A New Type of Tripled Fixed Point Theorem in Partially Ordered Complete Metric Space

Animesh Gupta ${ }^{1}$ and Saurabh Manro ${ }^{2 *}$
${ }^{1}$ H.No. 93/654, Ward No. 2 Gandhi Chowk, Pachmarhi-461881, Dist. Hoshangabad (M.P.), India
${ }^{2}$ B.No. 33, H.No. 223, Peer Khana Road, Near Tiwari Di Kothi, Khanna-141401, Dist. Ludhiana (Punjab), India Email: sauravmanro@hotmail.com

Abstract

In this paper, we introduce a new type of tripled fixed point theorem in partially ordered complete metric space. We give an example to support our result.

Keywords: Tripled fixed point, partially ordered set, mixed monotone mappings.

1 Introduction

Fixed point theory in recent years has developed rapidly in partially ordered metric spaces; that is, metric spaces endowed with a partial ordering. The first result in this direction was obtained by Ran and Reurings [6]. They presented some applications of results of matrix equations. In [3], Nieto and Lopez extended the result of Ran and Reurings [4], for non decreasing mappings and applied their result to get a unique solution for a first order differential equation. Agrawal et al. [1] and O'Regan and Petrutel [5] studied some results for generalized contractions in ordered metric spaces.

Berinde and Borcut [2] introduced the concept of triple fixed point and proved some related fixed point theorem. After that various results on tripled fixed point have been obtained. The following definitions are from [2].

Definition 1. Let (X, \preceq) be a partially ordered set, $F: X^{3} \rightarrow X$ mapping. The mapping F is said to have the mixed monotone property if for any $x, y, z \in X$,
(i) $x_{1}, x_{2} \in X, \quad x_{1} \preceq x_{2} \Rightarrow F\left(x_{1}, y, z\right) \preceq F\left(x_{2}, y, z\right)$,
(ii) $y_{1}, y_{2} \in X, \quad y_{1} \succeq y_{2} \Rightarrow F\left(x, y_{1}, z\right) \succeq F\left(x, y_{2}, z\right)$,
(iii) $z_{1}, z_{2} \in X, \quad z_{1} \preceq z_{2} \Rightarrow F\left(x, y, z_{1}\right) \preceq F\left(x, y, z_{2}\right)$.

Definition 2. An element $(x, y, z) \in X^{3}$ is called a tripled fixed point of $F: X^{3} \rightarrow X$ if

$$
F(x, y, z)=x, \quad F(y, x, y)=y, \quad \text { and } \quad F(z, y, x)=z .
$$

Definition 3. Let (X, \preceq) be a partially ordered set, $F: X^{3} \rightarrow X$ and $g: X \rightarrow X$ two mappings. The mapping F is said to have the mixed $g-$ monotone property if for any $x, y, z \in X$.

$$
\begin{array}{rll}
\text { i. } x_{1}, x_{2} \in X, & g\left(x_{1}\right) \preceq g\left(x_{2}\right) \Rightarrow F\left(x_{1}, y, z\right) \preceq F\left(x_{2}, y, z\right), \\
\text { ii. } & y_{1}, y_{2} \in X, & g\left(y_{1}\right) \succeq g\left(y_{2}\right) \Rightarrow F\left(x, y_{1}, z\right) \succeq F\left(x, y_{2}, z\right), \\
\text { iii. } z_{1}, z_{2} \in X, & g\left(z_{1}\right) \preceq g\left(z_{2}\right) \Rightarrow F\left(x, y, z_{1}\right) \preceq F\left(x, y, z_{2}\right) .
\end{array}
$$

Definition 4. An element $(x, y, z) \in X^{3}$ is called a tripled coincidence point of the mappings $F: X^{3} \rightarrow X$ and $g: X \rightarrow X$ if

$$
F(x, y, z)=g x, \quad F(y, x, y)=g y \text { and } F(z, y, x)=g z
$$

Definition 5. An element $(x, y, z) \in X^{3}$ is called a tripled common fixed point of the mappings $F: X^{3} \rightarrow$ X and $g: X \rightarrow X$ if

$$
F(x, y, z)=g x=x, \quad F(y, x, y)=g y=y \quad \text { and } \quad F(z, y, x)=g z=z
$$

Definition 6. An element $x \in X$ is called a common fixed point of the mappings $F: X^{3} \rightarrow X$ and $g: X \rightarrow X$ if

$$
F(x, x, x)=g x=x .
$$

Definition 7. Let X be a non empty set. The mappings $F: X^{3} \rightarrow X$ and $g: X \rightarrow X$ are commuting if for all $x, y, z \in X$,

$$
g(F(x, y, z))=F(g(x), g(y), g(z)) .
$$

Definition 8. Let (X, d) be a metric space. The mappings F and g where $F: X^{3} \rightarrow X$ and $g: X \rightarrow X$ are said to be compatible if

