Isaac Scientific Publishing

Journal of Advances in Nanomaterials

The Growth of Cu Nanostructures Induced by Au Nanobipyramids

Download PDF (1019.3 KB) PP. 219 - 227 Pub. Date: December 7, 2017

DOI: 10.22606/jan.2017.24004

Author(s)

  • Junlong Li
    College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
  • Caixia Kan*
    College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China. Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, P. R. China
  • Yang Liu
    College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
  • Juan Xu
    College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
  • Changshun Wang
    College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
  • Yuan Ni
    College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
  • Shanlin Ke
    College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.

Abstract

Shapes and structures of seeds are critically important for the seed-mediated synthesis of anisotropic nanostructures. By the deposition of Cu atoms on different Au seeds, Cu nanostructures of different shapes could be synthesized. In experiments Cu nanorods formed with Au nanobipyramids as seeds, and the growth of Cu nanorods was studied through a series of experiments. It is found that the growth direction Cu nanorod is along the penta-twinned axis of Au nanobipyramids and bound by {200} side facets. For the case of low Cu2+ concentration in reaction system, Cu atoms would prefer to deposit on one end of Au nanobipyramids. Nevertheless, Cu atoms would deposit on two ends of Au nanobipyramids for the case of high Cu2+ concentration. Due to the different deposition and migration rates of Cu atoms at two ends of Au nanobipyramids, the Cu nanorods products exhibited different morphologies. Similarly, Cu nanopolyhedrons and Cu nanocubiods were synthesized with Au nanospheres and nanorods as seeds, respectively. Our work is of great significance for further fundamental research and applications of the Cu nanostructure-based nanomaterials in catalytic and electronic fields.

Keywords

Cu nanorods, Au nanobipyramids, anisotropic growth, alkyl amine

References

[1] Rao, C. N. R., Kulkarni, G. U., Thomas, P. J., Edwards, P. P., “Metal nanoparticles and their assemblies,” Chem Soc Rev 2000, 29 (1), 27-35.

[2] Burda, C., Chen, X. B., Narayanan, R.; El-Sayed, M. A., “Chemistry and properties of nanocrystals of different shapes,” Chem Rev 2005, 105 (4), 1025-1102.

[3] Tan, S. J., Campolongo, M. J., Luo, D.; Cheng, W. L., “Building plasmonic nanostructures with DNA,” Nat Nanotechnol, 2011, 6 (5), 268-276.

[4] Zhao, S.Z., Duan, L.P., Xiao, C.L., Li, L., Liao, F., “Single Metal of Silver Nanoparticles in the Microemulsion for Recyclable Catalysis of 4-Nitrophenol Reduction,” Journal of Advances in Nanomaterials, 2017, 2 (1), 31-40.

[5] Murphy, C. J., San, T. K., Gole, A. M., Orendorff, C. J., Gao, J. X., Gou, L., Hunyadi, S. E.; Li, T., “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J Phys Chem B 2005, 109 (29), 13857-13870.

[6] Perez-Juste, J., Pastoriza-Santos, I., Liz-Marzan, L. M.; Mulvaney, P., “Gold nanorods: Synthesis, characterization and applications,” Coordin Chem Rev 2005, 249 (17-18), 1870-1901.

[7] Giljohann, D. A., Seferos, D. S., Daniel, W. L., Massich, M. D., Patel, P. C.; Mirkin, C. A., “Gold Nanoparticles for Biology and Medicine,” Angew Chem Int Edit 2010, 49 (19), 3280-3294.

[8] Gao, Q., Kan, C. X., Li, J. L., Wei, J. J., Ni, Y.; Wang, C. S., “Alkylamine-mediated synthesis and optical properties of copper nanopolyhedrons,” Res Chem Intermediat 2017, 43 (5), 2753-2764.

[9] Rathmell, A. R., Bergin, S. M., Hua, Y. L., Li, Z. Y.; Wiley, B. J., “The Growth Mechanism of Copper Nanowires and Their Properties in Flexible, Transparent Conducting Films,” Adv Mater 2010, 22 (32), 3558-63.

[10] Vukojevic, S., Trapp, O., Grunwaldt, J. D., Kiener, C.; Schuth, F., “Quasi-homogeneous methanol synthesis over highly active copper nanoparticles,” Angew Chem Int Edit 2005, 44 (48), 7978-7981.

