Order Theoretic Common n-tuple Fixed Point

Yaé Ulrich Gaba

University of Cape Town, Rondebosch 7701, South Africa.

Abstract In this article, we solve an open problem initially suggested in [2], namely:

Let (X,d) be a Hausdorff left K-complete T_0 -quasi-pseudometric space, $\phi: X \to \mathbb{R}$ be a bounded from above function and \leq the preorder induced by ϕ . Let $F: X \times X \to X$ and $G_i: X \to X$; $i=1,2,\cdots,N$ for N>2 be N+1 d-sequentially continuous mapping on X such that the pairs $\{F;G_i\}$; $i=1,2,\cdots,N$ are weakly left-related.

Problem:

- 1. Can we prove that F, G_1, \dots, G_N have a common coupled fixed point in X?
- 2. Alternatively, what could be a correct formulation of the statement, using the induced preorder and the weakly left-related property that guarantees a positive answer?

We answer this question by the affirmative. In fact we prove that a more general result holds when $F: X^n \to X$ for a natural number n > 2.

Keywords: Quasi-pseudometric space, left K-complete, preordered space, left-weakly related, common couple fixed point, common n-tuple fixed

1 Preliminaries

Definition 1.1. Let (X, \leq_X) and (Y, \leq_Y) be two prosets. A map $T: X \to Y$ is said to be **preorder-preserving** or **isotone** if for any $x, y \in X$,

$$x \preceq_X y \Longrightarrow Tx \preceq_Y Ty$$
.

Similarly, for any family (X_i, \preceq_{X_i}) , $i = 1, 2, \dots, n$; (Y, \preceq_Y) of posets, a mapping $F: X_1 \times X_2 \times \dots \times X_n \to Y$ is said to be **preorder-preserving** or **isotone** if for any for any $(x_1, x_2, \dots, x_n), (z_1, z_2, \dots, z_n) \in X_1 \times X_2 \times \dots \times X_n$,

$$x_i \preceq_{X_i} z_i \text{ for all } i = 1, 2, \dots, n \Longrightarrow F(x_1, x_2, \dots, x_n) \preceq_Y F(z_1, z_2, \dots, z_n).$$

Definition 1.2. (Compare [4]) Let X be a non empty set. A function $d: X \times X \to [0, \infty)$ is called a quasi-pseudometric on X if:

- $i) \ d(x,x) = 0 \quad \forall \ x \in X,$
- ii) $d(x,z) \le d(x,y) + d(y,z) \quad \forall \ x,y,z \in X.$

Moreover, if $d(x,y) = 0 = d(y,x) \Longrightarrow x = y$, then d is said to be a T_0 -quasi-pseudometric. The latter condition is referred to as the T_0 -condition.

Remark 1.3.

- Let d be a quasi-pseudometric on X, then the map d^{-1} defined by $d^{-1}(x,y) = d(y,x)$ whenever $x,y \in X$ is also a quasi-pseudometric on X, called the **conjugate** of d. In the literature, d^{-1} is also denoted d^t or \bar{d} .
- It is easy to verify that the function d^s defined by $d^s := d \vee d^{-1}$, i.e. $d^s(x,y) = \max\{d(x,y),d(y,x)\}$ defines a metric on X whenever d is a T_0 -quasi-pseudometric on X.

Definition 1.4. Let (X,d) be a quasi-pseudometric space. The convergence of a sequence (x_n) to x with respect to $\tau(d)$, called d-convergence or left-convergence and denoted by $x_n \stackrel{d}{\longrightarrow} x$, is defined in the following way

$$x_n \xrightarrow{d} x \iff d(x, x_n) \longrightarrow 0.$$
 (1)

Finally, in a quasi-pseudometric space (X,d), we shall say that a sequence (x_n) d^s -converges to x if it is both left and right convergent to x, and we denote it as $x_n \xrightarrow{d^s} x$ or $x_n \longrightarrow x$ when there is no confusion. Hence

$$x_n \xrightarrow{d^s} x \iff x_n \xrightarrow{d} x \text{ and } x_n \xrightarrow{d^{-1}} x.$$