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} d\left(g\left(F\left(x_{n}, y_{n}, z_{n}\right)\right), F\left(g\left(x_{n}\right), g\left(y_{n}\right), g\left(z_{n}\right)\right)\right)=0 \\
& \lim _{n \rightarrow \infty} d\left(g\left(F\left(y_{n}, x_{n}, y_{n}\right)\right), F\left(g\left(y_{n}\right), g\left(x_{n}\right), g\left(y_{n}\right)\right)\right)=0
\end{aligned}
$$

and

$$
\lim _{n \rightarrow \infty} d\left(g\left(F\left(z_{n}, y_{n}, x_{n}\right)\right), F\left(g\left(z_{n}\right), g\left(y_{n}\right), g\left(x_{n}\right)\right)\right)=0
$$

whenever $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ are sequences in X such that $\lim _{n \rightarrow \infty} F\left(x_{n}, y_{n}, z_{n}\right)=\lim _{n \rightarrow \infty} g\left(x_{n}\right)=x$, $\lim _{n \rightarrow \infty} F\left(y_{n}, x_{n}, y_{n}\right)=\lim _{n \rightarrow \infty} g\left(y_{n}\right)=y$ and $\lim _{n \rightarrow \infty} F\left(z_{n}, y_{n}, x_{n}\right)=\lim _{n \rightarrow \infty} g\left(z_{n}\right)=z$ for some $x, y, z \in X$.

In [2] Berinde and Borcut proved the following theorem.
Theorem 9. Let (X, \preceq) be a partially ordered set and (X, d) be a complete metric space. Let $F: X^{3} \rightarrow X$ be a continuous mapping having the mixed monotone property on X. Assume that there exist constants $a, b, c \in[0,1)$ such that $a+b+c \prec 1$ for which,

$$
\begin{equation*}
d(F(x, y, z), F(u, v, w)) \preceq a d(x, u)+b d(y, v)+c d(z, w) \tag{1.1}
\end{equation*}
$$

For all $x \succeq u, y \preceq v, z \succeq w$. Assume either,

1. F is continuous,
2. X has the following properties:
(a) if non decreasing sequence $x_{n} \rightarrow x$, then $x_{n} \preceq x$ for all n,
(b) if non increasing sequence $y_{n} \rightarrow y$, then $y_{n} \succeq x$ for all n,

If there exist $x_{0}, y_{0}, z_{0} \in X$ such that

$$
x_{0} \preceq F\left(x_{0}, y_{0}, z_{0}\right), \quad y_{0} \succeq F\left(y_{0}, x_{0}, y_{0}\right), \quad \text { and } \quad z_{0} \preceq F\left(z_{0}, y_{0}, x_{0}\right)
$$

Then there exist $x, y, z \in X$ such that,

$$
F(x, y, z)=x, F(y, x, y)=y, \text { and } F(z, y, x)=z
$$

Inspired by above works, we derive new tripled fixed point theorems for mapping having the mixed monotone property $F: X \times X \times X \rightarrow X$ in partially ordered metric space and we give an example to support our result.
Theorem 10. Let (X, \preceq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let $F: X \times X \times X \rightarrow X$ be a continuous mapping having the mixed monotone property on X. Assume that F satisfies the following condition:

$$
\begin{equation*}
d(F(x, y, z), F(u, v, w)) \preceq \delta(x, y, z, u, v, w)[d(x, u)+d(y, v)+d(z, w)] . \tag{1.2}
\end{equation*}
$$

where

$$
\delta(x, y, z, u, v, w)=\frac{\binom{d(x, F(u, v, w))+d(y, F(v, u, v))+d(z, F(w, v, u))}{+d(u, F(x, y, z))+d(v, F(y, x, y))+d(w, F(z, y, x))}}{1+3\binom{d(x, F(x, y, z))+d(y, F(y, x, y))+d(z, F(z, y, x))}{+d(u, F(u, v, w))+d(v, F(v, u, v))+d(w, F(w, v, u))}}
$$

for all $x, y, z, u, v, w \in X$ with $x \preceq u, y \preceq v$ and $z \preceq w$. If there exist $x_{0}, y_{0}, z_{0} \in X$ such that

$$
x_{0} \preceq F\left(x_{0}, y_{0}, z_{0}\right), y_{0} \preceq F\left(y_{0}, x_{0}, y_{0}\right) \quad \text { and } \quad z_{0} \preceq F\left(z_{0}, y_{0}, x_{0}\right)
$$

then
a) F has at least a tripled fixed point there exist $(x, y, z) \in X$ such that

$$
x=F(x, y, z), y=F(y, x, y) \quad \text { and } \quad z=F(z, y, x) .
$$

b) if $(x, y, z),(u, v, w)$ are two distinct tripled fixed points of F, then

$$
d(x, u)+d(y, v)+d(z, w) \geq \frac{1}{9}
$$

Proof.
Proof of (a). Consider the two sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ in X such that,