[11] Gokhale, A. A., Dumesic, J. A.; Mavrikakis, M., “On the mechanism of low-temperature water gas shift reaction on copper,” J Am Chem Soc 2008, 130 (4), 1402-1414.

[12] Perelaer, J., Smith, P. J., Mager, D., Soltman, D., Volkman, S. K., Subramanian, V., Korvink, J. G.; Schubert, U. S., “Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials,” J Mater Chem 2010, 20 (39), 8446-8453.

[13] Roberts, F. S., Kuhl, K. P.; Nilsson, A., “High Selectivity for Ethylene from Carbon Dioxide Reduction over Copper Nanocube Electrocatalysts,” Angew Chem Int Edit 2015, 54 (17), 5179-5182.

[14] Xiao, B., Niu, Z. Q., Wang, Y. G., Jia, W., Shang, J., Zhang, L., Wang, D. S., Fu, Y., Zeng, J., He, W., Wu, K., Li, J., Yang, J. L., Liu, L.; Li, Y. D., “Copper Nanocrystal Plane Effect on Stereoselectivity of Catalytic Deoxygenation of Aromatic Epoxides,” J Am Chem Soc 2015, 137 (11), 3791-3794.

[15] Du, J. L., Chen, Z. F., Ye, S. R., Wiley, B. J.; Meyer, T. J., “Copper as a Robust and Transparent Electrocatalyst for Water Oxidation,” Angew Chem Int Edit 2015, 54 (7), 2073-2078.

[16] Ye, S. R., Rathmell, A. R., Chen, Z. F., Stewart, I. E.; Wiley, B. J., “Metal Nanowire Networks: The Next Generation of Transparent Conductors,” Adv Mater 2014, 26 (39), 6670-6687.

[17] Patra, A. K., Dutta, A.; Bhaumik, A., “Cu nanorods and nanospheres and their excellent catalytic activity in chernoselective reduction of nitrobenzenes,” Catal Commun 2010, 11 (7), 651-655.

[18] Ziegler, K. J., Doty, R. C., Johnston, K. P.; Korgel, B. A., “Synthesis of organic monolayer-stabilized copper nanocrystals in supercritical water,” J Am Chem Soc 2001, 123 (32), 7797-7803.

[19] Zhou, G. J., Lu, M. K.; Yang, Z. S., “Aqueous synthesis of copper nanocubes and bimetallic copper/palladium core-shell nanostructures,” Langmuir 2006, 22 (13), 5900-5903.

[20] Wang, Y. H., Chen, P. L.; Liu, M. H., “Synthesis of well-defined copper nanocubes by a one-pot solution process,” Nanotechnology 2006, 17 (24), 6000-6006.

[21] Jin, M. S., He, G. N., Zhang, H., Zeng, J., Xie, Z. X.; Xia, Y. N., “Shape-Controlled Synthesis of Copper Nanocrystals in an Aqueous Solution with Glucose as a Reducing Agent and Hexadecylamine as a Capping Agent,” Angew Chem Int Edit 2011, 50 (45), 10560-10564.

[22] Zhang, D. Q., Wang, R. R., Wen, M. C., Weng, D., Cui, X., Sun, J., Li, H. X.; Lu, Y. F., “Synthesis of Ultralong Copper Nanowires for High-Performance Transparent Electrodes,” J Am Chem Soc 2012, 134 (35), 14283-14286.

[23] Ye, S. R., Rathmell, A. R., Stewart, I. E., Ha, Y. C., Wilson, A. R., Chen, Z. F.; Wiley, B. J., “A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films,” Chem Commun 2014, 50 (20), 2562-2564.

[24] Chen, J. Y., Zhou, W. X., Chen, J., Fan, Y., Zhang, Z. Q., Huang, Z. D., Feng, X. M., Mi, B. X., Ma, Y. W.; Huang, W., “Solution-processed copper nanowire flexible transparent electrodes with PEDOT:PSS as binder, protector and oxide-layer scavenger for polymer solar cells,” Nano Res 2015, 8 (3), 1017-1025.

[25] Stewart, I. E., Rathmell, A. R., Yan, L., Ye, S. R., Flowers, P. F., You, W.; Wiley, B. J., “Solution-processed copper-nickel nanowire anodes for organic solar cells,” Nanoscale 2014, 6 (11), 5980-5988.

