q

(1−λ)Γ (q+1) ≤ R.

It follows that D(A1u, 0̂) ≤ R. Thus, A1 maps B into itself.

Step 2. A1 is a continuous operator on B. For this, let un → u (n → ∞) in B. From Lemmas 2.3 and
2.6, we have

d(A1un(t), A1u(t))

≤ λ
(1−λ)Γ (q) d

( ∫ T

0 (T − s)q−1f(s, un(s))ds,
∫ T

0 (T − s)q−1f(s, u(s))ds
)

+ 1
Γ (q) d

( ∫ t

0 (t − s)q−1f(s, un(s))ds,
∫ t

0 (t − s)q−1f(s, u(s))ds
)

≤ λ
(1−λ)Γ (q)

∫ T

0 (T − s)q−1d
(
f(s, un(s)), f(s, u(s))

)
ds

+ 1
Γ (q)

∫ t

0 (t − s)q−1d
(
f(s, un(s)), f(s, u(s))

)
ds

≤ λT q

(1−λ)Γ (q+1) sup
t∈[0,T ]

d(f(t, un(t)), f(t, u(t))) + tq

Γ (q+1) sup
t∈[0,T ]

d(f(t, un(t)), f(t, u(t))))

≤ T q

(1−λ)Γ (q+1) sup
t∈[0,T ]

d(f(t, un(t)), f(t, u(t))).

According to (H1), f is continuous on [0, T ] × E1
c . So, sup

t∈[0,T ]
d(f(t, un(t)), f(t, u(t))) → 0 when n → ∞.

We get D(A1un, A1u) → 0 when n → ∞. So A1 is a continuous operator on B.

Step 3. A1(B) is relatively compact in CE([0, T ],E1
c

)
. According to Lemma 2.4, we just need to prove

(i) A1(B) is equicontinuous;

(ii) for every t ∈ [0, T ], the set A1(B)(t) is relatively compact in E1
c .
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Firstly, we verify the equicontinuity of A1(B). Let t1, t2 ∈ [0, T ], t1 < t2 and u ∈ B. From Lemmas
2.3 and 2.6 as well as (H2), we get

d(A1u(t2), A1u(t1))

= d
(

u0t2 ⊕ 1
Γ (q)

∫ t2
0 (t2 − s)q−1f(s, u(s))ds, u0t1 ⊕ 1

Γ (q)
∫ t1

0 (t2 − s)q−1f(s, u(s))ds
)

≤ d
(

1
Γ (q)

∫ t2
0 (t2 − s)q−1f(s, u(s))ds, 1

Γ (q)
∫ t1

0 (t2 − s)q−1f(s, u(s))ds
)

+ d(u0t2, u0t1)

= 1
Γ (q) d

( ∫ t1
0 (t2 − s)q−1f(s, un(s))ds ⊕

∫ t2
t1

(t2 − s)q−1f(s, un(s))ds,
∫ t1

0 (t1 − s)q−1f(s, u(s))ds
)

+d(u0t2, u0t1)

≤ 1
Γ (q)

∫ t1
0 [(t2 − s)q−1 − (t1 − s)q−1]d

(
f(s, u(s)), 0̂

)
ds + 1

Γ (q)
∫ t2

t1
(t2 − s)q−1d

(
f(s, u(s)), 0̂

)
ds

+d(u0t2, u0t1)

≤ M
Γ (q)

∫ t1
0 [(t2 − s)q−1 − (t1 − s)q−1]ds + M

Γ (q)
∫ t2

t1
(t2 − s)q−1ds + (t2 − t1)d(u0, 0̂)

= M
Γ (q+1) [2(t2 − t1)q + (tq

2 − tq
1)] + (t2 − t1)d(u0, 0̂).

This implies that d(A1u(t2), A1u(t1)) → 0 when |t2 − t1| → 0. Hence A1(B) is an equicontinuous subset
of CE([0, T ],E1

c

)
.