$$
\begin{equation*}
x_{n+1}=F\left(x_{n}, y_{n}, z_{n}\right), \quad y_{n+1}=F\left(y_{n}, x_{n}, y_{n}\right) \quad \text { and } \quad z_{n+1}=F\left(z_{n}, y_{n}, x_{n}\right) \tag{1.3}
\end{equation*}
$$

for all $n=0,1,2, \ldots$. Now, we claim that $\left\{x_{n}\right\}$ is nondecreasing, $\left\{y_{n}\right\}$ is nonincreasing and $\left\{z_{n}\right\}$ is nondecreasing i.e.,

$$
\begin{equation*}
x_{n} \leq x_{n+1}, \quad y_{n} \geq y_{n+1} \quad \text { and } \quad z_{n} \leq z_{n+1} \tag{1.4}
\end{equation*}
$$

for all $n=0,1,2, \ldots$. From statement of theorem, we know that $x_{0}, y_{0}, z_{0} \in X$ with

$$
\begin{equation*}
x_{0} \leq F\left(x_{0}, y_{0}, z_{0}\right), \quad y_{0} \geq F\left(y_{0}, x_{0}, y_{0}\right) \quad \text { and } \quad z_{0} \leq F\left(z_{0}, y_{0}, x_{0}\right) \tag{1.5}
\end{equation*}
$$

By using the mixed monotone property of F, we write

$$
\begin{equation*}
x_{1}=F\left(x_{0}, y_{0}, z_{0}\right), \quad y_{1}=F\left(y_{0}, x_{0}, y_{0}\right) \quad \text { and } \quad z_{0}=F\left(z_{0}, y_{0}, x_{0}\right) \tag{1.6}
\end{equation*}
$$

Therefore $x_{0} \leq x_{1}, y_{0} \geq y_{1}$ and $z_{0} \leq z_{1}$. That is, the inequality 1.4 is true for $n=0$. Assume $x_{n} \leq x_{n+1}$, $y_{n} \geq y_{n+1}$ and $z_{n} \leq z_{n+1}$ for some n. Now we shall prove that 1.4 is true for $n+1$. Indeed, from 1.4 and the mixed monotone property of F, we have

$$
x_{n+2}=F\left(x_{n+1}, y_{n+1}, z_{n+1}\right) \geq F\left(x_{n}, y_{n+1}, z_{n+1}\right) \geq F\left(x_{n}, y_{n}, z_{n}\right)=x_{n+1}
$$

and

$$
y_{n+2}=F\left(y_{n+1}, x_{n+1}, y_{n+1}\right) \leq F\left(y_{n}, x_{n+1}, z_{n+1}\right) \leq F\left(y_{n}, x_{n}, z_{n}\right)=y_{n+1},
$$

and

$$
z_{n+2}=F\left(z_{n+1}, y_{n+1}, x_{n+1}\right) \geq F\left(z_{n}, y_{n+1}, x_{n+1}\right) \geq F\left(z_{n}, y_{n}, x_{n}\right)=z_{n+1}
$$

Hence, by induction, $x_{n} \leq x_{n+1}, y_{n} \geq y_{n+1}$ and $z_{n} \leq z_{n+1}$ for all n. Since 1.2, $x_{n-1} \leq x_{n}, y_{n-1} \geq y_{n}$ and $z_{n-1} \leq z_{n}$, we have

