Isaac Scientific Publishing

Journal of Advances in Nanomaterials

DNA Nanodevices Confined on DNA Origamis: an Isothermal Ratchet Driven by Boundary Conditions

Download PDF (839.1 KB) PP. 208 - 218 Pub. Date: December 7, 2017

DOI: 10.22606/jan.2017.24003

Author(s)

  • Jean-Pierre Aime*
    VIBBnano,CBMN Ave Geoffroy St Hilaire CNRS University Bordeaux Pessac 33600, France
  • Juan Elezgaray

    VIBBnano,CBMN Ave Geoffroy St Hilaire CNRS University Bordeaux Pessac 33600, France
  • Oscar Mendoza

    VIBBnano,CBMN Ave Geoffroy St Hilaire CNRS University Bordeaux Pessac 33600, France

Abstract

In this note we investigate the diffusive behaviour and the boundary conditions of DNA nanodevices using the toe hold mediated strand displacement method. The goal is to extract the basic principles governing the difference observed in diluted solution and in confined environment where the devices are tethered on a DNA Origami. We note that the excluded volume interaction between the two strands running in opposite direction must give a sub diffusive behaviour that can lead to very long waiting times between jumps. When the Boundary Conditions generate a strong asymmetry in the device, the probability to perform the logical operation, thus to remove the output strand, is one. However, we envision unexpected marked differences between diluted solutions and confined environment both for controlling the boundary condition and the sub diffusive behaviour. These differences rise new questions on the interest to use the toe hold mediated strand displacement method on DNA Origamis.

Keywords

DNA Nanotechnology, confined chemical reactions, DNA logical gate, DNA origami, modular algorithm.

References

[1] N. C. Seeman. Nucleic acid junctions and lattices. J. Theor. Biol., 99:237–247, 1982.

[2] N. C. Seeman. Nanomaterials based on dna. Annu. Rev. Biochem., 79:65–87, 2010.

[3] P. Rothemund. Folding dna to create nanoscale shapes and patterns. Nature, 440:297–302, 2006.

[4] B. Yurke, A. Tuberfield, Allen P. Mills, F.C. Simmel, and J.L. Neumann. A dna-fuelled molecular machine made of dna. Nature, 406:605–608, 2000.

[5] D. Soloveichik. Dna as a universal substrate for chemical kinetics. Proc. Natl Acad. Sci. USA, 107:5393–5398, 2010.

[6] A. J. Turberfield, J. C. Mitchell, B. Yurke, A. P. Mills, M. I. Blakey, and F. C. Simmel. Dna fuel for free-running nanomachines. Phys. Rev. Lett., 90:118102, 2003.

[7] F. C. Simmel and B. Yurke. A dna-based molecular device switchable between three distinct mechanical states. Appl. Phys. Lett., 80:883–885, 2002.

[8] B. Yurke. Using dna to power nanostructures. Genet. Program. Evolvable Machines, 4:111–122, 2003.

[9] L. Qian and E. Winfree. Scaling up digital circuit computation with dna strand dis-placement cascades. Science, 332:1196–1201, 2011.

[10] B. Li, A. D. Ellington, and X. Chen. Rational, modular adaptation of enzyme-free dna circuits to multiple detection methods. Nucleic Acids Research, 39:No. 16, e110, 2011.

[11] K. Montagne, R. Plasson, Y. Sakai, T. Fujii, and Y. Rondelez. Programming an in vitro dna oscillator using a molecular networking strategy. Molecular Systems Biology, 7:Article number 466, 2011.

[12] P. Alberti and J.L. Mergny. Dna duplex-quadruplex exchange as the basis for a nanomolecular machine. Proc. Natl. Acad. Sci., 100:1569–1573, 2003.

[13] K. Lund, A. J. Manzo, N. Dabby, N. Michelotti, A. Johnson-Buck, J. Nangreave, S.Taylor, R. Pei, M. N. Stojanovic, N. G. Walter, E. Winfree, and H. Yan. Molecular robots guided by prescriptive landscapes. Nature, 465:206–210, 2010.

[14] J. S. Shin and N.A. Pierce. A synthetic dna walker for molecular transport. J. Am. Chem. Soc., 126:10834– 10835, 2004.

