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Abstract In the common theory of the inverse problem, a system of differential equations is given
and we ask whether this system is identical with the Lagrange system of an appropriate variational
integral. In this article, only a small part of the Euler–Lagrange system may be prescribed in
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conditions and the Tonti resolving formula are adapted for this incomplete problem. Elementary
and self–contained algorithmical approach is applied.
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1 Introduction

In order to introduce our task, let us recall the jet coordinates

xi, w
j
I (i = 1, . . . , n; j = 1, . . . ,m; I = i1 · · · ir; r = |I| = 0, 1, . . . ) (1)

named independent variables x1, . . . , xn, dependent variables w1, . . . , wm (empty I = φ with r = 0) and
higher–order variables wjI (nonempty I) which correspond to the derivatives

∂wj

∂xI
= ∂rwj

∂xi1 · · · ∂xir
(I = i1 · · · ir; i1, . . . , ir = 1, . . . , n)

in the familiar sense. We deal with the local theory of smooth real–valued functions f = f(··, xi, wjI , ··)
depending on a finite number of variables (1) where

d

dxi
= ∂

∂xi
+
∑

wjIi
∂

∂wjI
,

d

dxI
= d

dxi1
· · · d

dxir
(I = i1 · · · ir)

denote the total derivatives.
Let us moreover introduce a novelty, the extended jet space, where the primary coordinates (1) are

completed with additional variables

t (= xn+1), wjIt, w
j
Itt, . . . (j, I as above). (2)

They are named the parameter variable t and the variations wjIt, w
j
Itt, . . . corresponding to the derivatives

∂

∂t

∂wj

∂xI
,
∂2

∂t2
∂wj

∂xI
, · · · ,

respectively. If F = F (··, xi, t, wjI , w
j
It, ··) is a function in the extended jet space, the variation operator

d

dt
= ∂

∂t
+
∑

wjIt
∂

∂wjI
+
∑

wjItt
∂

∂wjIt
+ · · ·
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can be applied. The variations and total derivatives may be composed and mutually commute. (Later
on, the following second extension of the jet space and additional variation denoted either t = xn+2 or
s = xn+2 marginally appears.)

With this preparation, let f and g be functions of variables (1). If we substitute some functions
wj = wj(x1, . . . , xn, t), then the rule

g wjIit = − dg

dxi
wjIt + d

dxi
(g wjIt) (3)

can be repeatedly applied to provide the variational identity

df

dt
=
∑ ∂f

∂wjI
wjIt = · · · = e[f ] +D (e[f ] =

∑
ej [f ]wjt ) (4)

where
ej [f ] =

∑
(−1)r d

dxI

∂f

∂wjI
(j = 1, . . . ,m), D =

∑ d

dxi
Fi

are the Euler–Lagrange expressions and the divergence summand (with certain ambigous functions Fi),
respectively.

At this place, we recall the actual exact inverse problem of the calculus of variations which is as
follows. Certain functions ej (j = 1, . . . ,m) of variables (1) are given and we have to decide if there exists
a Lagrange function f of variables (1) such that ej = ej [f ] for all j = 1, . . . ,m. This problem is resolved
for a long time. We shall however deal with the incomplete version of this problem where not all functions
e1, . . . , em are prescribed in advance. In accordance with a brief remark in [1], this is a reasonable task
which can be effectively investigated if the intermediate terms · · · in the variational identity (4) are taken
into account.

The following remarks should be useful for a better clarity of the article to follow. There are two
aspects of the problem, namely the algorithmical and the geometrical one.

We prefer the algorithmical approach which is as follows. There are variables (1) and (2) where the
functions of variables (1) can be regarded as functions of variables (2) as well. The procedure (3) applied
to a function f of variables (1) provides the identity (4) with certain unique functions ej [f ] (j = 1, . . . ,m)
of variables (2). The common inverse problem consists in determination of this f if all functions ej [f ] are
given. In our article, only a certain part of these functions ej [f ] is prescribed. This incomplete problem
is in fact very wide, since some properties of the unknown function f can be still postulated in our
algorithm.

We intentionally omit the geometrical aspect of the inverse problem. The term “jet space” and
“extended jet space” occurring in the article are merely shorter formal substitute for the phrases “the
space of variables (1)” and “the space of variables (2)”, respectively. We have a good reason for this point
of view. Though our article was inspired by geometry [2], the proofs and the final results do not admit any
clear geometrical interpretation and cannot be expressed within the framework of the actual jet theories
[3],[4]. Roughly, the actual jet theories are formally not appropriate.