$$
\begin{aligned}
& d\left(F\left(x_{n}, y_{n}, z_{n}\right), F\left(x_{n-1}, y_{n-1}, z_{n-1}\right)\right) \\
& \preceq \frac{\binom{d\left(x_{n}, F\left(x_{n-1}, y_{n-1}, z_{n-1}\right)\right)+d\left(y_{n}, F\left(y_{n-1}, x_{n-1}, y_{n-1}\right)\right)+d\left(z_{n}, F\left(z_{n-1}, y_{n-1}, x_{n-1}\right)\right)}{+d\left(x_{n-1}, F\left(x_{n}, y_{n}, z_{n}\right)\right)+d\left(y_{n-1}, F\left(y_{n}, x_{n}, y_{n}\right)\right)+d\left(z_{n-1}, F\left(z_{n}, y_{n}, x_{n}\right)\right)}}{1+3\binom{d\left(x_{n}, F\left(x_{n}, y_{n}, z_{n}\right)\right)+d\left(y_{n}, F\left(y_{n}, x_{n}, y_{n}\right)\right)+d\left(z_{n}, F\left(z_{n}, y_{n}, x_{n}\right)\right)+d\left(x_{n-1}, F\left(x_{n-1}, y_{n-1}, z_{n-1}\right)\right)}{+d\left(y_{n-1}, F\left(y_{n-1}, x_{n-1}, y_{n-1}\right)\right)+d\left(z_{n-1}, F\left(z_{n-1}, y_{n-1}, x_{n-1}\right)\right)}} \\
& {\left[d\left(x_{n}, x_{n-1}\right)+d\left(y_{n}, y_{n-1}\right)+d\left(z_{n}, z_{n-1}\right)\right]} \\
& =\frac{\binom{d\left(x_{n}, x_{n}\right)+d\left(y_{n}, y_{n}\right)+d\left(z_{n}, z_{n}\right)}{+d\left(x_{n-1}, x_{n+1}\right)+d\left(y_{n-1}, y_{n+1}\right)+d\left(z_{n-1}, z_{n+1}\right)}}{1+3\binom{d\left(x_{n}, x_{n+1}\right)+d\left(y_{n}, y_{n+1}\right)+d\left(z_{n}, z_{n+1}\right)+d\left(x_{n-1}, x_{n}\right)}{+d\left(y_{n-1}, y_{n}\right)+d\left(z_{n-1}, z_{n}\right)}}\left[d\left(x_{n}, x_{n-1}\right)+d\left(y_{n}, y_{n-1}\right)+d\left(z_{n}, z_{n-1}\right)\right] \\
& =\frac{\left(d\left(x_{n-1}, x_{n+1}\right)+d\left(y_{n-1}, y_{n+1}\right)+d\left(z_{n-1}, z_{n+1}\right)\right)}{1+3\binom{d\left(x_{n}, x_{n+1}\right)+d\left(y_{n}, y_{n+1}\right)+d\left(z_{n}, z_{n+1}\right)+d\left(x_{n-1}, x_{n}\right)}{+d\left(y_{n-1}, y_{n}\right)+d\left(z_{n-1}, z_{n}\right)}}\left[d\left(x_{n}, x_{n-1}\right)+d\left(y_{n}, y_{n-1}\right)+d\left(z_{n}, z_{n-1}\right)\right] \\
& \leq \frac{\binom{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(y_{n-1}, y_{n}\right)}{+d\left(y_{n}, y_{n+1}\right)+d\left(z_{n-1}, z_{n}\right)+d\left(z_{n}, z_{n+1}\right)}}{1+3\binom{d\left(x_{n}, x_{n+1}\right)+d\left(y_{n}, y_{n+1}\right)+d\left(z_{n}, z_{n+1}\right)}{+d\left(x_{n-1}, x_{n}\right)+d\left(y_{n-1}, y_{n}\right)+d\left(z_{n-1}, z_{n}\right)}}\left[d\left(x_{n}, x_{n-1}\right)+d\left(y_{n}, y_{n-1}\right)+d\left(z_{n}, z_{n-1}\right)\right] .
\end{aligned}
$$

This implies

$$
\begin{gather*}
d\left(x_{n+1}, x_{n}\right) \preceq \frac{\binom{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(y_{n-1}, y_{n}\right)}{+d\left(y_{n}, y_{n+1}\right)+d\left(z_{n-1}, z_{n}\right)+d\left(z_{n}, z_{n+1}\right)}}{1+3\binom{d\left(x_{n}, x_{n+1}\right)+d\left(y_{n}, y_{n+1}\right)+d\left(z_{n}, z_{n+1}\right)}{+d\left(x_{n-1}, x_{n}\right)+d\left(y_{n-1}, y_{n}\right)+d\left(z_{n-1}, z_{n}\right)}} \\
{\left[d\left(x_{n}, x_{n-1}\right)+d\left(y_{n}, y_{n-1}\right)+d\left(z_{n}, z_{n-1}\right)\right] .} \tag{1.7}
\end{gather*}
$$

Similarly, from 1.2, $y_{n-1} \geq y_{n}, x_{n-1} \leq x_{n}$ and $z_{n-1} \leq z_{n}$ we obtain

$$
\begin{align*}
& d\left(y_{n+1}, y_{n}\right) \preceq \frac{\binom{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(y_{n-1}, y_{n}\right)}{+d\left(y_{n}, y_{n+1}\right)+d\left(y_{n-1}, y_{n}\right)+d\left(y_{n}, y_{n+1}\right)}}{1+3\binom{d\left(x_{n}, x_{n+1}\right)+d\left(y_{n}, y_{n+1}\right)+d\left(y_{n}, y_{n+1}\right)}{+d\left(x_{n-1}, x_{n}\right)+d\left(y_{n-1}, y_{n}\right)+d\left(y_{n-1}, y_{n}\right)}} \\
& {\left[d\left(x_{n}, x_{n-1}\right)+d\left(y_{n}, y_{n-1}\right)+d\left(y_{n}, y_{n-1}\right)\right] } \tag{1.8}
\end{align*}
$$

and

$$
\begin{align*}
& d\left(z_{n+1}, z_{n}\right) \preceq\binom{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(y_{n-1}, y_{n}\right)}{+d\left(y_{n}, y_{n+1}\right)+d\left(z_{n-1}, z_{n}\right)+d\left(z_{n}, z_{n+1}\right)} \\
& 1+3\binom{d\left(x_{n}, x_{n+1}\right)+d\left(y_{n}, y_{n+1}\right)+d\left(z_{n}, z_{n+1}\right)}{+d\left(x_{n-1}, x_{n}\right)+d\left(y_{n-1}, y_{n}\right)+d\left(z_{n-1}, z_{n}\right)} \tag{1.9}\\
& {\left[d\left(x_{n}, x_{n-1}\right)+d\left(y_{n}, y_{n-1}\right)+d\left(z_{n}, z_{n-1}\right)\right] }
\end{align*}
$$