Secondly, we prove that A1(B)(t) is relatively compact in E1
c . On the one hand, due to the relative

compactness of f([0, T ]×B), there exists compact set K̃ such that [f(t, u)]0 ⊆ K̃ for all (t, u) ∈ [0, T ]×B.
So

[A1(B)(t)]0 =
[
Λ1 ⊕ u0t ⊕ 1

Γ (q)
∫ t

0 (t − s)q−1f(s, u(s))ds
]0

= λT
1−λ [u0]0 + λ

(1−λ)Γ (q)
∫ T

0 (T − s)q−1[f(s, u(s))
]0

ds

+t[u0]0 + 1
Γ (q)

∫ t

0 (t − s)q−1[f(s, u(s))
]0

ds

⊆
[

λ
(1−λ)Γ (q)

∫ T

0 (T − s)q−1ds + 1
Γ (q)

∫ t

0 (t − s)q−1ds
]

K̃ + T
1−λ [u0]0

=
[

λT q

(1−λ)Γ (q+1) + tq

Γ (q+1)

]
K̃ + T

1−λ [u0]0.

Therefore, there exists a compact set K0 ⊆ R such that [A1(B)(t)]0 ⊆ K0, that is, A1(B)(t) is compact-
supported for every t ∈ [0, T ]. On the other hand, fixing t ∈ [0, T ], we have A1(B)(t) ∈ E1

c . If y ∈ A1(B)(t),
then y = A1(u)(t) for some u ∈ B. So, we have

[y]α = Λ1 ⊕ t[u0]α ⊕ 1
Γ (q)

∫ t

0
(t − s)q−1[f(s, u(s))]αds, α ∈ [0, 1].

By Lemma 2.5, we know that f([0, T ] × B) is level-equicontinuous. Hence for any ε > 0, there exists
δ > 0, such that

dH([f(t, u)]α, [f(t, u)]β) ≤ (1 − λ)Γ (q + 1)ε
2T q

for all (t, u) ∈ [0, T ] × B
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and dH([u0]α, [u0]β) ≤ (1−λ)ε
2T when |α − β| < δ. So for all |α − β| < δ and (t, u) ∈ [0, T ] × B, one gets

dH([y]α, [y]β)

= dH([A1u(t)]α, [A1u(t)]β)

≤ λT
1−λ dH([u0]α, [u0]β) + λ

(1−λ)Γ (q)
∫ T

0 (T − s)q−1dH

([
f(s, u(s))

]α
,
[
f(s, u(s))

]β)
ds

+tdH([u0]α, [u0]β) + 1
Γ (q)

∫ t

0 (t − s)q−1dH

([
f(s, u(s))

]α
,
[
f(s, u(s))

]β)
ds

≤ λT
1−λ dH([u0]α, [u0]β) + λT q

(1−λ)Γ (q+1) · (1−λ)Γ (q+1)ε
2T q

+tdH([u0]α, [u0]β) + tq

Γ (q+1) · (1−λ)Γ (q+1)ε
2T q ≤ ε,

which means A1(B)(t) is level-equicontinuous in E1
c on [0, 1] for each t ∈ [0, T ]. Therefore, A1(B)(t) is a

relatively compact subset of E1
c from Lemma 2.5. Then according to Lemma 2.4, we obtain that A1(B)

is relatively compact in CE([0, T ],E1
c

)
.

Through the above elaboration, we conclude that A1 is a compact operator. By Lemma 2.11, it follows
that A1 has at least one fixed point in B. Equivalently, there is at least one CF [(i-i)-gH]-differentiable
solution to boundary value problems (1.1)–(1.2).

Case 2. u is (i)-gH-differentiable and u′
gH is CF [(ii)-gH]-differentiable. From situation (K2) of Lemma

3.1, boundary value problems (1.1)–(1.2) are equivalent to integral equation

u(t) = Λ2 ⊕ u0t ⊖ −1
Γ (q)

∫ t

0
(t − s)q−1f(s, u(s))ds, t ∈ [0, T ].