In short, the main achievements of the article are as follows. Theorems 2.3 and 2.4 represent the
generalized Helmholz conditions and the Tonti resolving formula is improved in Theorem 2.5. After some
technical remarks, we discuss the mechanisms of the incomplete inverse problem in the particular case
(30)–(36) with only one given function e1[f ]. This is also illustrated by a few explicit examples. A complete
thorough theory would rest on Theorem 2.6 and it does not cause any additional difficulties. We conclude
with curious differential complex (57) which latently involves all results of this article.

2 The Main Achievements

We start with two well–known and simple results [1].

Proposition 2.1 (uniqueness). Let f be function of variables (1) and

df

dt
=
∑

ejwjt +D (D =
∑ d

dxi
Gi) (5)
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where ej are functions of variables (1) while Gi may depend on variables (2). Then ej = ej [f ] for all
j = 1, . . . ,m.

Proposition 2.2 (divergence). The vanishing ej [f ] = 0 (j = 1, . . . ,m) is equivalent to the identity

f =
∑ d

dxi
fi (6)

where fi are appropriate functions of variables (1).

Equations (4) and (5) imply the identity∑
(ej − ej [f ])wjt =

∑ d

dxi
(Fi −Gi)

whence the Proposition 2.1 follows by substitution of arbitrary functions wj = wj(x1, . . . , xn, t) and
subsequent integration over a domain Ω in the space of variables x1, . . . , xn. Concerning Proposition 2.2,
let us insert functions

twj + (1− t)cj (j = 1, . . . ,m; fixed functions cj = cj(··, xi, ··)) (7)

for all variables wj (and also for wjI and wjIt) into (4), respectively. Then the integration of border terms
provides the identity

f − f |wj=cj =
∫ 1

0

df

dt
dt =

∑∫ 1

0
ej [f ] dt(wj − cj) +

∑ d

dxi

∫ 1

0
Fi dt. (8)

Assuming moreover e[f ] = 0, we have just the formula (6) where

f |wj=cj +
∑ d

dxi

∫ 1

0
Fidt =

∑ d

dxi
Gi = D (certain Gi)

clearly is a divergence. Assuming conversely (6), then

df

dt
= d

dt

∑ d

dxi
fi =

∑ d

dxi
Fi (Fi = d

dt
fi)

and the uniqueness implies e[f ] = 0.
Let us turn to the main task. Together with border terms in the variational identity, also the

intermediate terms will be taken into account. We focus on one of such intermediate terms · · · in (4):

df

dt
=
∑ ∂f

∂wjI
wjIt = F [f ] +D = e[f ] +D (F [f ] =

∑
ejIj

[f ]wjIjt
). (9)

The sum in the expression F [f ] runs over j = 1, . . . ,m and all multiindices Ij which belong to a certain
set I(j). The vague notation D for all divergences in the primary jet space is sufficient.

In particular

ejIj
[f ] = ∂f

∂wjIj

= ∂f

∂wjI
, Ij ∈ I(j) = {I : |I| ≤ order f}, D = 0 (10)

for the initial term in (9) and

ejIj
[f ] = ej [f ], Ij = φ, D =

∑ d

dxi
Fi (11)

for the last term. There are many dissimilar variational identities (9) which correspond to various strategies
of the use of the rule (3), we deal with only one such strategy here.
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Theorem 2.3. For any intermediate term, the identity

e[F [f ]] = 0 (F [f ] =
∑

ejIj
[f ]wjIjt

=
∑

ejIj
[f ]wjIj ,n+1) (12)

in the extended jet space holds true.

Proof. If t = xn+1 is regarded as a mere additional independent variable, Proposition 2.2 can be applied
to the equation

df

dt
= df

dxn+1
= F [f ] +D.

It follows that
F [f ] = df

dxn+1
−D

is a divergence in the extended jet space which implies e[F [f ]] = 0.

Theorem 2.4. Let certain functions

ejIj
(j = 1, . . . ,m; Ij ∈ I(j))

of variables (1) satisfy the identity

e[F ] = 0 (F =
∑

ejIj
wjIjt

=
∑

ejIj
wjIj ,n+1) (13)

in the extended jet space. Then

df

dt
= F +D hence F = F [f ] +D (14)

for appropriate Lagrange function f of variables (1) and divergence D.

Before passing to the proof, let us mention condition (13) in more detail. In the extended jet space

e[F ] =
∑

ej [F ]wjt =
∑

ej [F ]wjn+2 (t = xn+2)

with the Euler–Lagrange expressions

ej [F ] =
∑

(−1)r d

dxK

∂F

∂wjK
(j = 1, . . . ,m; K = k1 · · · kr; r = 0, 1, . . . )

where k1, . . . , kr = 1, . . . ,m+ 1. Clearly

ej
′
[F ] =

∑
F jj

′

I wjI,n+1 (j, I as above; j′ = 1, . . . ,m) (15)

where the coefficients F jj
′

I are expressed only in terms of functions ejIj
. It follows that identity (13) is

equivalent to the (generalized) Helmholz condition

F jj
′

I = 0 (all j and I as above; j′ = 1, . . . ,m) (16)

for the given functions ejIj
.

