联系我们
Isaac Scientific Publishing
Journal of Advances in Applied Mathematics
Prof. Wen-Xiu Ma,  University of South Florida, USA
Department of Mathematics and Statistics
University of South Florida
Tampa, FL 33620, USA
Research Interests
• Applied Mathematics:
  Integrability tests for di↵erential equations (DEs)
  Symmetry constraints and Liouville integrability
  Miura, Darboux and Backlund transformations
  Inverse scattering transform
  Relations of DEs with infinite-dimensional Lie algebras
  Toda lattices, Pfaffian lattices, and orthogonal polynomials
  Applications of DEs in engineering science and mathematical biology
  Bifurcation and chaos
• Mathematical Physics:
  Symmetries and conservation laws
  Variational principles, Lie group method
  Hamiltonian and bi-Hamiltonian theories
  Advection-di↵usion equations and reaction-di↵usion equations
  Solitons, positons, negatons, breathers and complexitons
  Quantum and super-symmetric integrable systems
• Symbolic Computation:
  Symmetries and conservation laws
  Interactions of solitons, breathers and complexitons
  Resonance and web structure of solitons, dromions and solitons
  Computer-assisted theorem proofs 
 Selected Publication List
• Y. N. Tang, L. Wang and W. X. Ma, Integrable couplings, bi-integrable couplings and their Hamiltonian structures of the GiachettiJohnson soliton hierarchy, Mathematical Methods in the Applied Sciences, (2014 September) DOI: 10.1002/mma.3222
• W. G. Rui, W. X. Ma, C. M. Khalique and Z. N. Zhu, Study of Integrability and Exact Solutions for Nonlinear Evolution Equations, Special Issue, Abstract and Applied Analysis, (2014)
• H. Q. Zhang and W. X. Ma, Extended transformed rational function method and applications to complexiton solutions, Applied Mathematics and Computation, Vol.230(2014), 509-515
• W. Y. Zhang and W. X. Ma, An so (3,R) Counterpart of the Dirac soliton hierarchy and its bi-integrable couplings, International Journal of Theoretical Physics, Vol.53(2014), 4211-4222
• S. Manukure and W. X. Ma, Bi-integrable couplings of a new soliton hierarchy associated with a non-semisimple Lie algebra, Applied Mathematics and Computation, Vol.245(2014), 44-52
• Y. J. Ye, W. X. Ma, S. F. Shen and D. D. Zhang, A class of third-order nonlinear evolution equations admitting invariant subspaces and associated reductions, Journal of Nonlinear Mathematical Physics, Vol.(2014), 132-148
• C. G. Shi, W. X. Ma and M. McAnally, Integrable counterparts of the D-Kaup-Newell soliton hierarchy, Applied Mathematics and Computation, Vol.248(2014), 463-469
• W. X. Ma, C. G. Shi, E. A. Appiah, C. X. Li and S. F. Shen, An integrable generalization of the KaupNewell soliton hierarchy, Physica Scripta, Vol.89(2014), 085203, pp. 8
• W. X. Ma, S. F. Shen, S. M. Yu, H. Q. Zhang and W. Y. Zhang, An integrable so(3,R)-counterpart of the Heisenberg soliton hierarchy, Reports onMathematical Physics, Vol.74(2014), 283-298
• W. X. Ma, S. Manukure and H. C. Zheng, A counterpart of the WadatiKonnoIchikawa soliton hierarchy associated with so(3,R), Zeitschrift f¨ur Naturforschung A, Vol.69(2014), 411-419
• W. X. Ma, An integrable counterpart of the D-AKNS soliton hierarchy from so(3,R), Physics Letters A, Vol.378(2014), 1717-1720
• W. X. Ma, T. C. Xia and Z. N. Zhu, A generalization of the Wadati-Konno-Ichikawa soliton hierarchy and its Liouville integrability, International Journal of Nonlinear Sciences and Numerical Simulation, Vol.15(2014), 397-404
• S. W. Liu and W. X. Ma, The string equation and the tau-function Witt constraints for the discrete Kadomtsev-Petviashvili hierarchy, Journal of Mathematical Physics, Vol.54(2013), 103513, pp. 14
• W. X. Ma, A spectral problem based on so(3,R) and its associated commuting soliton equations, Journal of Mathematical Physics, Vol.54(2013), 103509, pp. 8
• W. X. Ma, Lie algebra structures associated with zero curvature equations and generalized zero curvature equations, British Journal of Applied Science & Technology, Vol.3(2013), 1336-1344
Copyright © 2019 Isaac Scientific Publishing Co. All rights reserved.