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Abstract In the present paper, upper bound estimation of upper Box dimension of Riemann-
Liouville fractional integral of order v of any continuous functions on a closed interval has been
proved to be no more than 2 − v when 0 < v < 1. If a continuous function which satisfies α-Hölder
condition on a closed interval, upper Box dimension of its Riemann-Liouville fractional integral is
no more than 2 − α when 0 < α < 1. Upper bound of upper Box dimension of Riemann-Liouivlle
fractional integral of certain type of fractal functions has been proved to be no more than Box
dimension of functions themselves.
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1 Introduction

Estimation of fractal dimension of fractional calculus of continuous functions, such as Weierstrass
function[1], Bescovitch function[10] and other fractal functions has been a goal of much recent research.
First work maybe Refs.[9,13] which discussed pictures and numerical results of fractional calculus of
certain fractal curves such as Von Koch curve. Ref.[11] investigated fractal dimension of Riemann-Liouville
fractional integral and derivative of Weierstrass function. The linear relationship between fractal dimension
and orders of fractional calculus has been set up. Fractal dimension of Riemann-Liouville fractional
calculus of Besicovitch function had been investigated in Ref.[2]. Other conclusions of fractal dimension of
fractional calculus of continuous functions can be found in Refs.[3,8,12,14]. Fractal dimension of fractional
integral of most functions seems no more than fractal dimension of functions themselves.

Though problems of fractal dimension of fractional calculus of fractal functions with certain expressions
have been extensively studied by authors, it seems to us that little has been known on fractal dimension of
fractional calculus of a type of fractal functions which have no expressions. In other words, those functions
discussed above often have good properties and special expressions, while there is little work about
fractional calculus of functions of certain fractal dimension without expression. Ref.[4] made research on
Riemann-Liouville fractional integral of continuous functions with bounded variation. Fractal dimension
of Riemann-Liouville fractional integral of any order of such functions has been proved to be 1. Fractal
dimension of Riemann-Liouville fractional integral of certain 1-dimensional continuous fractal functions
with unbounded variation on closed intervals have been discussed in Ref.[5].

Upper to now, most work discuss fractal dimension of fractional calculus of special functions such
as Weierstrass function, Besicovitch function, self-affine function, fractional interpolation functions,
Radmacher series, special fractal curves and certain complex-expressed fractal functions. The present
paper consider fractal dimension of fractional integral of a type of continuous functions which have no
expressions on closed intervals. Object of the paper is to prove that upper bound of upper Box dimension
of Riemann-Liouville fractional integral of a type of continuous functions on closed intervals is no more
than Box dimension of functions themselves.

In the present paper we use Box dimension, upper Box dimension and lower Box dimension which are
defined as the following Definition 1.1 to describe continuous functions or fractal functions on any closed
intervals.

Definition 1.1.[1,10] Let nonempty set F be a bounded subset of R2 and Nδ(F ) be the smallest number
of sets of diameter at most δ which can cover F . Lower Box dimension and upper Box dimensions of F
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respectively are defined as
dimB(F ) = lim

δ→0

logNδ(F )
− log δ (1.1)

and
dimB(F ) = lim

δ→0

logNδ(F )
− log δ . (1.2)

If (1.1) and (1.2) are equal we refer to the common value as Box dimension of F

dimB(F ) = lim
δ→0

logNδ(F )
− log δ . (1.3)

Form Definition 1.1, we know upper Box dimension of any continuous functions on a closed interval is
no more than 2. Lower Box dimension of any continuous functions on a closed interval is no less than 1.
In other words, if Box dimension of a continuous function on a closed interval exists, it is no more than 2
and no less than 1.

With the following definition of Riemann-Liouville fractional integral, we can discuss fractal dimension
of Riemann-Liouville fractional integral of any continuous functions on closed intervals.

Definition 1.2[6,7]. Let f(x) be a continuous function. v > 0 and D−vf(0) = 0, we call

D−vf(x) = 1
Γ (v)

∫ x

0
(x− t)v−1f(t)dt

Riemann-Liouville integral of f(x) of order v.

Now we are going to investigate upper Box dimension of Riemann-Liouville fractional integral of any
continuous functions on closed intervals. Especially, when a continuous function f(x) on a closed interval
satisfies Hölder condition which is defined as Definition 1.3, we want to know upper Box dimension of
Riemann-Liouville fractional integral of f(x) decreases or not.

Definition 1.3.[1] Let f(x) be a continuous function on [0, 1] and α ∈ (0, 1). If

|f(x)− f(y)| ≤ C|x− y|α, x, y ∈ [0, 1]

where C is a positive constant, we say f(x) satisfies α-Hölder condition.