Proof. In the extended jet space xn+1 is taken for the additional independent variable (instead of t) while
t will denote the new variation. So, assuming (13) in the more precise notation, the variational identity
for the function F reads

dF

dt
=
∑ ∂

∂wj
′

I′

(∑
ejIj
wjIj ,n+1

)
wj

′

I′t +
∑

ejIj
wjIj ,n+1,t = · · · = D (17)
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since e[F ] = 0. Here
D =

∑ d

dxi
Gi + d

dxn+1
G (sum over i = 1, . . . , n) (18)

denotes a divergence in the extended jet space. Analogously as in (8), it follows that

F − F |wj=cj =
∫ 1

0

dF

dt
dt =

∑ d

dxi

∫ 1

0
Gi dt+

∑ d

dxn+1

∫ 1

0
Gdt

where (7) was inserted for variables wj before the integration. Altogether

df

dxn+1
= F −

{
F |wj=cj +

∑ d

dxi

∫ 1

0
Gi dt

}
(f =

∫ 1

0
Gdt). (19)

Returning to the original notation in the jet space (1), we have the identity

df

dt
= F +D (f =

∫ 1

0
Gdt,D = −{· · · }) (20)

and the proof is done with only one gap: G is a certain function in the extended jet space and we need to
prove that f is in fact a function of variables (1).

Theorem 2.5. The Tonti integral

f̃ =
∫ 1

0
Fdt =

∑∫ 1

0
ejIj
dt

(
wjIj
− ∂cj

∂xIj

)
(21)

can be taken for the Lagrange function f in previous Theorem.

Proof. We shall explicitly calculate the function G in (20) by using the definition equations (17) and (18).
For this aim, the rule (3) is applied to the first summand of the middle term in (17) schematically as
follows

gwj
′

I′t = gwj
′

i1···irt = · · · = (−1)r dg

dxI′
wj

′

t +D

for the coefficients
g = ∂

∂wj
′

I′

(∑
ejIj
wjIj ,n+1

)
.

The resulting summand with the factor wj
′

t belongs to the total sum e[F ] = 0 and may be neglected. The
vague summand D affects only the functions Gi in (18) and may be neglected, too. The second summand
of the middle term in (17) eventually provides the desired result. Indeed, applying the rule (3) gives

ejIj
wjIj ,n+1,t = − d

dxn+1
ejIj
· wjIjt

+ d

dxn+1
(ejIj

wjIjt
) = · · ·

= (−1)|Ij |+1 d

dxIj

(
d

dxn+1
ejIj

)
· wjt +D + (−1)|Ij | d

dxn+1

(
d

dxIj

ejIj
· wjt +D

)
.

The summand of the final result with the factor wjt again belongs to e[F ] = 0 and may be neglected. The
remaining summand provides the solution

G =
∑

(−1)|Ij | d

dxIj

ejIj
· wjt , f̃ =

∫ 1

0
Gdt

which is other than (21). However, instead of this G, we can also use the function∑
(−1)|Ij |(−1)|Ij |ejIj

· d

dxIj

wjt =
∑

ejIj
wjIjt

= F

since it differs within a mere divergence D.
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Due to the uncertain divergence D and various possible strategies of calculations, the coefficients
ejIj

[f ] in (9) are not uniquely determined except for the following self–evident case.

Theorem 2.6. For any fixed j = 1, . . . ,m with I(j) = {φ}, the coefficients ejφ[f ] = ej [f ] of the
intermediate term of the variational identity are the Euler–Lagrange expressions.

The connection of Theorems with the incomplete inverse problem will be soon investigated. In the
meantime, let us mention some useful technique of calculations to follow later on. Together with the
original jet space, we recall the extended jet spaces with independent variables denoted for this time as

x1, . . . , xn, t (= xn+1) or x1, . . . , xn, t (= xn+1), s (= xn+2).