From these inequalities $1.7-1.9$, we get

$$
\begin{aligned}
& d\left(x_{n+1}, x_{n}\right)+d\left(y_{n+1}, y_{n}\right)+d\left(z_{n+1}, z_{n}\right) \preceq 3 \frac{\binom{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(y_{n-1}, y_{n}\right)}{+d\left(y_{n}, y_{n+1}\right)+d\left(z_{n-1}, z_{n}\right)+d\left(z_{n}, z_{n+1}\right)}}{1+3\binom{d\left(x_{n}, x_{n+1}\right)+d\left(y_{n}, y_{n+1}\right)+d\left(z_{n}, z_{n+1}\right)}{+d\left(x_{n-1}, x_{n}\right)+d\left(y_{n-1}, y_{n}\right)+d\left(z_{n-1}, z_{n}\right)}} \\
& {\left[d\left(x_{n}, x_{n-1}\right)+d\left(y_{n}, y_{n-1}\right)+d\left(z_{n}, z_{n-1}\right)\right] . }
\end{aligned}
$$

Now, let

$$
\beta_{n}=3 \frac{\binom{d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)+d\left(y_{n-1}, y_{n}\right)}{+d\left(y_{n}, y_{n+1}\right)+d\left(z_{n-1}, z_{n}\right)+d\left(z_{n}, z_{n+1}\right)}}{1+3\binom{d\left(x_{n}, x_{n+1}\right)+d\left(y_{n}, y_{n+1}\right)+d\left(z_{n}, z_{n+1}\right)}{+d\left(x_{n-1}, x_{n}\right)+d\left(y_{n-1}, y_{n}\right)+d\left(z_{n-1}, z_{n}\right)}} .
$$

Then

$$
\begin{align*}
d\left(x_{n+1}, x_{n}\right)+d\left(y_{n+1}, y_{n}\right)+d\left(z_{n+1}, z_{n}\right) & \preceq \beta_{n}\left[d\left(x_{n}, x_{n-1}\right)+d\left(y_{n}, y_{n-1}\right)+d\left(z_{n}, z_{n-1}\right)\right] \tag{1.10}\\
& \preceq \beta_{n} \beta_{n-1}\left[d\left(x_{n-1}, x_{n-2}\right)+d\left(y_{n-1}, y_{n-2}\right)+d\left(z_{n-1}, z_{n-2}\right)\right] \\
& \vdots \\
& \preceq \beta_{n} \beta_{n-1} \ldots \beta_{1}\left[d\left(x_{1}, x_{0}\right)+d\left(y_{1}, y_{0}\right)+d\left(z_{1}, z_{0}\right)\right]
\end{align*}
$$

Observe that $\left(\beta_{n}\right)$ is nonincreasing, with positive terms. So, $\beta_{n} \beta_{n-1} \ldots \beta_{1} \leq \beta_{1}^{n}$ and $\beta_{1}^{n} \rightarrow 0$. It follows that

$$
\lim _{n \rightarrow \infty}\left(\beta_{n} \beta_{n-1} \ldots \text { beta }_{1}\right)=0
$$

Hence, this implies that

$$
\lim _{n \rightarrow \infty}\left[d\left(x_{n+1}, x_{n}\right)+d\left(y_{n+1}, y_{n}\right)+d\left(z_{n+1}, z_{n}\right)\right]=0
$$

From this limit, we have

$$
\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n}\right)=\lim _{n \rightarrow \infty} d\left(y_{n+1}, y_{n}\right)=\lim _{n \rightarrow \infty} d\left(z_{n+1}, z_{n}\right)=0
$$

We claim that $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ are a Cauchy sequence in X. Let $n<m$. Then, from the triangle inequality and 1.7-1.10, we have