Definition 1.5. A sequence (x_n) in a quasi-pseudometric (X,d) is called

(a) left d-Cauchy if for every $\epsilon > 0$, there exist $x \in X$ and $n_0 \in \mathbb{N}$ such that

$$\forall n \geq n_0, \quad d(x, x_n) < \epsilon;$$

(b) left K-Cauchy if for every $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$\forall n, k : n_0 \le k \le n, \quad d(x_k, x_n) < \epsilon;$$

(c) d^s -Cauchy if for every $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$\forall n, k \geq n_0, \quad d(x_n, x_k) < \epsilon.$$

Definition 1.6. (Compare [4]) A quasi-pseudometric space (X, d) is called

- left-K-complete provided that any left K-Cauchy sequence is d-convergent,
- left Smyth sequentially complete if any left K-Cauchy sequence is d^s -convergent.

Definition 1.7. A T_0 -quasi-pseudometric space (X, d) is called **bicomplete** provided that the metric d^s on X is complete.

Definition 1.8. Let (X,d) be a quasi-pseudometric type space. A function $T: X \to X$ is called d-sequentially continuous or left-sequentially continuous if for any d-convergent sequence (x_n) with $x_n \xrightarrow{d} x$, the sequence (Tx_n) d-converges to Tx, i.e. $Tx_n \xrightarrow{d} Tx$. Similarly, a function $T: X_1 \times X_2 \times \cdots \times X_n \to X$ for $n \geq 2$, is said to be d-sequentially continuous

or left-sequentially continuous if for any sequences (x_l^i) such that $x_l^i \stackrel{d}{\longrightarrow} x^{*,i}$, then

$$T(x_l^i, x_l^{i+1}, \cdots, x_l^n, x_l^i, \cdots, x_l^{i-1}) \xrightarrow{d} T(x^{*,i}, x^{*,i+1}, \cdots, x^{*,n}, x^{*,1}, \cdots, x^{*,i-1}).$$

Definition 1.9. (Compare [1]) An element $(x^1, x^2, \dots, x^n) \in X^n$ is called:

(E1) a **n-tuple fixed point** of the mapping $F: X^n \to X$ if

$$F(x^{i}, x^{i+1}, \dots, x^{n}, x^{1}, \dots, x^{i-1}) = x^{i}, \text{ for all } i, 1 \le i \le n.$$

(E2) a **n-tuple coincidence point** of the mappings $F: X^n \to X$ and $T: X \to X$ if

$$F(x^i,x^{i+1},\cdots,x^n,x^1,\cdots,x^{i-1})=Tx^i$$

for all $i, 1 \le i \le n$ and in this case $(Tx^1, Tx^2, \dots, Tx^n)$ is called the n-tuple point of coincidence; (E3) a common n-tuple fixed point of the mappings $F: X^n \to X$ and $T: X \to X$ if

$$F(x^{i}, x^{i+1}, \dots, x^{n}, x^{1}, \dots, x^{i-1}) = Tx^{i} = x^{i}$$

for all $i, 1 \le i \le n$.

From the above, we then obtained the natural following definitions

Definition 1.10. Let X be a non empty set. An element $(x^1, x^2, \dots, x^n) \in X^n$ is called:

(E'2) a **n-tuple coincidence point** of the mappings $F: X^n \to X$ and $G_k: X \to X$ with $k, 1 \le k \le N$, N > 2 if $F(x^i, x^{i+1}, \dots, x^n, x^1, \dots, x^{i-1}) = G_k x^i$ for all $i, 1 \le i \le n$ and for all $k, 1 \le k \le N$; (E'2) a **n-tuple common fixed point** of the mappings $F: X^n \to X$ and $G_1, G_2, \dots, G_N: X \to X$ with N > 2 if $F(x^i, x^{i+1}, \dots, x^n, x^1, \dots, x^{i-1}) = G_k x^i = x^i$ for all $i, 1 \le i \le n$ and for all $k, 1 \le k \le N$.