Throughout the present paper, all functions are continuous on the unit interval I = [0, 1]. Γ (f, I)
denotes the graph of a function f(x) on I. C is a positive constant that may have different values at
different occurrences even in the same line. C[0,1] denotes all continuous functions on I and Cα[0,1] is the
set of all continuous functions satisfying α-Hölder condition on I.

2 Upper Bound of Upper Box Dimension of Riemann-Liouville Fractional
Integral of f(x) ∈ C[0,1]

In this section, we make research on upper Box dimension of Riemann-Liouville fractional integral of
any continuous functions on I. Estimation of upper bound of upper Box dimension of Riemann-Liouville
fractional integral functions has been got. If a continuous function satisfies α-Hölder condition which is
given in Definition 1.3, upper Box dimension of its Riemann-Liouville fractional integral is no more than
2− α. By Ref.[1], it can also be written as the following Lemma 2.1.

Lemma 2.1[1]. Let f(x) ∈ Cα[0,1]. Then,

dimBΓ (f, I) ≤ 2− α.

If f(x) ∈ C[0,1], for 0 < v < 1, Riemann-Liouville fractional integral of f(x) of order v is given as
follows.

D−vf(x) = 1
Γ (v)

∫ x

0
(x− t)v−1f(t)dt.
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We know Γ (D−vf, I) denotes the graph of D−vf(x) on I. With Lemma 2.1, we have the following
conclusion which means upper Box dimension of Riemann-Liouville fractional integral of any continuous
functions on I is no more than 2− v.

Theorem 2.2. Let f(x) ∈ C[0,1], then

dimBΓ (D−vf, I) ≤ 2− v

when 0 < v < 1.

Proof. Let 0 ≤ x < x+ h ≤ 1. Then for 0 < v < 1,

|D−vf(x+ h)−D−vf(x)| =

∣∣∣∣∣ 1
Γ (v)

∫ x+h

0
(x+ h− t)v−1f(t)dt− 1

Γ (v)

∫ x

0
(x− t)v−1f(t)dt

∣∣∣∣∣
= 1
Γ (v)

∣∣∣∣∫ x

0
[(x+ h− t)v−1 − (x− t)v−1]f(t)dt

+
∫ x+h

x

(x+ h− t)v−1f(t)dt

∣∣∣∣∣
≤ 1
Γ (v)

∣∣∣∣∫ x

0
[(x+ h− t)v−1 − (x− t)v−1]f(t)dt

∣∣∣∣
+ 1
Γ (v)

∣∣∣∣∣
∫ x+h

x

(x+ h− t)v−1f(t)dt

∣∣∣∣∣
:=I1 + I2.

Since f(x) ∈ C[0,1], there exists a positive number M such that |f(x)| ≤ M for ∀x ∈ I. For I1 defined
above, it holds

I1 ≤
1

Γ (v)

∫ x

0
|(x+ h− t)v−1 − (x− t)v−1| · |f(t)|dt

≤ M

Γ (v)

∫ x

0
[(x− t)v−1 − (x+ h− t)v−1]dt

= M

vΓ (v) [xv + hv − (x+ h)v]

≤ 2M
Γ (v + 1)h

v.

Meanwhile,

I2 ≤
1

Γ (v)

∫ x+h

x

(x+ h− t)v−1|f(t)|dt

≤ M

Γ (v)

∫ x+h

x

(x+ h− t)v−1dt

≤ M

Γ (v + 1)h
v.

Thus, we have
I1 + I2 ≤ Chv.

This means
|D−vf(x+ h)−D−vf(x)| ≤ Chv.

So, we know
D−vf(x) ∈ Cv[0,1].

Advances in Analysis, Vol. 2, No. 2, April 2017 123

Copyright © 2017 Isaac Scientific Publishing AAN



From Lemma 2.1,

dimBΓ (D−vf, I) ≤ 2− v.

Conclusion of Theorem 2.2 holds.

From Theorem 2.2, upper Box dimension of Riemann-Liouville fractional integral of order v of any
continuous functions f(x) on I is no more than 2 − v when 0 < v < 1. If Box dimension of D−vf(x)
exists,

dimB Γ (D−vf, I) ≤ 2− v, 0 < v < 1.

With Definition 1.1, we know

1 ≤ dimB Γ (D−vf, I) ≤ 2− v, 0 < v < 1.

If v = 1, it is obvious that Box dimension of D−vf(x) exists and

dimB Γ (D−vf, I) = 1 (2.1)

for any f(x) ∈ C[0,1]. In fact, D−1f(x) is a differentiable function on I, then it is of bounded variation.
By Ref. [4], we know (2.1) holds.