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) \leq & d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\cdots+d\left(x_{m-1}, x_{m}\right) \\
\leq & \left.\frac{\beta_{1}^{n}}{3}\left[d\left(x_{1}, x_{0}\right)\right)+d\left(y_{1}, y_{0}\right)+d\left(z_{1}, z_{0}\right)\right]+\frac{\beta_{1}^{n+1}}{3}\left[d\left(x_{1}, x_{0}\right)+d\left(y_{1}, y_{0}\right)+d\left(z_{1}, z_{0}\right)\right] \\
& +\cdots+\frac{\beta_{1}^{m-1}}{3}\left[d\left(x_{1}, x_{0}\right)+d\left(y_{1}, y_{0}\right)+d\left(z_{1}, z_{0}\right)\right] \\
= & \frac{\beta_{1}^{n}}{3}\left(\frac{1-\beta_{1}^{m-n}}{1-\beta_{1}}\right)\left[d\left(x_{1}, x_{0}\right)+d\left(y_{1}, y_{0}\right)+d\left(z_{1}, z_{0}\right)\right] \\
\leq & \frac{\beta_{1}^{n}}{3}\left(\frac{1-\beta_{1}}{1-\beta_{1}}\right)\left[d\left(x_{1}, x_{0}\right)+d\left(y_{1}, y_{0}\right)+d\left(z_{1}, z_{0}\right)\right] \\
= & \frac{\beta_{1}^{n}}{3}\left[d\left(x_{1}, x_{0}\right)+d\left(y_{1}, y_{0}\right)+d\left(z_{1}, z_{0}\right)\right] \\
d\left(y_{n}, y_{m}\right) \leq & d\left(y_{n}, y_{n+1}\right)+d\left(y_{n+1}, y_{n+2}\right)+\cdots+d\left(y_{m-1}, y_{m}\right) \\
\leq & \left.\frac{\beta_{1}^{n}}{3}\left[d\left(x_{1}, x_{0}\right)\right)+d\left(y_{1}, y_{0}\right)+d\left(y_{1}, y_{0}\right)\right]+\frac{\beta_{1}^{n+1}}{3}\left[d\left(x_{1}, x_{0}\right)+d\left(y_{1}, y_{0}\right)+d\left(y_{1}, y_{0}\right)\right] \\
& +\cdots+\frac{\beta_{1}^{m-1}}{2}\left[d\left(x_{1}, x_{0}\right)+d\left(y_{1}, y_{0}\right)+d\left(y_{1}, y_{0}\right)\right] \\
= & \frac{\beta_{1}^{n}}{3}\left(\frac{1-\beta_{1}^{m-n}}{1-\beta_{1}}\right)\left[d\left(x_{1}, x_{0}\right)+d\left(y_{1}, y_{0}\right)+d\left(y_{1}, y_{0}\right)\right] \\
\leq & \frac{\beta_{1}^{n}}{3}\left(\frac{1-\beta_{1}}{1-\beta_{1}}\right)\left[d\left(x_{1}, x_{0}\right)+d\left(y_{1}, y_{0}\right)+d\left(y_{1}, y_{0}\right)\right] \\
= & \frac{\beta_{1}^{n}}{3}\left[d\left(x_{1}, x_{0}\right)+d\left(y_{1}, y_{0}\right)+d\left(y_{1}, y_{0}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
d\left(z_{n}, z_{m}\right) \leq & d\left(z_{n}, z_{n+1}\right)+d\left(z_{n+1}, z_{n+2}\right)+\cdots+d\left(z_{m-1}, z_{m}\right) \\
\leq & \left.\frac{\beta_{1}^{n}}{3}\left[d\left(x_{1}, x_{0}\right)\right)+d\left(y_{1}, y_{0}\right)+d\left(z_{1}, z_{0}\right)\right]+\frac{\beta_{1}^{n+1}}{3}\left[d\left(x_{1}, x_{0}\right)+d\left(y_{1}, y_{0}\right)+d\left(z_{1}, z_{0}\right)\right] \\
& +\cdots+\frac{\beta_{1}^{m-1}}{3}\left[d\left(x_{1}, x_{0}\right)+d\left(y_{1}, y_{0}\right)+d\left(z_{1}, z_{0}\right)\right] \\
= & \frac{\beta_{1}^{n}}{3}\left(\frac{1-\beta_{1}^{m-n}}{1-\beta_{1}}\right)\left[d\left(x_{1}, x_{0}\right)+d\left(y_{1}, y_{0}\right)+d\left(z_{1}, z_{0}\right)\right] \\
\leq & \frac{\beta_{1}^{n}}{3}\left(\frac{1-\beta_{1}}{1-\beta_{1}}\right)\left[d\left(x_{1}, x_{0}\right)+d\left(y_{1}, y_{0}\right)+d\left(z_{1}, z_{0}\right)\right] \\
= & \frac{\beta_{1}^{n}}{3}\left[d\left(x_{1}, x_{0}\right)+d\left(y_{1}, y_{0}\right)+d\left(z_{1}, z_{0}\right)\right]
\end{aligned}
$$

By adding these two inequalities, we obtain

$$
d\left(x_{n}, x_{m}\right)+d\left(y_{n}, y_{m}\right)+d\left(z_{n}, z_{m}\right) \leq \frac{\beta_{1}^{n}}{3}\left[d\left(x_{1}, x_{0}\right)+d\left(y_{1}, y_{0}\right)+d\left(z_{1}, z_{0}\right)\right]
$$

