Isaac Scientific Publishing

Journal of Advances in Nanomaterials

Controllable Fabrication of Ultrathin Carbon Layer-Wrapped Noble Metal Nanoparticles Based on Laser Ablation in Carbon- Contained Solutions

Download PDF (3075.2 KB) PP. 39 - 46 Pub. Date: September 1, 2019

DOI: 10.22606/jan.2019.43001


  • Yebin Cai
    Agricultural Machinery Appraisal Station, Hubei University of Technology, Wuhan, 430068, P.R.China
  • Liaoping Cai*
    Instutute of Geodesy, University of Stuttgart, 70174 Stuttgart, Germany


A simple and flexible method is presented for fabricating the Au or Ag nanoparticles (NPs) coated with an ultrathin layer of carbon via laser ablation of metal targets in carbon-contained solutions. After the ablation, Au and Ag NPs (about 20nm in mean size) are wrapped with an ultrathin layer of graphite-like carbon. Typically, ablation of Au or Ag metal target in toluene contained solution can form carbon shell-wrapped Au or Ag NPs with the homogeneous shell’s thickness. Further experiments have revealed that the carbon shell’s thickness depends mainly on the carbon content in solutions and can be tuned from 2 nm down to 0.5nm, while laser ablation power and duration only insignificantly influence the thickness. The formation of the wrapped NPs is well described by the metal NPs’ generation and then carbon-deposition during the ablation. This work provides a flexible route for wrapping the metal NPs with the ultrathin shell-layer.


Ultrathin carbon layer-wrapped metal nanoparticles, one step synthesis route, laser ablation in carbon-contained solutions.


[1] J. M. Campelo, D. Luna, R. Luque, J. M. Marinas and A. A. Romero, "Sustainable preparation of supported metal nanoparticles and their applications in catalysis," ChemSusChem, vol. 2, pp. 18- 45, 2009.

[2] G. V. Hartland, "Optical Studies of Dynamics in Noble Metal Nanostructures," Chem. Rev., vol. 111, pp. 3858- 3887 , 2011.

[3] I. H. El-Sayed, X. Huang and M. A. El-Sayed, "Surface plasmon resonance scattering and absorption of anti- EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer," Nano Lett, vol. 5, pp. 829-834 , 2005.

[4] H. Park, H. Tsutsumi and H. Mihara, "Cell penetration and cell-selective drug delivery using α-helix peptides conjugated with gold nanoparticles," Biomaterials., vol.34, pp. 4872- 4879, 2013.

[5] S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science, vol. 275, pp. 1102-1106 , 1997.

[6] J. Kneipp, H. Kneipp, B. Wittig and K. Kneipp, "Novel optical nanosensors for probing and imaging live cells" Nanomed.-Nanotechn. Biology and Med., vol. 6, pp.214-226 , 2010.

[7] S. J. Lee, A. R. Morrill and M. Moskovits, "Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy," J. Am. Chem. Soc., vol.128, pp. 2200-2201 , 2006.

[8] Y. J. Xiong, J. M. McLellan, J. Y. Chen, Y. D. Yin, Z. Y. Li and Y. N. Xia, "Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties," J. Am. Chem. Soc., vol. 127, pp. 17118 - 17127, 2005.

[9] L. A. Dick, A. D. McFarland, C. L. Haynes and R. P. Van Duyne, "Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss," J. Phys. Chem. B, vol. 106, pp. 853- 860, 2001.

[10] G. Upender, R. Satyavathi, B. Raju, K. Shadak Alee, D. Narayana Rao and C. Bansal, "Silver nanocluster films as novel SERS substrates for ultrasensitive detection of molecules," Chem. Phys. Lett., vol. 511, pp. 309-314, 2011.

[11] J. Wang, G. Duan, Y. Li, G. Liu, Z. Dai, H. Zhang and W. Cai, "An invisible template method toward gold regular arrays of nanoflowers by electrodeposition," Langmuir, vol. 29, pp. 3512- 3517, 2013.

[12] Y. Li, W. Cai and G. Duan, "Ordered micro/nanostructured arrays based on the monolayer colloidal crystals," Chem. Mater., vol. 20, pp. 615-624, 2007.

[13] G. T. Duan, W. P. Cai, Y. Y. Luo, Y. Li and Y. Lei, "Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering," Appl. Phys. Lett., vol. 89, pp. 181918, 2006..

[14] G. Liu, W. Cai, L. Kong, G. Duan, Y. Li, J. Wang, G. Zuo and Z. Cheng, "Standing Ag nanoplate-built hollow microsphere arrays: Controllable structural parameters and strong SERS performances," J. Mater. Chem., vol. 22, pp. 3177- 3184, 2012.

[15] F. W. King, R. P. Vanduyne and G. C. Schatz, "Theory of Raman-scattering by molecules adsorbed on electrode surfaces," J. Chem. Phys., vol. 69, pp. 4472-4481, 1978.

