Order Theoretic Common n-tuple Fixed Point

Yaé Ulrich Gaba
University of Cape Town, Rondebosch 7701, South Africa.

Abstract

In this article, we solve an open problem initially suggested in [2], namely:

Let (X,d) be a Hausdorff left K-complete T_{0}-quasi-pseudometric space, $\phi: X \rightarrow \mathbb{R}$ be a bounded from above function and \preceq the preorder induced by ϕ. Let $F: X \times X \rightarrow X$ and $G_{i}: X \rightarrow$ $X ; i=1,2, \cdots, N$ for $N>2$ be $N+1 d$-sequentially continuous mapping on X such that the pairs $\left\{F ; G_{i}\right\} ; i=1,2, \cdots, N$ are weakly left-related.

\section*{Problem:} 1. Can we prove that F, G_{1}, \cdots, G_{N} have a common coupled fixed point in X ? 2. Alternatively, what could be a correct formulation of the statement, using the induced preorder and the weakly left-related property that guarantees a positive answer?

We answer this question by the affirmative. In fact we prove that a more general result holds when $F: X^{n} \rightarrow X$ for a natural number $n>2$.

Keywords: Quasi-pseudometric space, left K-complete, preordered space, left-weakly related, common couple fixed point, common n-tuple fixed

1 Preliminaries

Definition 1.1. Let $\left(X, \preceq_{X}\right)$ and $\left(Y, \preceq_{Y}\right)$ be two prosets. A map $T: X \rightarrow Y$ is said to be preorderpreserving or isotone if for any $x, y \in X$,

$$
x \preceq_{X} y \Longrightarrow T x \preceq_{Y} T y .
$$

Similarly, for any family $\left(X_{i}, \preceq_{x_{i}}\right), i=1,2, \cdots, n ;\left(Y, \preceq_{Y}\right)$ of posets, a mapping $F: X_{1} \times X_{2} \times \cdots \times X_{n} \rightarrow$ Y is said to be preorder-preserving or isotone if for any for any $\left(x_{1}, x_{2}, \cdots, x_{n}\right),\left(z_{1}, z_{2}, \cdots, z_{n}\right) \in$ $X_{1} \times X_{2} \times \cdots \times X_{n}$,

$$
x_{i} \preceq_{x_{i}} z_{i} \text { for all } i=1,2, \cdots, n \Longrightarrow F\left(x_{1}, x_{2}, \cdots, x_{n}\right) \preceq_{Y} F\left(z_{1}, z_{2}, \cdots, z_{n}\right) .
$$

Definition 1.2. (Compare [4]) Let X be a non empty set. A function $d: X \times X \rightarrow[0, \infty)$ is called a quasi-pseudometric on X if:
i) $d(x, x)=0 \quad \forall x \in X$,
ii) $d(x, z) \leq d(x, y)+d(y, z) \quad \forall x, y, z \in X$.

Moreover, if $d(x, y)=0=d(y, x) \Longrightarrow x=y$, then d is said to be a T_{0}-quasi-pseudometric. The latter condition is referred to as the T_{0}-condition.

Remark 1.3.

- Let d be a quasi-pseudometric on X, then the map d^{-1} defined by $d^{-1}(x, y)=d(y, x)$ whenever $x, y \in X$ is also a quasi-pseudometric on X, called the conjugate of d. In the literature, d^{-1} is also denoted d^{t} or \bar{d}.
- It is easy to verify that the function d^{s} defined by $d^{s}:=d \vee d^{-1}$, i.e. $d^{s}(x, y)=\max \{d(x, y), d(y, x)\}$ defines a metric on X whenever d is a T_{0}-quasi-pseudometric on X.