This implies that

$$
\lim _{n, m \rightarrow \infty}\left[d\left(x_{n}, x_{m}\right)+d\left(y_{n}, y_{m}\right)+d\left(z_{n}, z_{m}\right)\right]=0
$$

So, $\left\{x_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ are indeed a Cauchy sequence in the complete metric space X and hence, convergent: there exist $x, y \in X$ such that

$$
\lim _{n \rightarrow \infty} x_{n}=x, \quad \lim _{n \rightarrow \infty} y_{n}=y \quad \text { and } \quad \lim _{n \rightarrow \infty} z_{n}=z
$$

Taking limit for both sides of 1.3 and using continuity of F, we get

$$
\begin{aligned}
& x=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} F\left(x_{n-1}, y_{n-1}, z_{n-1}\right)=F\left(\lim _{n \rightarrow \infty}\left(x_{n-1}, y_{n-1}, z_{n-1}\right)\right)=F(x, y, z) \\
& y=\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} F\left(y_{n-1}, x_{n-1}, y_{n-1}\right)=F\left(\lim _{n \rightarrow \infty}\left(y_{n-1}, x_{n-1}, y_{n-1}\right)\right)=F(y, x, y)
\end{aligned}
$$

and

$$
z=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} F\left(z_{n-1}, y_{n-1}, x_{n-1}\right)=F\left(\lim _{n \rightarrow \infty}\left(z_{n-1}, y_{n-1}, x_{n-1}\right)\right)=F(z, y, x)
$$

Therefore, $x=F(x, y, z), y=F(y, x, y)$ and $z=F(z, y, x)$, that is, (x, y, z) is a tripled fixed point of F.
Proof of (b). If there exist two distinct tripled fixed points $(x, y, z),(u, v, w)$ of F, then

$$
\begin{aligned}
d(x, u)+d(y, v)+d(z, w)= & d(F(x, y, z), F(u, v, w))+d(F(y, x, y), F(v, u, v))+(F(z, y, x), F(w, v, u)) \\
\leq & {[d(x, F(u, v, w))+d(y, F(v, u, v))+d(z, F(w, v, u))+d(u, F(x, y, z))} \\
& +d(v, F(y, x, y))+d(w, F(z, y, x))][d(x, u)+d(y, v)+d(z, w)] \\
& +[d(y, F(v, u, v))+d(x, F(u, v, w))+d(y, F(v, u, v))+d(v, F(y, x, y)) \\
& +d(u, F(x, y, z))+d(v, F(y, x, y))][d(x, u)+d(y, v)+d(z, w)] \\
& +[d(x, F(u, v, w))+d(y, F(v, u, v))+d(z, F(w, v, u))+d(u, F(x, y, z)) \\
& +d(v, F(y, x, y))+d(w, F(z, y, x))][d(x, u)+d(y, v)+d(z, w)] \\
= & {[d(x, u)+d(y, v)+d(z, w)][9 d(x, u)+9 d(y, v)+9 d(z, w)] } \\
= & 9[d(x, u)+d(y, v)+d(z, w)]^{2} .
\end{aligned}
$$

Therefore, we obtain that $d(x, u)+d(y, v)+d(z, w) \geq \frac{1}{9}$.
Example 11. Let $X=\{0,1\}$ and $x \leq y, \quad x, y \in\{0,1\}$ and $x \leq y$ where $a \leq a$ be usual ordering then (X, \leq) is a partially ordered set. Let $d: X \times X \rightarrow[0,1)$ be defined by

$$
d(0,1)=3, d(0,0)=d(1,1)=0, d(a, b)=d(b, a), \forall a, b \in X
$$

Then (X, d) is a complete metric space. Let

$$
\begin{gathered}
S=\{(0,0,0),(0,0,1),(0,1,0),(1,0,0),(0,1,1),(1,1,0),(1,0,1),(1,1,1)\} \\
S_{1}=\{(0,0,0),(0,0,1),(0,1,0),(1,0,0)\} \\
S_{2}=\{(0,1,1),(1,1,0),(1,0,1),(1,1,1)\} .
\end{gathered}
$$

We define $F: X \times X \times X \rightarrow X$ as

$$
F(x, y, z)=0, \quad \forall(x, y, z) \in S_{1}
$$

and

$$
F(x, y, z)=1, \quad \forall(x, y, z) \in S_{2} .
$$

Then F is continuous and has the mixed monotone property. It is obvious that

$$
(0,0,0),(0,0,1),(0,1,0),(1,0,0),(0,1,1),(1,1,0),(1,0,1),(1,1,1)
$$

are the tripled fixed points of F. We have following possibilities for values of (x, y, z) and (u, v, w) such that $x \geq u, y \leq v$ and $z \geq w$.
Case 1: If we take $(x, y, z)=(u, v, w)=r$ where $r \in S$, then