[16] J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z.Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature, vol. 464, pp. 392- 395, 2010.

[17] S. Malynych, I. Luzinov and G. Chumanov, "Poly(vinyl pyridine) as a universal surface modifier for iImmobilization of nanoparticles," J. Phys. Chem. B, vol. 106, pp. 1280-1285, 2002.

[18] L. Gao and J. He, "A facile dip-coating approach based on three silica sols to fabrication of broadband antireflective superhydrophobic coatings," J. Colloid Interf. Sci, vol. 400, pp. 24- 30, 2013.

[19] A. M. Boies, J. T. Roberts, S. L. Girshick, B. Zhang, T. Nakamura and A. Mochizuki, "SiO2 coating of silver nanoparticles by photoinduced chemical vapor deposition, " Nanotechnology, vol. 20, pp. 295604, 2009.

[20] A. M. Boies, P. Lei, S. Calder and S. L. Girshick, "Gas-phase production of gold-decorated silica nanoparticles, " Nanotechnology, vol. 22, pp. 315603, 2011.

[21] M. Seipenbusch and A. Binder, "Structural stabilization of metal nanoparticles by chemical vapor depositionapplied silica coatings," J. Phys. Chem. C, vol. 113, pp. 20606-20610, 2009.

[22] D. S. Su, S. Perathoner and G. Centi, "Nanocarbons for the development of advanced catalysts," Chem. Rev., vol. 113, pp. 5782-5816, 2013.

[23] S. Kundu, Y. Wang, W. Xia and M. Muhler, "Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: A quantitative high resolution XPS and TPD/TPR study," J. Phys. Chem. C, vol. 112, pp. 16869- 16878, 2008.

[24] J. J. Delgado, R. Vieira, G. Rebmann, D. S. Su, N. Keller, M. J. Ledoux and R. Schlögl, "Supported carbon nanofibers for the fixed-bed synthesis of styrene," Carbon, vol. 44, pp. 809- 812, 2006.

[25] K.-S. Lee and M. A. El-Sayed, "Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition," J. Phys. Chem. B, vol. 110, pp. 19220-19225, 2006.

[26] G. V. Bianco, M. M. Giangregorio, M. Losurdo, P. Capezzuto and G. Bruno, "Supported faceted gold nanoparticles with tunable surface plasmon resonance for NIR-SERS," Adv. Funct. Mater., vol. 22, pp. 5081- 5088, 2012.

[27] J. Y. Chen and Y. C. Chen, "A label-free sensing method for phosphopeptides using two-layer gold nanoparticlebased localized surface plasma resonance spectroscopy," Analyt. and Bioanalyt.l Chem., vol. 399, pp. 1173- 1180, 2011.

[28] T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. L. Cao, F. Bridges and A. Van Buuren, "Near infrared optical absorption of gold nanoparticle aggregates," J. Phys. Chem. B, vol. 106, pp.7005- 7012, 2002.

[29] S. Yang, W. Cai, G. Liu and H. Zeng, "From nanoparticles to nanoplates: preferential oriented connection of Ag colloids during electrophoretic deposition," J. Phys. Chem. C, vol. 113, pp. 7692- 7696, 2009.

[30] S. K. Yang, W. P. Cai, J. L. Yang and H. B. Zeng, "General and simple route to micro/nanostructured hollowsphere arrays based on electrophoresis of colloids induced by laser ablation in liquid," Langmuir, vol. 25, pp. 8287-8291, 2009.

[31] H. He, W. P. Cai, Y. X. Lin and B. S. Chen, "Au nanochain-built 3D netlike porous films based on laser ablation in water and electrophoretic deposition," Chem. Commun., vol. 46, pp. 7223- 7225, 2010.

[32] R. J. Nemanich and S. A. Solin, "First- and second-order Raman scattering from finite-size crystals of graphite," Phys. Rev. B, vol. 20, pp. 392- 401,1979.

[33] F. Tuinstra and J. L. Koenig, "Raman spectrum of graphite," J. Chem. Phys., vol. 53, pp.1126- 1126, 1970.

[34] B. O. Boskovic, V. Stolojan, R. U. A. Khan, S. Haq and S. R. P. Silva, "Large-area synthesis of carbon nanofibres at room temperature," Nature Materials, vol. 1, pp. 165- 168, 2002.

[35] P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanetkar, S. B. Ogale and V. G. Bhide, "Pulsed-laser–induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron," Phys. Rev. Lett., vol. 58, pp. 238- 241, 1987.

[36] F. Mafune, J. Kohno, Y. Takeda, T. Kondow and H. Sawabe, "Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant," J. Phys. Chem. B, vol. 105, pp. 5114- 5120, 2001.

[37] C.-C. Huang, C.-S. Yeh and C.-J. Ho, "Laser ablation synthesis of spindle-like gallium oxide hydroxide nanoparticles with the presence of cationic cetyltrimethylammonium bromide," J. Phys. Chem. B, vol. 108, pp. 4940-4945, 2004.