Definition 1.4. Let (X, d) be a quasi-pseudometric space. The convergence of a sequence $\left(x_{n}\right)$ to x with respect to $\tau(d)$, called d-convergence or left-convergence and denoted by $x_{n} \xrightarrow{d} x$, is defined in the following way

$$
\begin{equation*}
x_{n} \xrightarrow{d} x \Longleftrightarrow d\left(x, x_{n}\right) \longrightarrow 0 . \tag{1}
\end{equation*}
$$

Finally, in a quasi-pseudometric space (X, d), we shall say that a sequence $\left(x_{n}\right) d^{s}$-converges to x if it is both left and right convergent to x, and we denote it as $x_{n} \xrightarrow{d^{s}} x$ or $x_{n} \longrightarrow x$ when there is no confusion. Hence

$$
x_{n} \xrightarrow{d^{s}} x \Longleftrightarrow x_{n} \xrightarrow{d} x \quad \text { and } \quad x_{n} \xrightarrow{d^{-1}} x .
$$

Definition 1.5. A sequence $\left(x_{n}\right)$ in a quasi-pseudometric (X, d) is called
(a) left d-Cauchy if for every $\epsilon>0$, there exist $x \in X$ and $n_{0} \in \mathbb{N}$ such that

$$
\forall n \geq n_{0}, \quad d\left(x, x_{n}\right)<\epsilon ;
$$

(b) left K-Cauchy if for every $\epsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that

$$
\forall n, k: n_{0} \leq k \leq n, \quad d\left(x_{k}, x_{n}\right)<\epsilon
$$

(c) d^{s}-Cauchy if for every $\epsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that

$$
\forall n, k \geq n_{0}, \quad d\left(x_{n}, x_{k}\right)<\epsilon
$$

Definition 1.6. (Compare [4]) A quasi-pseudometric space (X, d) is called

- left-K-complete provided that any left K-Cauchy sequence is d-convergent,
- left Smyth sequentially complete if any left K-Cauchy sequence is d^{s}-convergent.

Definition 1.7. A T_{0}-quasi-pseudometric space (X, d) is called bicomplete provided that the metric d^{s} on X is complete.

Definition 1.8. Let (X, d) be a quasi-pseudometric type space. A function $T: X \rightarrow X$ is called d sequentially continuous or left-sequentially continuous if for any d-convergent sequence (x_{n}) with $x_{n} \xrightarrow{d} x$, the sequence $\left(T x_{n}\right) d$-converges to $T x$, i.e. $T x_{n} \xrightarrow{d} T x$.
Similarly, a function $T: X_{1} \times X_{2} \times \cdots \times X_{n} \rightarrow X$ for $n \geq 2$, is said to be d-sequentially continuous or left-sequentially continuous if for any sequences $\left(x_{l}^{i}\right)$ such that $x_{l}^{i} \xrightarrow{d} x^{*, i}$, then

$$
T\left(x_{l}^{i}, x_{l}^{i+1}, \cdots, x_{l}^{n}, x_{l}^{i}, \cdots, x_{l}^{i-1}\right) \xrightarrow{d} T\left(x^{*, i}, x^{*, i+1}, \cdots, x^{*, n}, x^{*, 1}, \cdots, x^{*, i-1}\right) .
$$

Definition 1.9. (Compare [1]) An element $\left(x^{1}, x^{2}, \cdots, x^{n}\right) \in X^{n}$ is called:
(E1) a n-tuple fixed point of the mapping $F: X^{n} \rightarrow X$ if

$$
F\left(x^{i}, x^{i+1}, \cdots, x^{n}, x^{1}, \cdots, x^{i-1}\right)=x^{i}, \text { for all } i, 1 \leq i \leq n .
$$

(E2) a n-tuple coincidence point of the mappings $F: X^{n} \rightarrow X$ and $T: X \rightarrow X$ if

$$
F\left(x^{i}, x^{i+1}, \cdots, x^{n}, x^{1}, \cdots, x^{i-1}\right)=T x^{i}
$$

for all $i, 1 \leq i \leq n$ and in this case $\left(T x^{1}, T x^{2}, \cdots, T x^{n}\right)$ is called the n-tuple point of coincidence; (E3) a common n-tuple fixed point of the mappings $F: X^{n} \rightarrow X$ and $T: X \rightarrow X$ if

$$
F\left(x^{i}, x^{i+1}, \cdots, x^{n}, x^{1}, \cdots, x^{i-1}\right)=T x^{i}=x^{i}
$$

for all $i, 1 \leq i \leq n$.