In Theorem 2.2, there is a condition that the orders of Riemann-Liouville fractional integral belong
to (0,1). From the definition of Riemann-Liouville fractional calculus and Theorem 2.2, we can get the
following result.

Corollary 2.3. Let f(x) ∈ C[0,1].

(1) If 0 < v < 1,

dimBΓ (D−vf, I) ≤ 2− v.

(2) If v ≥ 1,

dimB Γ (D−vf, I) = 1.

If dimB Γ (f, I) = s and 2− v ≤ s, upper Box dimension of Riemann-Liouville fractional integral of
f(x) is no more than Box dimension of f(x). In the next section, we will prove upper Box dimension of
Riemann-Liouville fractional integral of a type of continuous functions is no more than Box dimension of
continuous functions themselves.

3 Upper Bound of Upper Box Dimension of Riemann-Liouville Fractional
Integral of f(x) ∈ Cα

[0,1]

Let f(x) ∈ Cα[0,1]. We discuss upper bound of upper Box dimension of Riemann-Liouville fractional
integral of f(x) when 0 < v < 1. If 2− v ≤ dimB Γ (f, I) = 2− α, we can still get upper bound of upper
Box dimension of Riemann-Liouville fractional integral of f(x) is no more than Box dimension of f(x) by
another method which is the following Theorem 3.1.

Theorem 3.1. Let f(x) ∈ Cα[0,1] and 2− v ≤ dimB Γ (f, I) = 2− α. Then

dimBΓ (D−vf, I) ≤ 2− α

when 0 < v < 1.
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Proof. Let 0 ≤ x < x + h ≤ 1. We calculate difference between D−vf(x + h) and D−vf(x) when
0 < v < 1. That is,

D−vf(x+ h)−D−vf(x) = 1
Γ (v)

∫ x+h

0
(x+ h− t)v−1f(t)dt

− 1
Γ (v)

∫ x

0
(x− t)v−1f(t)dt

= 1
Γ (v)

[∫ x+h

0
(x+ h− t)v−1f(t)dt−

∫ x

0
(x− t)v−1f(t)dt

]
:=I3.

Let t = y(x+ h). So

I3 = 1
Γ (v)

[∫ x+h

0
(x+ h− y(x+ h))v−1f(y(x+ h))dy(x+ h)−

∫ x

0
(x− t)v−1f(t)dt

]

= 1
Γ (v)

[∫ 1

0
(x+ h)v(1− y)v−1f(y(x+ h))dy −

∫ x

0
(x− t)v−1f(t)dt

]
.

Let t = yx. Then,

I3 = 1
Γ (v)

[∫ 1

0
(x+ h)v(1− y)v−1f(y(x+ h))dy −

∫ x

0
(x− yx)v−1f(yx)dyx

)
= 1
Γ (v)

(∫ 1

0
(x+ h)v(1− y)v−1f(y(x+ h))dy −

∫ 1

0
xv(1− y)v−1f(yx)dy

)
= 1
Γ (v)

∫ 1

0
(1− t)v−1[(x+ h)vf(t(x+ h))− xvf(tx)]dt.

Write Fx(t) = xvf(tx). We have

I3 = 1
Γ (v)

∫ 1

0
(1− t)v−1[Fx+h(t)− Fx(t)]dt.

If f(x) satisfies Hölder condition defined as Definition 1.3, it holds

|I3| =
1

Γ (v)

∣∣∣∣∫ 1

0
(1− t)v−1[Fx+h(t)− Fx(t)]dt

∣∣∣∣
= 1
Γ (v)

∣∣∣∣∫ 1

0
(1− t)v−1[Fx+h(t)− xvf(t(x+ h)) + xvf(t(x+ h))− Fx(t)]dt

∣∣∣∣
Since |f(x)| ≤M , then

|I3| ≤
1

Γ (v)

∫ 1

0
(1− t)v−1|(x+ h)vf(t(x+ h))− xvf(t(x+ h))|dt

+ 1
Γ (v)

∫ 1

0
(1− t)v−1xv|f(t(x+ h))− f(tx)|dt

≤ M

vΓ (v)h
v + 1

vΓ (v)Ch
α

= 1
Γ (v + 1)(Mhv + Chα).

By Definition 1.1 and Lemma 2.1,

dimBΓ (D−vf, I) ≤ max{2− v, 2− α}.
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Thus, we know upper Box dimension of Riemann-Liouville fractional integral of f(x) is no more than Box
dimension of f(x) itself.