Definition 1.11. (See [2]) Let (X, \preceq) be a preordered space, and $F: X^n \to X$ and $g: X \to X$ be two mappings. Then the pair $\{F, g\}$ is said to be **weakly left-related** if the following condition is satisfied: (C1) $F(x^i, x^{i+1}, \cdots, x^n, x^1, \cdots, x^{i-1}) \preceq gF(x^i, x^{i+1}, \cdots, x^n, x^1, \cdots, x^{i-1})$ and

$$gx^i \leq F(gx^i, gx^{i+1}, \cdots, gx^n, gx^1, \cdots, x^{i-1})$$

for all $1 \le i \le n$.

2 Main Result

We recall the following lemma.

Lemma 2.1. (Compare [2]) Let (X, d) be a quasi-pseudometric space and $\phi : X \to \mathbb{R}$ a map. Define the binary relation " \preceq " on X as follows:

$$x \leq y \iff d(x,y) \leq \phi(y) - \phi(x).$$

Then " \leq " is a preorder on X. It will be called the preorder induced by ϕ .

Example 2.2. Let $X = [0, \infty)$ and $d(x, y) = \max\{0, x - y\}$. Then (X, d) is a quasi-pseudometric space. For any positive real number t, let $\phi_t : X \to \mathbb{R}$ defined by $\phi_t(x) = tx$. Then for $x, y \in X$, we have

$$x \leq y \iff d(x,y) \leq \phi_t(y) - \phi_t(x)$$

 $\iff 0 = \max\{0, x - y\} \leq t(y - x).$

It follows that $3/2 \leq 3$, $1/2 \leq 1$, etc.

Remark 2.3. (Compare [2]) If in addition, the space (X,d) is T_0 , then the relation \leq defined by

$$x \subseteq y \iff d^s(x,y) \le \phi(y) - \phi(x).$$

is a partial order on X.

We introduce the following definition.

Definition 2.4. Let (X, \preceq) be a preordered set and $g, f : X \to X$. We say that the pair $\{g, f\}$ (in this order) is an **embedded pair** if

$$g(x) \leq f(g(x)), \text{ whenever } x \in X.$$

We shall say that the family $\{G_1, G_2, \dots, G_n\}$ (in this order) is a n-embedded chain if for all $i = 1, \dots, n-1$, the pair $\{G_i, G_{i+1}\}$ is an embedded pair. Observe that an embedded pair is a 2-embedded chain.

We shall say that the family $\{G_1, G_2, \dots, G_n\}$ is a **dual** n-embedded chain if $\{G_1, G_2, \dots, G_n\}$ and $\{G_n, G_{n-1}, \dots, G_1\}$ are n-embedded chains.

Example 2.5. Let $X = [2, \pi)$ with the usual order and consider the pairs $\mathcal{F} = \{F_1(x) = 3x, F_2(x) = 5x\}$ and $\mathcal{G} = \{G_1(x) = \sin x + 1, G_2(x) = x^2\}.$

For any $x \in X$,

$$F_1(x) = 3x \le 5(3x) = F_2(F_1(x))$$
 and $F_2(x) = 5x \le 3(5x) = F_1(F_2(x))$,

showing that \mathcal{F} is a dual 2-embedded chain.

On the other way around

$$x \in X$$
, $G_1(x) = \sin x + 1 \le (\sin x + 1)^2 = G_2(G_1(x))$,

showing that G is an embedded pair, while

$$G_2(x) = x^2 > \sin(x^2) + 1 = G_1(G_2(x)),$$

showing that G is not a dual 2-embedded chain.

Now we are ready to give the solution to the open problem.