The parameter variable in the largest second extension is temporarily denoted s instead of t for better
clarity. For convenience, we also recall some of the above formulae in the new notation:

F =
∑

ejIj
wjIj ,n+1 =

∑
ejIj
wjIjt

(j = 1, . . . ,m; Ij ∈ I(j)), (22)

ej
′
[F ] =

∑
(−1)|K| d

dxK

∂F

∂wj
′

K

=
∑

F jj
′

I wjI,n+1 =
∑

F jj
′

I wjIt, (23)

e[F ] =
∑

ej
′
[F ]wj

′

n+2 =
∑

ej
′
[F ]wj

′

s =
∑

F jj
′

I wjItw
j′

s (24)

where the multiindices I and Ij consist of entries 1, . . . , n while K concerns the extendend jet space and
entries 1, . . . , n+ 1.
Lemma 2.1. The selfadjointness identity

e[F ] = dF

ds
− dG

dt
+D (F =

∑
ejIj
wjIjt

, G =
∑

ejIj
wjIjs

) (25)

holds true with a certain divergence D.
Proof. One can easily find the identity∑

F jj
′

I wjIt =
∑

(−1)|I
′| d

dxI′
( ∂

∂wj
′

I′

ejIj
· wjIjt

)− d

dt

∑
(−1)|Ij | d

dxIj

ejIj
(26)

by using (23). Moreover clearly
d

ds
F =

∑ ∂

∂wj
′

I′

ejIj
· wj

′

I′sw
j
Ijt

+
∑

ejIj
wjIjts

, (27)

− d

dt
G = −

∑ ∂

∂wj
′

I′

ejIj
· wj

′

I′tw
j
Ijs
−
∑

ejIj
wjIjst

. (28)

The multiindices I ′ in the factor wj
′

I′s of (27) can be deleted by the rule (3) in order to obtain the factor
wj

′

s . Analogously, the multiindices I ′ in the factor wj
′

I′t can be deleted as well. Then (25) immediately
follows with the divergence caused by the already mentioned use of the rule (3).

Lemma 2.2. Helmholz condition (13) is equivalent to the selfadjointness congruence
dF

ds
∼=
dG

dt
(mod D) (F =

∑
ejIj
wjIjt

, G =
∑

ejIj
wjIjs

). (29)

This obvious consequences of the previous Lemma 2.2 was known only for the particular “border case”
where F =

∑
ejwjt and G =

∑
ejwjs. Then the necessity of (29) becomes easy: the condition e[F ] = 0

implies that
ej = ej [f ], F = df

dt
+D

whence
dF

ds
= d

ds

(
df

dt
+D

)
= d

dt

(
df

ds
+D

)
= dG

dt
+D.

The sufficience and the general case (29) are much deeper facts.
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Lemma 2.3 (hypothesis). Conditions F jj
′

I = 0 with j ≤ j′ (or with j′ ≤ j) imply all the remaining
conditions F jj

′

I = 0 with arbitrary j and j′.

We can state only a very delicate scheme of the proof. In all applications to follow later on, the
Lemma 2.3 will be directly verified if necessary.

First of all, one can find an identity∑
F jj

′

I wjItw
j′

s =
∑

Gj
′j
I wj

′

Isw
j
t +D (appropriate Gj

′j
I )

by using the rule (3). The divergence D is a linear combination of various expressions dF jj
′

I /dxI , hence
the identities F jj

′

I = 0 imply Gj
′j
I = 0. However the latter identities are also the Helmholz condition with

a mere exchanged role of the variations t and s. But j is related to t while j′ is related to s. So we may
conclude that the Helmholz condition with j ≤ j′ is equivalent to the same conditions with j′ ≤ j hence
is equivalent to all Helmholz conditions.

3 Towards the Inverse Problems

The initial term

Let us start with the initial term (10) of the variational identity. Then

e

[∑ ∂f

∂wjI
wjIt

]
= e

[
df

dt

]
= 0 (A)

is trivially satisfied. Conversely assume

e[F ] = 0 (F =
∑

ejIw
j
It) (B)

where ejI (j = 1, . . . ,m; |I| ≤ const.) are functions of variables (1). Then

F = df̃

dt
+D (f̃ =

∫ 1

0
Fdt =

∑∫ 1

0
ejI dt (wjI −

∂cj

∂xI
)) (C)

where (7) is inserted into the integral and cj = cj(x1, . . . , xn) are arbitrary fixed functions. It should be
however noted that condition (B) is always satisfied if the order of variables (1) occuring in functions
ejI does not exceed the total length of all multiindices I appearing in the summation of F. This easily
follows by direct verification. It should be also noted that the existence of function f satisfying the “exact”
equations

ejI = ∂f

∂wjI
, F =

∑ ∂f

∂wjI
wjIt = df

dt

is not ensured here.