Similar with Theorem 2.2, Theorem 3.1 gives an upper bound of upper Box dimension of Riemann-
Liouville fractional integral functions. We don’t know that upper Box dimension of Riemann-Liouville
fractional integral functions is no more than Box dimension of functions themselves or not. But we have a
better conclusion as the following theorem.

Theorem 3.2. Let f(x) ∈ Cα[0,1] and f(0) = 0. Then

dimBΓ (D−vf, I) ≤ min{2− v, 2− α}

when 0 < v < 1.

Proof. Let 0 ≤ x < x+ h ≤ 1 and 0 < v < 1. It holds

D−vf(x+ h)−D−vf(x) = 1
Γ (v)

∫ x+h

0
(x+ h− t)v−1f(t)dt

− 1
Γ (v)

∫ x

0
(x− t)v−1f(t)dt

= 1
Γ (v)

∫ x+h

0
(x+ h− t)v−1f(t)dt

− 1
Γ (v)

∫ x+h

h

(x+ h− t)v−1f(t− h)dt

= 1
Γ (v)

∫ x+h

h

(x+ h− t)v−1[f(t)− f(t− h)]dt

+ 1
Γ (v)

∫ h

0
(x+ h− t)v−1f(t)dt

:=I4 + I5.

Since |f(x)− f(y)| ≤ C|x− y|α holds for any x, y ∈ I,

|I4| ≤
C

vΓ (v)h
α.

Meanwhile f(0) = 0, so we have
|I5| ≤

C

vΓ (v)h
α · hv.

Thus,
|D−vf(x+ h)−D−vf(x)| ≤ Chα.

By Lemma 2.1,
dimBΓ (D−vf, I) ≤ 2− α.

This shows upper Box dimension of Riemann-Liouville fractional integral of any continuous funcitons
satisfying Hölder condition is non-increasing. Furthermore, according to Theorem 2.2, we have

dimBΓ (D−vf, I) ≤ min{2− v, 2− α}.

Theorem 3.1 shows there exists certain type of continuous functions whose upper Box dimension of
Riemann-Liouville fractional integral is no more than 2− α when 0 < v < 1. Furthermore, we have the
following conclusion.

Corollary 3.3. If f(x) ∈ Cα[0,1], f(0) = 0 and

dimB Γ (f, I) = 2− α,
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then, upper bound of upper Box dimension of Riemann-Liouville fractional integral is no more than Box
dimension of f(x) itself.

Upper bound of upper Box dimension of Riemann-Liouville fractional integral of certain functions
defined as Corollary 3.3 seems not increase. If Box dimension of both a continuous function f(x) and its
Riemann-Liouville fractional integral function D−vf(x) exist when 0 < v < 1, we can get

dimB Γ (D−vf, I) ≤ dimB Γ (f, I), 0 < v < 1.

Remark 3.4. From discussion above, we find a type of continuous functions whose Riemann-Liouville
fractional integral functions fractal dimension is no more than fractal dimension of functions themselves.
We think fractal dimension of Riemann-Liouville fractional integral of all continuous functions is no more
than fractal dimension of themselves.

Furthermore, the relationship between fractal dimension of Riemann-Liouville fractional integral of
certain continuous functions and fractal dimension of functions themselves is linear. A famous example
maybe Weierstrass function. In other words, fractal dimension of Weierstrass function from fractal
dimension of Riemann-Liouville fractional integral of Weierstrass function is equal to order of Riemann-
Liouville fractional integral.

With Definition 1.2 and discussion above, we have the following theorem.

Theorem 3.5. If f(x) ∈ Cα[0,1] and
dimB Γ (f, I) = s,

then
dimBΓ (D−vf, I) ≤ s

holds for any v > 0.
If Box dimension of both D−vf(x) and f(x) exist,

dimB Γ (D−vf, I) ≤ dimB Γ (f, I)

holds for any v > 0.

With the following definition of count α-Hölder condition, we give Corollary 3.7.

Definition 3.6.[1] Suppose that there are numbers δ0 > 0, 0 < α < 1 with the following property: for
each x ∈ I and 0 < δ ≤ δ0 there exists y such that |x− y| ≤ δ and

|f(x)− f(y)| ≥ Cδα.

Then
dimBΓ (f, I) ≥ 2− α.

If f(x) satisfies condition of Definition 3.6, we say f(x) satisfies count α-Hölder condition and write it
as f(x) ∈ C−α[0,1]. It is easy to get the following conclusion.

Corollary 3.7. If f(x) ∈ Cα[0,1] ∩ C
−α
[0,1],

dimBΓ (D−vf, I) ≤ dimB Γ (f, I).

Thus we find a class of fractal functions without expressions whose upper Box dimension of Riemann-
Liouville fractional integral is no more than Box dimension of functions themselves.
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