Then, we define the operator A2 : B → S by

(A2u)(t) = Λ2 ⊕ u0t ⊖ −1
Γ (q)

∫ t

0
(t − s)q−1f(s, u(s))ds, t ∈ [0, T ].

For any u ∈ B and t ∈ [0, T ], from Lemmas 2.3 and 2.6 as well as (H2), we have

d(A2u(t), 0̂) = d
(

Λ2 ⊕ u0t ⊖ −1
Γ (q)

∫ t

0 (t − s)q−1f(s, u(s))ds, 0̂
)

≤ λ
1−λ d(u0T, 0̂) + λ

(1−λ)Γ (q) d
( ∫ T

0 (T − s)q−1f(s, u(s))ds, 0̂
)

+d(u0t, 0̂) + 1
Γ (q) d

( ∫ t

0 (t − s)q−1f(s, u(s))ds, 0̂
)

≤ T
1−λ d(u0, 0̂) + MT q

(1−λ)Γ (q+1) ≤ R,

which means A2 maps B into itself. The remainder of the argument is analogous to that in Case 1 but
will not be reproduced here. The proof is completed.

Theorem 3.2. Suppose λ ∈ (0, 1) and f satisfies (H1)–(H2) as well as the following condition:

(H3) there exists a constant L ≥ 0, for all u, v ∈ E1
c, such that

d
(
f(t, u), f(t, v)

)
≤ Ld(u, v).

Then boundary value problems (1.1)–(1.2) have a unique CF [(i-i)-gH]-differentiable solution or CF [(i-ii)-
gH]-differentiable solution on [0, T ].
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Proof. Since λ ∈ (0, 1) and f satisfies (H1)–(H2), it follows that boundary value problems (1.1)–(1.2)
have at least one CF [(i-i)-gH]-differentiable solution or CF [(i-ii)-gH]-differentiable solution according to
Theorem 3.1. In the sequel, we only prove CF [(i-i)-gH]-differentiable case. The proof of the other case is
similar.

Suppose there exist two CF [(i-i)-gH]-differentiable solutions u and v to boundary value problems
(1.1)–(1.2). Then, for all t ∈ [0, T ], we have

d
(
u(t), v(t)

)
= d(A1u(t), (A1v(t))

≤ λ
(1−λ)Γ (q) d

( ∫ T

0 (T − s)q−1f(s, u(s))ds,
∫ T

0 (T − s)q−1f(s, v(s))ds
)

+ 1
Γ (q) d

( ∫ t

0 (t − s)q−1f(s, u(s))ds,
∫ t

0 (t − s)q−1f(s, v(s))ds
)

≤ λ
(1−λ)Γ (q)

∫ T

0 (T − s)q−1d
(
f(s, u(s)), f(s, v(s))

)
ds

+ 1
Γ (q)

∫ t

0 (t − s)q−1d
(
f(s, u(s)), f(s, v(s))

)
ds

≤
[

λL
(1−λ)Γ (q) + L

Γ (q)

] ∫ T

0 (T − s)q−1d
(
u(s), v(s)

)
ds.

Therefore, we obtain u(t) = v(t) for all t ∈ [0, T ] according to Lemma 2.12. Hence the solution is unique.
The proof is completed.

Corollary 3.2. Suppose λ = 0. For the initial value problem (3.7), we also have corresponding results
if it satisfies the conditions of Theorem 3.1 or 3.2.

Theorem 3.3. Suppose that λ ∈ (1, +∞) and right-hand side function f satisfies (H1)–(H2). Then
boundary value problems (1.1)–(1.2) have at least one CF [(ii-i)-gH]-differentiable solution or CF [(ii-ii)-
gH]-differentiable solution.