The last term

Let us turn to the analogous identity

e
[∑

ej [f ]wjt
]

= e[e[f ]] = 0 (A)

valid for the last term (11). Conversely assume

e[F ] = 0 (F =
∑

ejwjt ) (B)
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where ej (j = 1, . . . ,m) are certain given functions of variables (1). Then

F = e[f̃ ] +D (f̃ =
∫ 1

0
Fdt =

∑∫ 1

0
ejdt (wj − cj)). (C)

However more is true. We have

df̃

dt
= e[f̃ ] +D whence also df̃

dt
= (F −D) +D (various D)

by using (C) and the uniqueness applied in the extended jet space implies e[f̃ ] = F +D. So we have the
familiar solution of the common exact inverse problem: functions ej (j = 1, . . . ,m) of variables (1) satisfy
the condition (B) if and only if

F = e[f ] hence ej = ej [f ] (j = 1, . . . ,m)

for appropriate f (we may put f = f̃ , the Tonti solution).
It is worth mentioning that in our approach, the condition (B) becomes very transparent. Indeed,

e[F ] = 0 is satisfied if and only if

ej
′
[F ] = ej

′
[∑

ejwjt

]
= ej

′
[∑

ejwjn+1

]
= 0 (j′ = 1, . . . ,m)

in the extended jet space. In more detail this condition reads

∑ ∂ej

∂wj
′

0
wjt −

∑ d

dxi

(
∂ej

∂wj
′

i

wjt

)
− d

dt
ej

′
+

+
∑ d

dxii′

(
∂ej

∂wj
′

ii′

wjt

)
−
∑ d

dxii′i′′

(
∂ej

∂wj
′

ii′i′′

wjt

)
+ · · · = 0.

The coefficients F jj
′

I of terms wjIt can be easily found which explicitly provides the Helmholz system (16).

The intermediate terms

Let us eventually mention the proper intermediate terms of the variational identity. However, there is a
legion of various possibilities and a universal theory is hardly realistic at the present time at this place.
So we restrict ourselves to a very particular subcase from now on.

We shall be interested only in the identity

e [F [f ]] = 0 (F [f ] = e1[f ]w1
t +

∑
k≥2

∂f

∂wkI
wkIt). (A)

Conversely assuming
e[F ] = 0 (F = e1w1

t +
∑
k≥2

ekIw
k
It) (B)

where e1, ekI are functions of variables (1) then

F = F [f̃ ] +D (f̃ =
∫ 1

0
e1dt (w1 − c1) +

∑∫ 1

0
ekI dt (wkI −

∂ck

∂xI
)). (C)

Let us moreover choose ekI = ∂g/∂wkI which provides the incomplete inverse problem to be discussed.
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The inverse problem

Abbreviating e = e1, we put

F = ew1
t +

∑
k≥2

∂g

∂wkI
wkIt (30)

where e and g are functions of variables (1). Then the condition e[F ] = 0 in the extended jet space ensures
the existence of a function f of variables (1) such that

df

dt
= F +D hence e = e1[f ] (31)

by using Theorems 2.4 and 2.6. Due to Theorem 2.5, one can choose f = f̃ where

f̃ =
∫ 1

0
F dt =

∫ 1

0
e dt (w1 − c1) +

∑∫ 1

0

∂g

∂wkI
dt (wkI −

∂ck

∂xI
) (32)

is the Tonti integral (21). This may be regarded as a solution of the incomplete exact inverse problem with
the first Euler–Lagrange expression e = e1[f ] given in advance (and function g to be still determined).

In more detail, the solvability requirement e[F ] = 0 reads

ej
′
[ew1

t +
∑
j≥2

∂g

∂wjI
wjIt] =

∑
F jj

′

I wjIt = 0 (j′ = 1, . . . ,m) (33)

where the coefficients F jj
′

I are expressed in terms of functions e and g. This provides the generalized
Helmholz solvability condition F jj

′

I = 0 (all j, j′, I) for the functions e and g. In our case (30), the
coefficients F jj

′

I can be determined by the identity

∑
F jj

′

I wjIt =
∑

(−1)|I
′| d

dxI′
( ∂e

∂wj
′

I′

· w1
t )−

de

dt
+

+
∑

(−1)|I
′| d

dxI′
( ∂

∂wj
′

I′

∂g

∂wkI
· wkIt)−

d

dt

∑
(−1)|I

′| d

dxI′

∂g

∂wkI′

(34)

which is much simpler than the general formula (26).
In the common exact inverse problem where all Euler–Lagrange expressions are given, the Tonti

solution is unique. Our incomplete problem is more interesting since the ambigous function g should be
still determined. This provides a wide amount of variants of inventions since some properties of g can
be apriori postulated. (One can observe that one can even postulate g = f where f is a solution of the
inverse problem but it is not the best choice.)