[26] Guo, H. Z., Lin, N., Chen, Y. Z., Wang, Z. W., Xie, Q. S., Zheng, T. C., Gao, N., Li, S. P., Kang, J. Y., Cai, D. J.; Peng, D. L., “Copper Nanowires as Fully Transparent Conductive Electrodes,” Sci Rep-Uk 2013, 3 (7), 2323-2330.

[27] Lim, K. Y., Sow, C. H., Lin, J. Y., Cheong, F. C., Shen, Z. X., Thong, J. T. L., Chin, K. C.; Wee, A. T. S., “Laser pruning of carbon nanotubes as a route to static and movable structures,” Adv Mater 2003, 15 (4), 300-303.

[28] Mott, D., Galkowski, J., Wang, L. Y., Luo, J.; Zhong, C. J., “Synthesis of size-controlled and shaped copper nanoparticles,” Langmuir 2007, 23 (10), 5740-5745.

[29] Cha, S. I., Mo, C. B., Kim, K. T., Jeong, Y. J.; Hong, S. H., “Mechanism for controlling the shape of Cu nanocrystals prepared by the polyol process,” J Mater Res 2006, 21 (9), 2371-2378.

[30] Wang, Z. N., Chen, Z. Z., Zhang, H., Zhang, Z. R., Wu, H. J., Jin, M. S., Wu, C., Yang, D. R.; Yin, Y. D., “Lattice-Mismatch-Induced Twinning for Seeded Growth of Anisotropic Nano structures,” Acs Nano 2015, 9 (3), 3307-3313.

[31] Luo, M., Ruditskiy, A., Peng, H. C., Tao, J., Figueroa-Cosme, L., He, Z. K.; Xia, Y. N., “Penta-Twinned Copper Nanorods: Facile Synthesis via Seed-Mediated Growth and Their Tunable Plasmonic Properties,” Adv Funct Mater 2016, 26 (8), 1209-1216.

[32] Chen, H. J., Shao, L., Li, Q.; Wang, J. F., “Gold nanorods and their plasmonic properties,” Chem Soc Rev 2013, 42 (7), 2679-2724.

[33] Gao, C. B., Vuong, J., Zhang, Q., Liu, Y. D.; Yin, Y. D., “One-step seeded growth of Au nanoparticles with widely tunable sizes,” Nanoscale 2012, 4 (9), 2875-2878.

[34] Sanchez-Iglesias, A., Winckelmans, N., Altantzis, T., Bals, S., Grzelczak, M.; Liz-Marzan, L. M., “High-Yield Seeded Growth of Monodisperse Pentatwinned Gold Nanoparticles through Thermally Induced Seed Twinning,” J Am Chem Soc 2017, 139 (1), 107-110.

[35] Zhu, C., Zeng, J., Tao, J., Johnson, M. C., Schmidt-Krey, I., Blubaugh, L., Zhu, Y. M., Gu, Z. Z.; Xia, Y. N., “Kinetically Controlled Overgrowth of Ag or Au on Pd Nanocrystal Seeds: From Hybrid Dimers to Nonconcentric and Concentric Bimetallic Nanocrystals,” J Am Chem Soc 2012, 134 (38), 15822-15831.

[36] Yang, Y., Wang, W. F., Li, X. L., Chen, W., Fan, N. N., Zou, C., Chen, X., Xu, X. J., Zhang, L. J.; Huang, S. M., “Controlled Growth of Ag/Au Bimetallic Nanorods through Kinetics Control,” Chem Mater 2013, 25 (1), 34-41.

[37] Tsuji, M., Miyamae, N., Lim, S., Kimura, K., Zhang, X., Hikino, S.; Nishio, M., “Crystal structures and growth mechanisms of Au@Ag core-shell nanoparticles prepared by the microwave-polyol method,” Cryst Growth Des 2006, 6 (8), 1801-1807.

[38] Tao, A. R., Habas, S.; Yang, P. D., “Shape control of colloidal metal nanocrystals”. Small 2008, 4 (3), 310-325.

[39] Kan, C. X., Zhu, J. J.; Zhu, X. G., “Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms,” J Phys D Appl Phys 2008, 41 (15).