Theorem 2.6. Let (Y,d) be a Hausdorff left K-complete T_0 -quasi-pseudometric space, $\phi: Y \to \mathbb{R}$ be a bounded from above function and \leq the preorder induced by ϕ . Let $F: Y \times Y \to Y$ and $G_i: Y \to Y$; $i = 2, \dots, r$ for r > 2 be (r-1)+1 d-sequentially continuous mapping on X such that the pairs $\{F, G_r\}$; r = 2, 3 are weakly left-related. Moreover, we assume that $\{G_r, G_{r-1}, \dots, G_3\}$ is an r-2-embedded chain. Then F, G_2, \dots, G_r have a common n-tuple fixed point in Y.

Proof. Let $X_0^1, \dots, X_0^n \in X$. We construct the sequences $(X_l^i)_l$ in Y as follows:

$$G_r X_{rl-r}^i = X_{rl-r+1}^i, \cdots, G_3 X_{rl-3}^i = X_{rl-2}^i, \ G_2 X_{rl-1}^i = X_{rl}^i$$

and

$$X_{rl-1}^{i} = F(X_{rl-2}^{i}, X_{rl-2}^{i+1}, \cdots, X_{rl-2}^{n}, X_{rl-2}^{1}, \cdots, X_{rl-2}^{i-1}),$$

for all $l \geq 1$. We shall show that

$$X_l^i \leq X_{l+1}^i \quad \text{for all } i, \ 1 \leq i \leq n.$$
 (2)

Since the pair $\{G_r, G_{r-1}\}$ is an embedded pair, we have

$$X_1^i = G_r X_0^i \leq G_{r-1}(G_r X_0^i) = G_{r-1}(X_1^i) = X_2^i$$

Again, since the pair $\{G_{r-1}, G_{r-2}\}$ is an embedded pair, we have

$$X_2^i = G_{r-1}X_1^i \leq G_{r-2}(G_{r-1}X_1^i) = G_{r-2}(X_2^i) = X_3^i.$$

So we obtain recursively

$$G_r X_0^i = X_1^i \leq G_{r-1} X_1^i = X_2^i \leq \cdots \leq G_3(X_{r-3}^i) = X_{r-2}^i.$$

Now, since the pair $\{F, G_3\}$ is weakly left-related, we have

$$\begin{split} X_{r-2}^i &= G_3(X_{r-3}^i) \preceq F(G_3X_{r-3}^i, G_3X_{r-3}^{i+1}, \cdots, G_3X_{r-3}^n, G_3X_{r-3}^1, \cdots, G_3X_{r-3}^{i-1}) \\ &= F(X_{r-2}^i, X_{r-2}^{i+1}, \cdots, X_{r-2}^n, X_{r-2}^1, \cdots, X_{r-2}^{i-1}) = X_{r-1}^i. \end{split}$$

Again since the pair $\{F, G_2\}$ is weakly left-related, we have

$$X_{r-1}^{i} = F(X_{r-2}^{i}, X_{r-2}^{i+1}, \cdots, X_{r-2}^{n}, X_{r-2}^{1}, \cdots, X_{r-2}^{i-1})$$

$$\leq G_{2}F(X_{r-2}^{i}, X_{r-2}^{i+1}, \cdots, X_{r-2}^{n}, X_{r-2}^{1}, \cdots, X_{r-2}^{i-1})$$

$$= G_{2}X_{r-1}^{i} = X_{r}^{i}.$$

Similarly, using repeatedly the fact that the pairs $\{F, G_2\}$ and $\{F, G_3\}$ are weakly left-related, and that $\{G_r, G_{r-1}, \dots, G_3\}$ is an an r-2-embedded chain, we obtain