In practice, many technical improvements can be employed. For instance, obviously

F = ew1
t −

∑ ∂g

∂w1
I

w1
It + dg

dt
(35)

and it follows that the simplified condition

ej
′
[ew1

t −
∑ ∂g

∂w1
I

w1
It] =

∑
F jj

′

I wjIt = 0 (j′ = 1, . . . ,m) (36)

is equivalent to the previous requirement (33). Warning: the Tonti integral is not simplified.
We will conclude with examples of a mere informative nature without any ambitions on thorough

general theory.
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4 One Independent Variable

Assuming n = 1, we abbreviate

x = x1, w
j
r = wj1···1 (r terms), gjr = ∂g

∂wjr
, gjj

′

rr′ = ∂2g

∂wjr∂w
j′

r′

, . . . ,

F = ew1
t +

∑
k≥2

gkrw
k
rt = ew1

t −
∑

g1
rw

1
rt + dg

dt

and then the solvability condition (36) reads

ej
′
[ew1

t −
∑

g1
rw

1
rt] =

∑
F jj

′

r wjrt = 0 (j′ = 1, . . . ,m). (37)

In order to determine coefficients F jj′

r , we have either the identity∑
F j1r wjrt = e1

0w
1
t −

∑
g11
r0w

1
rt−

− d

dx
(e1

1w
1
t −

∑
g11
r1w

1
rt)−

d

dt
(e− g1

0)+

+ d2

dx2 (e1
2w

1
t −

∑
g11
r2w

1
rt) + d2

dxdt
(−g1

1) + · · ·

(38)

or the identity ∑
F jkr wjrt = ek0w

1
t −

∑
g1k
r0w

1
rt −

d

dx
(ek1w1

t −
∑

g1k
r1w

1
rt) + · · · (39)

where k = 2, . . . ,m.
In this example, let us deal with functions

e = e(x, ··, wj0, w
j
1, w

j
2, ··), g = g(x, ··, wj0, w

j
1, ··)

of order two and one, respectively, from now on. Then the identity (38) easily provides the sought
coefficients

F 11
0 = − d

dx
e1

1 + d2

dx2 e
1
2, F

11
1 = −2e1

1 + 2 d

dx
e1

2, F
11
r = 0 (r ≥ 2),

F k1
0 = −ek0 + g1k

00 −
d

dx
g1k

10 , F
k1
1 = −ek1 + g1k

01 −
d

dx
g1k

11 − g1k
10 , F

k1
2 = −ek2 + g1k

11 ,

F k1
r = 0 (r ≥ 3)

where k = 2, . . . ,m. Quite analogous formulae for the coefficients F jkr (k = 2, . . . ,m) can be found by the
identity (39), however, they do not provide any further Helmholz conditions. This follows from Lemma 2.3
and can be verified by a little clumsy direct verification omitted here.

It follows that altogether the Helmholz condition consists of the system of requirements

e1
1 = d

dx
e1

2, e
k
2 − g1k

11 = ek1 + g1k
10 − g1k

01 + d

dx
g1k

11 = ek0 − g1k
00 + d

dx
g1k

10 = 0 (40)

where k = 2, . . . ,m. This is a promising result which deserves more analysis, however, we conclude with a
few remarks.

The first condition (40) is equivalent to the explicit formula

e = aw1
2 +

∫
(∂a
∂x

+
∑ ∂a

∂wj0
wj1)dw1

1 + b (41)

where
a = a(x, ··, wj0, ··, w1

1), b = b(x, ··, wj0, wk1 , wk2 , ··)
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are arbitrary functions of the above mentioned variables. In particular, if function e is independent of all
variables wkr (k = 2, . . . ,m), we may choose g = 0 and the Tonti solution

f̃ =
∫ 1

0
F dt =

∫ 1

0
e dt (w1

0 − c1)

is quite simple. In general, the existence of function g satisfying (40) is not automatically ensured. On the
other hand, if such a function g exists then all other functions of this property can be easily determined
by resolving the homogeneous system

h1k
11 = h1k

10 − h1k
01 = h1k

00 −
d

dx
h1k

10 = 0 (k = 2, . . . ,m). (42)

Briefly: the first Euler–Lagrange expression e = e1[f ] provides rather thorough overview of all solutions
of the exact inverse problem.

5 Several Independent Variables

The original multiindices notation is preserved but in order to shorten some formulae, we abbreviate

gjI = ∂g

∂wjI
, gjj

′

II′ = ∂2g

∂wjI∂w
j′

I′

, . . . , gj0 = ∂g

∂wj
, gjj

′

I0 = ∂2g

∂wjI∂w
j′
, . . . ,

F = ew1
t +

∑
gkIw

k
It = ew1

t −
∑

g1
Iw

1
It + dg

dt

and then the solvability condition (36) reads

ej
′
[ew1

t −
∑

g1
Iw

1
It] =

∑
F jj

′

I wjIt = 0 (j′ = 1, . . . ,m). (43)