From the above, we then obtained the natural following definitions
Definition 1.10. Let X be a non empty set. An element $\left(x^{1}, x^{2}, \cdots, x^{n}\right) \in X^{n}$ is called:
(E'2) a n-tuple coincidence point of the mappings $F: X^{n} \rightarrow X$ and $G_{k}: X \rightarrow X$ with $k, 1 \leq k \leq$ $N, N>2$ if $F\left(x^{i}, x^{i+1}, \cdots, x^{n}, x^{1}, \cdots, x^{i-1}\right)=G_{k} x^{i}$ for all $i, 1 \leq i \leq n$ and for all $k, 1 \leq k \leq N$;
(E'2) a n-tuple common fixed point of the mappings $F: X^{n} \rightarrow X$ and $G_{1}, G_{2}, \cdots, G_{N}: X \rightarrow X$ with $N>2$ if $F\left(x^{i}, x^{i+1}, \cdots, x^{n}, x^{1}, \cdots, x^{i-1}\right)=G_{k} x^{i}=x^{i}$ for all $i, 1 \leq i \leq n$ and for all $k, 1 \leq k \leq N$.

Definition 1.11. (See [2]) Let (X, \preceq) be a preordered space, and $F: X^{n} \rightarrow X$ and $g: X \rightarrow X$ be two mappings. Then the pair $\{F, g\}$ is said to be weakly left-related if the following condition is satisfied: (C1)

$$
F\left(x^{i}, x^{i+1}, \cdots, x^{n}, x^{1}, \cdots, x^{i-1}\right) \preceq g F\left(x^{i}, x^{i+1}, \cdots, x^{n}, x^{1}, \cdots, x^{i-1}\right)
$$

and

$$
g x^{i} \preceq F\left(g x^{i}, g x^{i+1}, \cdots, g x^{n}, g x^{1}, \cdots, x^{i-1}\right)
$$

for all $1 \leq i \leq n$.

2 Main Result

We recall the following lemma.
Lemma 2.1. (Compare [2]) Let (X, d) be a quasi-pseudometric space and $\phi: X \rightarrow \mathbb{R}$ a map. Define the binary relation " \preceq " on X as follows:

$$
x \preceq y \Longleftrightarrow d(x, y) \leq \phi(y)-\phi(x)
$$

Then " $\preceq "$ is a preorder on X. It will be called the preorder induced by ϕ.
Example 2.2. Let $X=[0, \infty)$ and $d(x, y)=\max \{0, x-y\}$. Then (X, d) is a quasi-pseudometric space. For any positive real number t, let $\phi_{t}: X \rightarrow \mathbb{R}$ defined by $\phi_{t}(x)=t x$. Then for $x, y \in X$, we have

$$
\begin{aligned}
x \preceq y & \Longleftrightarrow d(x, y) \leq \phi_{t}(y)-\phi_{t}(x) \\
& \Longleftrightarrow 0=\max \{0, x-y\} \leq t(y-x)
\end{aligned}
$$

It follows that $3 / 2 \preceq 3,1 / 2 \preceq 1$, etc.
Remark 2.3. (Compare [2]) If in addition, the space (X, d) is T_{0}, then the relation \preceq defined by

$$
x \preceq y \Longleftrightarrow d^{s}(x, y) \leq \phi(y)-\phi(x)
$$

is a partial order on X.
We introduce the following definition.
Definition 2.4. Let (X, \preceq) be a preordered set and $g, f: X \rightarrow X$. We say that the pair $\{g, f\}$ (in this order) is an embedded pair if

$$
g(x) \preceq f(g(x)), \text { whenever } x \in X .
$$

We shall say that the family $\left\{G_{1}, G_{2}, \cdots, G_{n}\right\}$ (in this order) is a n-embedded chain if for all $i=$ $1, \cdots, n-1$, the pair $\left\{G_{i}, G_{i+1}\right\}$ is an embedded pair. Observe that an embedded pair is a 2-embedded chain.