$$X_1^i \leq X_2^i \leq X_3^i \leq \ldots \leq X_l^i \leq \cdots$$

By definition of the preorder, we have

$$\phi(X_1^i) \le \phi(X_2^i) \le \ldots \le \phi(X_I^i) \le \cdots$$

Hence, the sequence $(\phi(X_l^i))$ is a non-decreasing sequence of real numbers. Since ϕ is bounded from above, the sequence $(\phi(X_l^i))$ converges and is therefore Cauchy. This entails that for any $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that for any $q > p > n_0$, we have $\phi(X_q^i) - \phi(X_p^i) < \varepsilon$. Since whenever $q > p > n_0$, $X_p^i \leq X_q^i$ and it follows that

$$d(X_p^i, X_q^i) \le \phi(X_q^i) - \phi(X_p^i) < \varepsilon.$$

We conclude that (X_l^i) is a left K-Cauchy sequence in Y and since Y is left K-complete, there exist $X^{*,i} \in Y$ such that $X_l^i \stackrel{d}{\longrightarrow} X^{*,i}$.

Since F and G_2, \dots, G_r are d-sequentially continuous, it is easy to see that

$$X_{rl-1}^{i} \xrightarrow{d} X^{*,i} \iff F(X_{rl-2}^{i}, X_{rl-2}^{i+1}, \cdots, X_{rl-2}^{n}, X_{rl-2}^{1}, \cdots, X_{rl-2}^{i-1}) \xrightarrow{d} X^{*,i} \iff F(X^{*,i}, X^{*,i+1}, \cdots, X^{*,n}, X^{*,1}, \cdots, X^{*,i-1}) = X^{*,i}$$

and

$$X_{rl-r}^i \stackrel{d}{\longrightarrow} X^{*,i} \Longleftrightarrow X_{rl-k+1}^i = G_k X_{rl-k}^i \stackrel{d}{\longrightarrow} X^{*,i} \Longleftrightarrow G_k X^{*,i} = X^{*,i},$$

and hence

$$G_k X^{*,i} = X^{*,i} = F(X^{*,i}, X^{*,i+1}, \cdots, X^{*,n}, X^{*,1}, \cdots, X^{*,i-1}).$$

Hence $(X^{*,1}, X^{*,2}, \cdots, X^{*,n})$ is a common n-tuple fixed point of F and G_2, \cdots, G_r .

Example 2.7. Let $X = [0, \infty)$ and $d : X \times X \to \mathbb{R}$ be the mapping defined by $d(a, b) = \max\{a-b, 0\}$. Then d is a T_0 -quasi-pseudometric on X. Observe that any left K-Cauchy sequence in (X, d) is d-convergent to 0. Indeed, if (x_n) is a left K-Cauchy sequence, for every $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$\forall n, k : n_0 \le k \le n \quad d(x_k, x_n) < \epsilon.$$

This entails that $\forall n : n_0 < n$

$$d(0, x_n) \le d(0, x_{n-1}) + d(x_{n-1}, x_n) = 0 + d(x_{n-1}, x_n) \le \epsilon.$$

Hence $d(0,x_n) \longrightarrow 0$, i.e. $x_n \stackrel{d}{\longrightarrow} 0$. Therefore (X,d) is left K-complete.

For any positive real number a, let $\phi_a: X \to \mathbb{R}$ be defined by $\phi_a(x) = ax$, and \leq the preorder induced by ϕ_a . We define $F: X^n \to X$ and $GX \to X$ as follows

$$F(x^1, x^2, \dots, x^n) = x^1 + |\sin(x^1 x^2 \dots x^n)|$$
 and $G_k(x) = kx, k = 2, \dots, r, r > 2$.