Let us deal only with functions e and g of the second order. Coefficients F jj
′

I can be determined from
identities ∑

F j1I wjIt = e1
0w

1
t −

∑
g11
I0w

1
It −

∑ d

dxi
(e1
iw

1
t −

∑
g11
Iiw

1
It)−

− d

dt
(e− g1

0) +
∑ d2

dxidxi′
(e1
ii′w

1
t −

∑
g11
Iii′w

1
It)−

+
∑ d2

dxidt
(−g1

i ) +
∑ d3

dxidxi′dt
g1
ii′ ,

(44)

∑
F jkI wjIt = ek0w

1
t −

∑
g1k
I0w

1
It −

∑ d

dxi
(ekiw1

t −
∑

g1k
Ii w

1
It)+

+
∑ d2

dxidxi′
(ekii′w1

t −
∑

g1k
Iii′w

1
It)

(45)

where k = 2, . . . ,m. As above, identity (44) is enough to provide the Helmholz conditions

2e1
i =

∑ d

dxi′
e1
ii′ + d

dxi
e1
ii ; (46)

ek0 = g1k
00 −

∑ d

dxi
g1k
i0 +

∑ d2

dxidxi′
g1 k
ii′0 ;

eki = g1k
0i − g1k

i0 +
∑ d

dxi′
(g1 k
ii′0 − g1k

i′i) +
∑ d2

dxi′dxi′′
g1 k
i′i′′i ;

ekii = g1k
0ii + g1 k

ii0 − g1k
ii +

∑ d

dxi′
(g1k
i′ii − g1 k

ii′i ) +
∑ d2

dxi′dxi′′
g1 k
i′i′′ii ;

ekii′ = g1k
0ii′ + g1 k

ii′0 − g1k
ii′ − g1k

i′i +
∑ d

dxi′′
(g1 k
i′i′′i − g1 k

i′′ii′)+

+
∑ d2

dxi′′dxi′′′
g1 k
i′′i′′′ii′

(47)
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where k = 2, . . . ,m and i 6= i′ in the last equation. This is rather instructive result: for given function
e satisfying (46), very strong conditions (47) imposed on the function g can be in principle completely
analyzed by the common compatibility algorithms. Alas, the calculations are lengthy.

However assume n,m = 2 and let the function g be of the order one from now on. Then the Helmholz
conditions again simplify as

2e1
1 = 2 d

dx1
e1

11 + d

dx2
e1

12, 2e1
2 = d

dx1
e1

12 + 2 d

dx2
e1

22, (48)

e2
0 = g12

00 −
d

dx1
g12

10 −
d

dx2
g12

20 ,

e2
i = g21

i0 − g21
0i −

d

dx1
g21
i1 −

d

dx2
g21
i2 ,

e2
ii = −g21

ii , e
2
12 = −g21

21 − g21
12

(49)

and now we can eventually mention three quite dissimilar examples. The alternative notation x = x1, y = x2
will be employed.

First, the function e = w2
2w

2
12 satisfies (48). Let us deal only with functions g = g(··, wji , ··). Then the

conditions (49) read

d

dx
g21

11 + d

dy
g21

12 = w2
12 + d

dx
g21

21 + d

dy
g21

22 = g12
11 = w2

2 + g12
12 + g12

21 = g12
22 = 0.

The general formula

g = A(w1
1, w

1
2) +B(w2

1, w
2
2) + C · (w2

1w
1
2 − w1

1w
2
2)− 1

2(w2
2)2w1

1

where A,B are arbitrary functions and C ∈ R is a constant easily follows. For the particular choice
A = B = C = 0, we obtain the Tonti integral

f̃ =
∫ 1

0
e dt (w1 − c1) +

∫ 1

0

∂g

∂w2
2
dt (w2

2 −
∂c2

∂y
) =

= 1
3w

2
2w

2
12(w1 − c1)− 1

3w
2
2w

1
1(w2

2 −
∂c2

∂y
)

where c1 = c1(x, y), c2 = c2(x, y) may be arbitrary functions. For the choice c1 = c2 = 0, clearly

f̃ = 1
3w

2
2w

2
12w

1 − 1
3(w2

2)2w1
1

is a very strange solution. However

f = f̃ − 1
6
d

dx
((w2

2)2w1) = −1
2(w2

2)2w1
1

again is a solution satisfying e1[f ] = e = w2
2w

2
12. Briefly: many solutions of the incomplete exact inverse

problem can be explicitly calculated and the Tonti integral need not be the “most economical” one.