$$
d(F(x, y, z), F(u, v, w))=0 .
$$

Thus, the inequality 1.2 holds.
Case 2: If we take $(x, y, z) \neq(u, v, w)=r$ where $r \in S_{1} \quad$ or $\quad S_{2}$, then

$$
d(F(x, y, z), F(u, v, w))=0 .
$$

Thus, the inequality 1.2 holds.
Case 3: If we take $(x, y, z) \in S_{1}$ and $(u, v, w) \in S_{2}$ then all the conditions of Theorem 10 are satisfied. Also, F has eight distinct tripled fixed points in X that are

$$
(0,0,0),(0,0,1),(0,1,0),(1,0,0),(0,1,1),(1,1,0),(1,0,1),(1,1,1)
$$

and

$$
d(x, u)+d(y, v)+d(z, w) \geq \frac{1}{9}
$$

where $(x, y, z),(u, v, w)$ are two distinct tripled fixed points of F.
Remark 12. The ratio

$$
\begin{equation*}
\frac{\binom{d(x, F(u, v, w))+d(y, F(v, u, v))+d(z, F(w, v, u))}{+d(u, F(x, y, z))+d(v, F(y, x, y))+d(w, F(z, y, x))}}{1+3\binom{d(x, F(x, y, z))+d(y, F(y, x, y))+d(z, F(z, y, x))}{+d(u, F(u, v, w))+d(v, F(v, u, v))+d(w, F(w, v, u))}} \tag{1.11}
\end{equation*}
$$

might be greater or less than $\frac{1}{3}$ and has not introduced an upper bound. If

$$
d(x, u)+d(y, v)+d(z, w)<\frac{1}{9}
$$

for every $x, y, z \in X$, then we have

$$
\begin{aligned}
& d(x, F(u, v, w))+d(y, F(v, u, v))+d(z, F(w, v, u))+d(u, F(x, y, z))+d(v, F(y, x, y))+d(w, F(z, y, x)) \\
\leq & d(x, u)+d(u, F(u, v, w))+d(y, v)+d(v, F(v, u, v))+d(z, w)+d(w, F(w, v, u)) \\
& +d(u, x)+d(x, F(x, y, z))+d(v, y)+d(y, F(y, x, y))+d(w, z)+d(z, F(z, y, x) \\
< & 3 d(x, u)+3 d(y, v)+3 d(z, w) \\
& +d(x, F(x, y, z))+d(y, F(y, x, y))+d(z, F(z, y, x))+d(u, F(u, v, w))+d(v, F(v, u, v))+d(w, F(w, v, u)) \\
< & \frac{1}{3}+d(x, F(x, y, z))+d(y, F(y, x, y))+d(z, F(z, y, x))+d(u, F(u, v, w))+d(v, F(v, u, v))+d(w, F(w, v, u)) \\
= & \frac{1}{2}(1+3[d(x, F(x, y, z))+d(y, F(y, x, y))+d(z, F(z, y, x))+d(u, F(u, v, w))+d(v, F(v, u, v))+d(w, F(w, v, u))]) .
\end{aligned}
$$

It means that

$$
\left(\frac{d(x, F(u, v, w))+d(y, F(v, u, v))+d(z, F(w, v, u))+d(u, F(x, y, z))+d(v, F(y, x, y))+d(w, F(z, y, x))}{1+3[d(x, F(x, y, z))+d(y, F(y, x, y))+d(z, F(z, y, x))+d(u, F(u, v, w))+d(v, F(v, u, v))+d(w, F(w, v, u))]}\right)<\frac{1}{3} .
$$

which is a special case of the Theorem 9. Therefore, when (X, d) is a complete metric space such that, for all $x, y \in X, d(x, u)+d(y, v)+d(z, w) \preceq \frac{1}{3}$, the above Theorem is valuable because 1.11 might be greater than $\frac{1}{3}$.

Remark 13. The example 11 does not satisfy the conditions of Theorem 9. That is, we can not say F has a tripled fixed point in X or not. But, we can see that F has a tripled fixed point in X from Theorem 10. In other words the Theorem 10 is a generalization of Theorem 9.

References

1. Agarwal, R.P., El-Gebeily, MA, Oregano, D: Generalized contractions in partially ordered metric spaces. Appl. Anal. 87, 1-8 (2008).
2. Berinde V., Borcut M., Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces. Nonlinear Anal. 74(15), 4889-4897 (2011).
3. Nieto, JJ, Lopez, RR: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22, 223-239 (2005).
4. Nieto, JJ, Lopez, RR: Existence and uniqueness of fixed point in partially ordered sets andapplications to ordinary deferential equations. Acta Math. Sinica Engl. Ser. 23(12), 2205-2212 (2007).
5. O'Regan, D, Petrutel, A: Fixed point theorems for generalized contractions in ordered metric spaces. J.Math. Anal. Appl. 341, 241-1252 (2008).
6. Ran, ACM, Reurings, MCB: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 132, 1435-1443 (2004).