[15] P. Yin, H. Yan, A. J. Turberfield X. G. Daniell, and J.H. Reif. A unidirectional dna walker that moves autonomously along a track. Angew. Chem. Int. Ed., 43:4906–4911, 2004.

[16] S. F. J. Wickham, J. Bath, Y. Katsuda, M. E. K. Hidaka, H. Sugiyama, and A.J. Turberfield. A dna-based molecular motor that can navigate a network of tracks. Nature Nanotechnology, 7:169–173, 2012.

[17] T. Omabegho, R. Sha, and N. C. Seeman. A bipedal dna brownian motor with coordinated legs. Science, 324:67–71, 2009.

[18] S.M. Douglas, I. Bachelet, and G.M. Church. A logic-gated nanorobot for targeted transport of molecular payloads. Science, 335:831–834, 2012.

[19] E. S. Andersen, M. Dong, M. M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, M. M. Golas, B. Sander, H. Stark, C. L. P. Oliveira, V. Petersen, J. S. ;and Birkedal, F. Besenbacher, K. V. Gothelf, and J. Kjems. Self-assembly of a nanoscale dna box with a controllable lid. Nature, 459:73–76, 2009.

[20] Uri Alon. An introduction to systems biology. Chapman and Hall/CRC press, Taylor and Francis, 2007.

[21] William Bialek. Biophysics. searching for principles. Princeton University Press, 2012.

[22] Eric R. Kandel, James H. Schwartz, and Thomas M. Jessel. Principles of neural science. McGraw-Hill, Fourth Edition, 2000.

[23] Ismael Mullor Ruiz, Jean-Michel Arbona, Amitkumar Lad, Oscar Mendoza, Jean-Pierre Aimé, and Juan Elezgaray. Connecting localized dna strand displacement reactions. Nanoscale, 7:12970, 2015.

[24] D. Y. Zhang and E. Winfree. Control of dna strand displacement kinetics using toehold exchange. J. Am. Chem. Soc., 131:17303–17314, 2009.

[25] D.Y. Zhang. Dynamic dna strand displacement circuits. Thesis, California Institute of Technology Pasadena, California., May 2010.

[26] D.Y. Zhang and G. Seelig. Dynamic dna nanotechnology using strand-displacement reactions. Nat. Chem., 3:103–113, 2011.

[27] Jean-Pierre Aimé and Juan Elezgaray. Dna nano devices as a biased random walk process: A case study of isothermal ratchet? Materials Sciences and Applications, 6:401–419, 2015.

[28] S. Alexander and P. Pincus. Diffusion of labeled particles on one-dimensional chains. Physical Review B, 18(4):2011–2012, 1978.

[29] P Sekhar Burada, Peter H?nggi, Fabio Marchesoni, Gerhard Schmid, and Peter Talkner. Diffusion in confined geometries. ChemPhysChem, 10(1):45–54, 2009.

[30] Oscar Mendoza, Jean-Pierre Aimé, and Juan Elezgaray. Dna computing using strand displacement: Localized amplification circuits (lac) dna origami and diluted solution. submitted, 2016.

[31] E. Ben-Naim and P.L. Krapivsky. Enhanced diffusion in disordered systems. Phys. Rev. Lett., 102:190602, 2009.

[32] Jean-Philippe Bouchaud and Antoine Georges. Anomalous diffusion in disordered media: Statistical mehcanism, models and physical applications. PHYSICS REPORTS, 195:127–293, 1990.

[33] Byung Mook Weon and Jung Ho Je. Theoretical estimation of maximum human lifespan. Biogerontology, 10:65–71, 2009.

[34] Masaki Sasai Hironori K. Nakamura and Mitsunori Takano. Scrutinizing the squeezed exponential kinetics observed in the folding simulation of an off-lattice go-like protein model. Chemical Physics, 307:259–267, 2004.

[35] Oscar Mendoza, Jean-Louis Mergny, Jean-Pierre Aimé, and Juan Elezgaray. G quadruplexes light up localized dna circuits. Nano Letters, 16:624, 2016.

[36] N. Srinivas, T. E. Ouldridge, P. Sulc, J.M. Schaeffer, B. Yurke, A.A. Louis, J. P. K. Doye, and E. Winfree. On the biophysics and kinetics of toehold-mediated dna strand displacement. Nucleic Acids Research, 41:10641–10658, 2013.