Second, the function e = w1
11w

1
22−(w1

12)2 satisfies (48). Let us again deal with functions g = g(··, wji , ··).
Conditions (49) are simple and need not be stated here. They are satisfied if

g = A(w1
1, w

2
2) +B(w2

1, w
2
2) + C · (w2

1w
1
2 − w1

1w
2
2)

where A,B and C ∈ R are arbitrary. For the particular case A = B = C = 0 we obtain the Tonti solution
f̃ = ew1.
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Third, let us conclude with the function e = 0 identically vanishing and all possible functions
g = g(x, y, ··, wj , wji , ··) of the first order. Conditions (49) read

g21
00 = d

dxg
21
01 + d

dy g
21
02 , (50)

g21
10 − g21

01 = d
dxg

21
11 + d

dy g
21
12 , g

21
20 − g21

02 = d
dxg

21
21 + d

dy g
21
22 , (51)

g21
11 = g21

21 + g21
12 = g21

22 = 0. (52)

Requirements (52) seem to be easy. Indeed, they are satisfied if

g = A(w1
1, w

1
2) +B(w2

1, w
2
2) + C(w1

1, w
2
2) +D(w2

1, w
1
2),

where
C = Ew2

2w
1
1 + C̄w2

2 + C̃w1
1 + c,

D = −Ew2
1w

1
2 + D̄w1

2 + D̃w2
1 + d.

(53)

Functions A,B and coefficients E, . . . , d in (53) depend also on variables x, y, w1, w2 which is not explicitly
declared here. Then the requirements (51) simplify as

D̃1
0 − C̃2

0 + Ey = A12
10 −B21

10 , C̄
1
0 − D̄2

0 − Ex = A12
20 −B21

20

and imply the formulae
A = Āw1

1 + Ãw1
2 + a, B = B̄w2

1 + B̃w2
2 + b (54)

with the identities
D̃1

0 − C̃2
0 + Ey = Ā2

0 − B̄1
0 , C̄

1
0 − D̄2

0 − Ex = Ã2
0 − B̃1

0 .

All coefficients Ā, . . . , b in (54) again depend on variables x, y, w1, w2. The remaining requirement (50)
eventually provides the final identities

Ey = C̃2
0 − D̃1

0, Ex = D̄2
0 − C̄1

0 , ((c+ d)1
0 − C̃x − D̃y)2

0 = 0.

Altogether taken,

g = Āw1
1 + Ãw1

2 + a+ B̄w2
1 + B̃w2

2 + b+ E · (w2
2w

1
1 − w2

1w
1
2)+

+ C̄w2
2 + C̃w1

1 + c+ D̄w1
2 + D̃w2

1 + d

by using (53) and (54). It follows that we may suppose Ā = Ã = a = B̄ = B̃ = b = d = 0 without any
loss of generality. Then the final identities reduce to the underdetermined system of equations

C̃2
0 − D̃1

0 = Ey, C̄
1
0 − D̄2

0 = Ex, (c1
0 − cx)2

0 = 0 (55)

for the functions C̃, C̄, D̃, D̄, E, c of variables x, y, w1, w2. It can be easily resolved by explicit formulae.

6 A Complement

For every n = 0, 1, . . . and a fixed m = 1, 2, . . . , let Fn denote the module of all smooth functions of
a finite number of variables (1). Since F0 ⊂ F1 ⊂ · · · , the mapping

e[f ] =
∑

ej [f ]wjn+1 ∈ Fn+1 (f ∈ Fn)

is not rigorously defined. But let us introduce a label n : if Cn denotes the module of all couples {f, n}
where f ∈ Fn, then the mappings

dn : Cn → Cn+1, dn{f, n} = {
∑

ej [f ]wjn+1, n+ 1} (56)

make a good sense. We obtain even a differential complex

C0
d0−→ C1 −→ · · · −→ Cn

dn−→ Cn+1 −→ · · · (dn+1dn = 0) (57)
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equivalent to the classical Helmholz solvability condition

e[e[f ]] = e[
∑

ej [f ]wjn+1] = 0 (f ∈ Fn).

(The initial differential d0 is not involved but this is an easy matter since

f = f(··, wj , ··), e[f ] =
∑ ∂f

∂wj
wj1 = df

dx1
, e

[
df

dx1

]
= 0,

if f ∈ F0.) All the above results of this article can be interpreted by certain properties of the complex
(57).

For instance, let us recall the function

F =
∑

ejIj
wjIj ,n+1 ∈ Fn+1 (ejIj

∈ Fn, Ij ∈ I(j))

of Theorem 2.4. Then dn+1{F, n + 1} = 0 if and only if there exists a function f ∈ Fn such that
F = F [f ] +D hence

F − F [f ] ∈ Fn, dn{F − F [f ], n} = 0. (58)

Here F [f ] can be any intermediate term of the variational identity (9), however, if the set I(j) = φ is
empty for certain j then the unique term ejIj

= ejφ = ej is just the Euler–Lagrange expression. This is the
idea of our solution of the incomplete inverse problem.

The complex (57) is of a very strange nature. It concerns all Lagrange functions with various number
of independent variables. The common differential complexes occuring in the mathematical analysis and
differential topology are of quite other kind.
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