We shall say that the family $\left\{G_{1}, G_{2}, \cdots, G_{n}\right\}$ is a dual n-embedded chain if $\left\{G_{1}, G_{2}, \cdots, G_{n}\right\}$ and $\left\{G_{n}, G_{n-1}, \cdots, G_{1}\right\}$ are n-embedded chains.

Example 2.5. Let $X=[2, \pi)$ with the usual order and consider the pairs $\mathcal{F}=\left\{F_{1}(x)=3 x, F_{2}(x)=5 x\right\}$ and $\mathcal{G}=\left\{G_{1}(x)=\sin x+1, G_{2}(x)=x^{2}\right\}$.

For any $x \in X$,

$$
F_{1}(x)=3 x \leq 5(3 x)=F_{2}\left(F_{1}(x)\right) \text { and } F_{2}(x)=5 x \leq 3(5 x)=F_{1}\left(F_{2}(x)\right),
$$

showing that \mathcal{F} is a dual 2 -embedded chain.
On the other way around

$$
x \in X, G_{1}(x)=\sin x+1 \leq(\sin x+1)^{2}=G_{2}\left(G_{1}(x)\right),
$$

showing that \mathcal{G} is an embedded pair, while

$$
G_{2}(x)=x^{2}>\sin \left(x^{2}\right)+1=G_{1}\left(G_{2}(x)\right),
$$

showing that \mathcal{G} is not a dual 2 -embedded chain.
Now we are ready to give the solution to the open problem.
Theorem 2.6. Let (Y, d) be a Hausdorff left K-complete T_{0}-quasi-pseudometric space, $\phi: Y \rightarrow \mathbb{R}$ be a bounded from above function and \preceq the preorder induced by ϕ. Let $F: Y \times Y \rightarrow Y$ and $G_{i}: Y \rightarrow Y ; i=$ $2, \cdots, r$ for $r>2$ be $(r-1)+1 d$-sequentially continuous mapping on X such that the pairs $\left\{F, G_{r}\right\} ; r=2,3$ are weakly left-related. Moreover, we assume that $\left\{G_{r}, G_{r-1}, \cdots, G_{3}\right\}$ is an $r-2$-embedded chain. Then F, G_{2}, \cdots, G_{r} have a common n-tuple fixed point in Y.

Proof. Let $X_{0}^{1}, \cdots, X_{0}^{n} \in X$. We construct the sequences $\left(X_{l}^{i}\right)_{l}$ in Y as follows:

$$
G_{r} X_{r l-r}^{i}=X_{r l-r+1}^{i}, \cdots, G_{3} X_{r l-3}^{i}=X_{r l-2}^{i}, G_{2} X_{r l-1}^{i}=X_{r l}^{i}
$$

and

$$
X_{r l-1}^{i}=F\left(X_{r l-2}^{i}, X_{r l-2}^{i+1}, \cdots, X_{r l-2}^{n}, X_{r l-2}^{1}, \cdots, X_{r l-2}^{i-1}\right),
$$

for all $l \geq 1$. We shall show that

$$
\begin{equation*}
X_{l}^{i} \preceq X_{l+1}^{i} \quad \text { for all } i, 1 \leq i \leq n . \tag{2}
\end{equation*}
$$

Since the pair $\left\{G_{r}, G_{r-1}\right\}$ is an embedded pair, we have

$$
X_{1}^{i}=G_{r} X_{0}^{i} \preceq G_{r-1}\left(G_{r} X_{0}^{i}\right)=G_{r-1}\left(X_{1}^{i}\right)=X_{2}^{i} .
$$