Proof. For the set B defined as (3.8), choose R = (2λ−1)T
λ−1 d(u0, 0̂) + (2λ−1)MT q

(λ−1)Γ (q+1) + 1. If u is (ii)-gH-
differentiable and u′

gH is CF [(i)-gH]-differentiable, then we consider the operator A3 : B → S defined
by

(A3u)(t) = Λ1 ⊖ (−1)
[
u0t ⊕ 1

Γ (q)

∫ t

0
(t − s)q−1f(s, u(s))ds

]
.

If u is (ii)-gH-differentiable and u′
gH is CF [(ii)-gH]-differentiable, then can we consider the operator

operator A4 : B → S defined by

(A4u)(t) = Λ2 ⊖ (−1)
[
u0t ⊖ −1

Γ (q)

∫ t

0
(t − s)q−1f(s, u(s))ds

]
.

The remainder of the argument is analogous to the proof of Theorem 3.1. The proof is completed.
Similar to Theorem 3.2, we can get the following uniqueness results.

Theorem 3.4. Suppose λ ∈ (1, +∞) and f satisfies (H1)–(H3). Then boundary value problems
(1.1)–(1.2) have a unique CF [(ii-i)-gH]-differentiable solution or CF [(ii-ii)-gH]-differentiable solution on
[0, T ].

4 Example

In this section, we will present an example to illustrate our main results. Consider the following boundary
value problem {

C
gHD

3
2
∗ u(t) = sin u(t) ⊕ ηe−t, 0 < t < 1,

u(0) = 0.75u(1), u′
gH(0) = 0̂,

(4.1)

244 Advances in Analysis, Vol. 2, No. 4, October 2017

AAN Copyright © 2017 Isaac Scientific Publishing



where fuzzy sinusoidal function sin u(t) is obtained by Zadeh’s extension principle, and fuzzy constants
η = (0.5, 1, 1.5) and 0̂ = (0, 0, 0) are two symmetric triangular fuzzy numbers. Let f(t, u) = sin u + ηe−t.
Apparently, f is a continuous and compact fuzzy-valued function. For t ∈ [0, 1], from the definition of
d(u, v) and Lemma 2.2, we can easily get

M = sup
(t,u)∈[0,1]×E1

c

d
(
f(t, u), 0̂

)
= sup

(t,u)∈[0,1]×E1
c

d
(

sin u(t) ⊕ ηe−t, 0̂
)

≤ sup
(t,u)∈[0,1]×E1

c

d
(

sin u(t), 0̂
)

+ sup
(t,u)∈[0,1]×E1

c

d(ηe−t, 0̂)

≤ sup
(t,u)∈[0,1]×E1

c

d
(

sin u(t), 0̂
)

+ sup
(t,u)∈[0,1]×E1

c

d(η, 0̂)

= 1 + 1.5 = 2.5.

So, we take R = 2.5
0.25Γ (2.5) + 1 ≈ 8.5225. By Theorem 3.1, the boundary value problem (4.1) has at least

one CF [(i-i)-gH]-differentiable solution. At the same time, the Hukuhara difference u0t ⊖ −1
Γ (q)

∫ t

0 (t −
s)q−1f(s, u(s))ds does not exist for any t ∈ (0, 1]. It means that problem (4.1) has no CF [(i-ii)-gH]-
differentiable solution. In addition, due to

d
(
f(t, u), f(t, v)

)
= d
(

sin u ⊕ ηe−t, sin v ⊕ ηe−t
)

= d(sin u, sin v)

≤ d(u, v)

for all u, v ∈ E1, we know the CF [(i-i)-gH]-differentiable solution is unique by Theorem 3.2.

5 Example

The most significant part of this study is our research object. This work regarding FFDEs with order
q ∈ (1, 2] is novel. Another important part is that some other kinds of fuzzy boundary value problems
can also be made under the approach similarly to the above mentioned procedure. The authors of this
article strongly believe that this article will also motivate some physicists, engineers and scholars to make
further researches in this area. In this respect, there may be other extended work.
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