For k = 1, 2, we have on one hand,

$$G_k F(x^i, x^{i+1}, \dots, x^n, x^1, \dots, x^{i-1}) = k(x^i + |\sin(x^1 x^2 \dots x^n)|),$$

i.e.

$$F(x^i, x^{i+1}, \dots, x^n, x^1, \dots, x^{i-1}) \prec G_k F(x^i, x^{i+1}, \dots, x^n, x^1, \dots, x^{i-1}),$$

and on the other hand,

$$F(G_k x^i, G_k x^{i+1}, \cdots, G_k x^n, G_k x^1, \cdots, G_k x^{i-1}) = F(k x^i, k x^{i+1}, \cdots, k x^n, k x^1, \cdots, k x^{i-1})$$
$$= k x^i + |\sin(k^n x^1 x^2 \cdots x^n)|,$$

i.e.

$$G_k x^i \leq F(G_k x^i, G_k x^{i+1}, \cdots, G_k x^n, G_k x^1, \cdots, G_k x^{i-1}).$$

And so the pair $\{F, G_k\}$ are weakly left-related for k = 2, 3. Again, it is not hard to see that F and $G_k, k = 2, \dots, r$, are d-sequentially continuous mappings on X.

Moreover, for any $x \in [0, \infty)$, $kx \le k(k-1)x$, $k = 2, \dots, r$, implying that $\{G_r, G_{r-1}, \dots, G_3\}$ is an an r-2-embedded chain. Hence we see that all the conditions of our theorem are satisfied. Also we have

$$F(0, x^{i}, x^{i+1}, \dots, x^{n}, x^{1}, \dots, x^{i-2}) = 0 = G_k(0)$$

for $k = 2, \dots, r$ and for $i = 1, 2, \dots, n$. Thus $\underbrace{(0, \dots, 0)}_{n}$ is a common n-tuple fixed point of F, G_2, \dots, G_r .

Corollary 2.8. Let (Y,d) be a Hausdorff left K-complete T_0 -quasi-pseudometric space, $\phi: Y \to \mathbb{R}$ be a bounded from above function and \leq the preorder induced by ϕ . Let $F: Y \times Y \to X$ and $G_i: Y \to Y; i = 1, 2, \dots, r$ for r > 2 be N+1 d-sequentially continuous mapping on X such that the pairs $\{F, G_r\}; r = 2, 3$ are weakly left-related. Moreover, we assume that $\{G_r, G_{r-1}, \dots, G_3\}$ is a dual r-2-embedded chain. Then F, G_2, \dots, G_r have a common n-tuple fixed point in Y.

Corollary 2.9. Let (Y,d) be a bicomplete T_0 -quasi-pseudometric space, $\phi: Y \to \mathbb{R}$ be a bounded from above function and $\overline{\leq}$ the preorder induced by ϕ . Let $F: Y \times Y \to X$ and $G_i: Y \to Y; i = 1, 2, \dots, r$ for r > 2 be N+1 d^s -sequentially continuous mapping on X such that the pairs $\{F, G_r\}; r = 2, 3$ are weakly left-related. Moreover, we assume that $\{G_r, G_{r-1}, \dots, G_3\}$ is an r-2-embedded chain. Then F, G_2, \dots, G_r have a common n-tuple fixed point in Y.

3 Concluding Remark

All the results given remain true when we replace accordingly the bicomplete quasi-pseudometric space (X, d) by a left Smyth sequentially complete/left K-complete or a right Smyth sequentially complete/right K-complete space.

References

- 1. Ertürk, M, Karakaya, V; n-tuple fixed point theorems for contractive type mappings in partially ordered metric spaces. J. Inequal. Appl. 2013, 196 (2013).
- 2. Y. U. Gaba; "An order theoretic approach in fixed point theory." Mathematical Sciences (2014): 1-7. DOI 10.1007/s40096-014-0133-6.
- 3. V. Lakshmikantham and Lj. B. Ciric; Coupled fixed point theorems for nonlinear contractions in partially ordered metric space, Nonlinear Anal. 70, no. 12, 4341-4349, 2009.
- 4. Y. U. Gaba; Startpoints and (α, γ) -contractions in quasi-pseudometric spaces, Journal of Mathematics, Volume 2014 (2014), Article ID 709253, 8 pages http://dx.doi.org/10.1155/2014/709253.