Again, since the pair $\left\{G_{r-1}, G_{r-2}\right\}$ is an embedded pair, we have

$$
X_{2}^{i}=G_{r-1} X_{1}^{i} \preceq G_{r-2}\left(G_{r-1} X_{1}^{i}\right)=G_{r-2}\left(X_{2}^{i}\right)=X_{3}^{i}
$$

So we obtain recursively

$$
G_{r} X_{0}^{i}=X_{1}^{i} \preceq G_{r-1} X_{1}^{i}=X_{2}^{i} \preceq \cdots \preceq G_{3}\left(X_{r-3}^{i}\right)=X_{r-2}^{i} .
$$

Now, since the pair $\left\{F, G_{3}\right\}$ is weakly left-related, we have

$$
\begin{aligned}
X_{r-2}^{i}=G_{3}\left(X_{r-3}^{i}\right) & \preceq F\left(G_{3} X_{r-3}^{i}, G_{3} X_{r-3}^{i+1}, \cdots, G_{3} X_{r-3}^{n}, G_{3} X_{r-3}^{1}, \cdots, G_{3} X_{r-3}^{i-1}\right) \\
& =F\left(X_{r-2}^{i}, X_{r-2}^{i+1}, \cdots, X_{r-2}^{n}, X_{r-2}^{1}, \cdots, X_{r-2}^{i-1}\right)=X_{r-1}^{i}
\end{aligned}
$$

Again since the pair $\left\{F, G_{2}\right\}$ is weakly left-related, we have

$$
\begin{aligned}
X_{r-1}^{i} & =F\left(X_{r-2}^{i}, X_{r-2}^{i+1}, \cdots, X_{r-2}^{n}, X_{r-2}^{1}, \cdots, X_{r-2}^{i-1}\right) \\
& \preceq G_{2} F\left(X_{r-2}^{i}, X_{r-2}^{i+1}, \cdots, X_{r-2}^{n}, X_{r-2}^{1}, \cdots, X_{r-2}^{i-1}\right) \\
& =G_{2} X_{r-1}^{i}=X_{r}^{i} .
\end{aligned}
$$

Similarly, using repeatedly the fact that the pairs $\left\{F, G_{2}\right\}$ and $\left\{F, G_{3}\right\}$ are weakly left-related, and that $\left\{G_{r}, G_{r-1}, \cdots, G_{3}\right\}$ is an an $r-2$-embedded chain, we obtain

$$
X_{1}^{i} \preceq X_{2}^{i} \preceq X_{3}^{i} \preceq \ldots \preceq X_{l}^{i} \preceq \cdots
$$

By definition of the preorder, we have

$$
\phi\left(X_{1}^{i}\right) \leq \phi\left(X_{2}^{i}\right) \leq \ldots \leq \phi\left(X_{l}^{i}\right) \leq \cdots,
$$

Hence, the sequence $\left(\phi\left(X_{l}^{i}\right)\right)$ is a non-decreasing sequence of real numbers. Since ϕ is bounded from above, the sequence $\left(\phi\left(X_{l}^{i}\right)\right)$ converges and is therefore Cauchy. This entails that for any $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that for any $q>p>n_{0}$, we have $\phi\left(X_{q}^{i}\right)-\phi\left(X_{p}^{i}\right)<\varepsilon$. Since whenever $q>p>n_{0}, X_{p}^{i} \preceq X_{q}^{i}$ and it follows that

$$
d\left(X_{p}^{i}, X_{q}^{i}\right) \leq \phi\left(X_{q}^{i}\right)-\phi\left(X_{p}^{i}\right)<\varepsilon .
$$

We conclude that $\left(X_{l}^{i}\right)$ is a left K-Cauchy sequence in Y and since Y is left K-complete, there exist $X^{*, i} \in Y$ such that $X_{l}^{i} \xrightarrow{d} X^{*, i}$.
Since F and G_{2}, \cdots, G_{r} are d-sequentially continuous, it is easy to see that

$$
\begin{aligned}
X_{r l-1}^{i} \xrightarrow{d} X^{*, i} & \Longleftrightarrow F\left(X_{r l-2}^{i}, X_{r l-2}^{i+1}, \cdots, X_{r l-2}^{n}, X_{r l-2}^{1}, \cdots, X_{r l-2}^{i-1}\right) \xrightarrow{d} X^{*, i} \\
& \Longleftrightarrow F\left(X^{*, i}, X^{*, i+1}, \cdots, X^{*, n}, X^{*, 1} \cdots, X^{*, i-1}\right)=X^{*, i}
\end{aligned}
$$

and

$$
X_{r l-r}^{i} \xrightarrow{d} X^{*, i} \Longleftrightarrow X_{r l-k+1}^{i}=G_{k} X_{r l-k}^{i} \xrightarrow{d} X^{*, i} \Longleftrightarrow G_{k} X^{*, i}=X^{*, i},
$$

and hence

$$
G_{k} X^{*, i}=X^{*, i}=F\left(X^{*, i}, X^{*, i+1}, \cdots, X^{*, n}, X^{*, 1} \cdots, X^{*, i-1}\right) .
$$

Hence $\left(X^{*, 1}, X^{*, 2}, \cdots, X^{*, n}\right)$ is a common n-tuple fixed point of F and G_{2}, \cdots, G_{r}.

Example 2.7. Let $X=[0, \infty)$ and $d: X \times X \rightarrow \mathbb{R}$ be the mapping defined by $d(a, b)=\max \{a-b, 0\}$. Then d is a T_{0}-quasi-pseudometric on X. Observe that any left K-Cauchy sequence in (X, d) is d-convergent to 0 . Indeed, if $\left(x_{n}\right)$ is a left K-Cauchy sequence, for every $\epsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that

$$
\forall n, k: n_{0} \leq k \leq n \quad d\left(x_{k}, x_{n}\right)<\epsilon .
$$

This entails that $\forall n: n_{0}<n$

$$
d\left(0, x_{n}\right) \leq d\left(0, x_{n-1}\right)+d\left(x_{n-1}, x_{n}\right)=0+d\left(x_{n-1}, x_{n}\right)<\epsilon
$$

Hence $d\left(0, x_{n}\right) \longrightarrow 0$, i.e. $x_{n} \xrightarrow{d} 0$. Therefore (X, d) is left K-complete.
For any positive real number a, let $\phi_{a}: X \rightarrow \mathbb{R}$ be defined by $\phi_{a}(x)=a x$, and \preceq the preorder induced by ϕ_{a}. We define $F: X^{n} \rightarrow X$ and $G X \rightarrow X$ as follows

$$
F\left(x^{1}, x^{2}, \cdots, x^{n}\right)=x^{1}+\left|\sin \left(x^{1} x^{2} \cdots x^{n}\right)\right| \text { and } G_{k}(x)=k x, k=2, \cdots, r, r>2 .
$$

For $k=1,2$, we have on one hand,

$$
G_{k} F\left(x^{i}, x^{i+1}, \cdots, x^{n}, x^{1}, \cdots, x^{i-1}\right)=k\left(x^{i}+\left|\sin \left(x^{1} x^{2} \cdots x^{n}\right)\right|\right),
$$

i.e.

$$
F\left(x^{i}, x^{i+1}, \cdots, x^{n}, x^{1}, \cdots, x^{i-1}\right) \preceq G_{k} F\left(x^{i}, x^{i+1}, \cdots, x^{n}, x^{1}, \cdots, x^{i-1}\right)
$$

and on the other hand,

$$
\begin{aligned}
F\left(G_{k} x^{i}, G_{k} x^{i+1}, \cdots, G_{k} x^{n}, G_{k} x^{1}, \cdots, G_{k} x^{i-1}\right) & =F\left(k x^{i}, k x^{i+1}, \cdots, k x^{n}, k x^{1}, \cdots, k x^{i-1}\right) \\
& =k x^{i}+\left|\sin \left(k^{n} x^{1} x^{2} \cdots x^{n}\right)\right|
\end{aligned}
$$

i.e.

$$
G_{k} x^{i} \preceq F\left(G_{k} x^{i}, G_{k} x^{i+1}, \cdots, G_{k} x^{n}, G_{k} x^{1}, \cdots, G_{k} x^{i-1}\right)
$$

And so the pair $\left\{F, G_{k}\right\}$ are weakly left-related for $k=2,3$. Again, it is not hard to see that F and $G_{k}, k=2, \cdots, r$, are d-sequentially continuous mappings on X.
Moreover, for any $x \in[0, \infty), k x \leq k(k-1) x, k=2, \cdots, r$, implying that $\left\{G_{r}, G_{r-1}, \cdots, G_{3}\right\}$ is an an $r-2$-embedded chain. Hence we see that all the conditions of our theorem are satisfied.
Also we have

$$
F\left(0, x^{i}, x^{i+1}, \cdots, x^{n}, x^{1}, \cdots, x^{i-2}\right)=0=G_{k}(0)
$$

for $k=2, \cdots, r$ and for $i=1,2, \cdots, n$.
Thus $\underbrace{(0, \cdots, 0)}_{n}$ is a common n-tuple fixed point of F, G_{2}, \cdots, G_{r}.
Corollary 2.8. Let (Y, d) be a Hausdorff left K-complete T_{0}-quasi-pseudometric space, $\phi: Y \rightarrow \mathbb{R}$ be a bounded from above function and \preceq the preorder induced by ϕ. Let $F: Y \times Y \rightarrow X$ and $G_{i}: Y \rightarrow Y ; i=$ $1,2, \cdots, r$ for $r>2$ be $N+1 d$-sequentially continuous mapping on X such that the pairs $\left\{F, G_{r}\right\} ; r=2,3$ are weakly left-related. Moreover, we assume that $\left\{G_{r}, G_{r-1}, \cdots, G_{3}\right\}$ is a dual $r-2$-embedded chain. Then F, G_{2}, \cdots, G_{r} have a common n-tuple fixed point in Y.

Corollary 2.9. Let (Y, d) be a bicomplete T_{0}-quasi-pseudometric space, $\phi: Y \rightarrow \mathbb{R}$ be a bounded from above function and \preceq the preorder induced by ϕ. Let $F: Y \times Y \rightarrow X$ and $G_{i}: Y \rightarrow Y ; i=1,2, \cdots, r$ for $r>2$ be $N+1 d^{s}$-sequentially continuous mapping on X such that the pairs $\left\{F, G_{r}\right\} ; r=2,3$ are weakly left-related. Moreover, we assume that $\left\{G_{r}, G_{r-1}, \cdots, G_{3}\right\}$ is an $r-2$-embedded chain. Then F, G_{2}, \cdots, G_{r} have a common n-tuple fixed point in Y.

3 Concluding Remark

All the results given remain true when we replace accordingly the bicomplete quasi-pseudometric space (X, d) by a left Smyth sequentially complete/left K-complete or a right Smyth sequentially complete/right K-complete space.

References

1. Ertürk, M, Karakaya, V; n-tuple fixed point theorems for contractive type mappings in partially ordered metric spaces. J. Inequal. Appl. 2013, 196 (2013).
2. Y. U. Gaba; "An order theoretic approach in fixed point theory." Mathematical Sciences (2014): 1-7. DOI 10.1007/s40096-014-0133-6.
3. V. Lakshmikantham and Lj. B. Ciric; Coupled fixed point theorems for nonlinear contractions in partially ordered metric space, Nonlinear Anal. 70, no. 12, 4341-4349, 2009.
4. Y. U. Gaba; Startpoints and (α, γ)-contractions in quasi-pseudometric spaces, Journal of Mathematics, Volume 2014 (2014), Article ID 709253, 8 pages http://dx.doi.org/10.1155/2014/709253.
