Isaac Scientific Publishing

Journal of Advances in Nanomaterials

Self-Organized Nanostructure Formation of III-V and IV Semiconductors with Bismuth

Download PDF (1090 KB) PP. 82 - 94 Pub. Date: December 20, 2016

DOI: 10.22606/jan.2016.12005


  • Hiroshi Okamoto*
    Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan


III-V and group IV semiconductor nanostructures such as quantum dots (QDs) are expected for various applications. In this study, effects of Bi supply during the deposition process on the self-organized nanostructure formation were examined for III-V and group IV semiconductor materials. It was found that Bi was successfully acted as a surfactant to form In(Ga)As QDs by MOVPE growth. By this method, QDs with superior optical quality were obtained. The unique features, such as ripening during the In(Ga)As QD formation and the phenomenon during the covering layer growth are discussed. As for the new approach on Ge-based nanostructure formation, high-density dot-like nanostructures were obtained by the low-temperature deposition sequence of Bi and Ge on SiO2 substrates. As the formation mechanism has not been revealed yet, we suggest hypotheses for that of the Bi and Ge system.


Nanostructure, quantum dot, III-V, group IV semiconductor, surfactant, bismuth, InAs, InGaAs, germanium


[1] M. V. Maximov, N. N. Ledentsov, V. M. Ustinov, Zh. I. Alferov, and D. Bimberg, "GaAs-based 1.3 μm InGaAs quantum dot lasers: A status report," Journal of Electronic Materials, vol. 29, no. 5, pp. 476-486, 2000.

[2] M. Ishida, N. Hatori, K. Otsubo, T. Yamamoto, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, "Low-driving-current temperature-stable 10 Gbit/s operation of p-doped 1.3 μm quantum dot lasers between 20 and 90°C," Electronics Letters, vol. 43, no. 4, pp. 219-221, 2007.

[3] E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Applied Physics Letters, vol. 79, no. 18, pp.2865-2867, 2001.

[4] C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a single-photon device," Nature, vol. 419, no. 10, pp. 594-597, 2002.

[5] K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, T. Miyazawa, M. Takatsu, and Y. Arakawa, "Non-classical photon emission from a single InAs/InP quantum dot in the 1.3-μm optical-fiber band," Japanese Journal of Applied Physics, vol. 43 part 2, no. 7B, pp. L993-L995, 2004.

[6] T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, "Single-photon generation in the 1.55-μm optical-fiber band from an InAs/InP quantum dot," Japanese Journal of Applied Physics, vol. 44, no. 20, pp. L620-L622, 2005.

[7] M. Sugawara, H. Ebe, N. Hatori, and M. Ishida, "Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers," Physical Review B, vol. 69, no. 23, pp. 235332_1-235332_39, 2004.

[8] C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, "Variable optical buffer using slow light in semiconductor nanostructures," Proceedings of the IEEE, vol. 91, no. 11, pp. 1884-1897, 2003.

[9] A. Luque and A. Marti, "Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels," Physical Review Letters, vol. 78, no. 26, pp. 5014-5017, 1997.

[10] A. Marti, E. Antolin, C. R. Stanley, C. D. Farmer, N. Lopez, P. Diaz, E. Canovas, P. G. Linares, and A. Luque, "Production of photocurrent due to intermediate-to-conduction-band transitions: A demonstration of a key operating principle of the intermediate-band solar cell," Physical Review Letters, vol. 97, no. 24, pp. 24770_1-24770_4, 2006.

[11] S. Tomi?, T. S. Jones, and Nicholas M. Harrison, "Absorption characteristics of a quantum dot array induced intermediate band: Implications for solar cell design," Applied Physics Letters, vol. 93, no. 26, pp. 263105_1-263105_3, 2008.

[12] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe′, and K. Chan, "A silicon nanocrystals based memory," Applied Physics Letters, vol. 68, no. 10, pp. 1377-1379, 1996.

[13] Y. Sun, S.F. Cheng, G. Chen, R.F. Hicks, J. G. Cederberg, and R. M. Biefeld, "The effect of antimony in the growth of indium arsenide quantum dots in gallium arsenide (001)," Journal of applied physics, vol. 97, no.5, pp. 053503_1-053503_6, 2005.

[14] K. Yamaguchi, T. Kanto, "Self-assembled InAs quantum dots on GaSb/GaAs(001) layers by molecular beam epitaxy," Journal of Crystal Growth, vol. 275, no. 1-2, pp. e2269-e2273, 2005.

[15] D. Guimard, M. Nishioka, S. Tsukamoto, and Y. Arakawa, "Effect of antimony on the density of InAs/Sb:GaAs(100) quantum dots grown by metalorganic chemical-vapor deposition," Journal of Crystal Growth, vol. 298, no, pp. 548-552, 2007.

[16] B N Zvonkov, I A Karpovich, N V Baidus, D O Filatov, S V Morozov, and Yu Yu Gushina, "Surfactant effect of bismuth in the MOVPE growth of the InAs quantum dots on GaAs," Nanotechnology, vol. 11, no. 4, pp. 221-226, 2000.

[17] Vaishno D. Dasika, E. M. Krivoy, H. P. Nair, S. J. Maddox, K. W. Park, D. Jung, M. L. Lee, E. T. Yu, and S. R. Bank, "Increased InAs quantum dot size and density using bismuth as a surfactant," Applied Physics Letters, vol. 105, no. 25, pp. 253104, 2014.

[18] C. S. Peng, Q. Huang, W. Q. Cheng, and J. M. Zhou, "Improvement of Ge self-organized quantum dots by use of Sb surfactant," Applied Physics Letters, vol. 72, no. 20, pp. 2541-2543, 1998.

[19] J. Konle, H. Presting, H. Kibbel, F. Banhart, "Growth studies of Ge-islands for enhanced performance of thin film solar cells," Materials Science and Engineering: B, vol. 89, no. 1-3, pp. 160-165, 2002.

[20] A. Portavoce, I. Berbezier, and A. Ronda, "Sb-surfactant-mediated growth of Si and Ge nanostructures," Physical Review B, vol. 69, no. 15, pp. 155416_1-155416_8, 2004.

[21] A.A. Tonkikh, N.D. Zakharov, A.V. Novikov, K.E. Kudryavtsev, V.G. Talalaev, B. Fuhrmann, H.S. Leipner, and P. Werner, "Sb mediated formation of Ge/Si quantum dots: Growth and properties," Thin Solid Films, vol. 520, no.8, pp. 3322-3325, 2012.

[22] R. T. Lee, C. M. Fetzer, S. W. Jun, D. C. Chapman, J. K, Shurtleff, G. B. Stringfellow, Y. W. Ok, and T. Y. Seong, "Enhancement of compositional modulation in GaInP epilayers by the addition of surfactants during organometallic vapor phase epitaxy growth," Journal of Crystal Growth, vol. 233, no. 3, pp. 490-502, 2001.

[23] K. Oe and H. Asai, "Proposal on a Temperature-Insensitive Wavelength Semiconductor Laser, "IEICE TRANSACTIONS on Electronics, vol. E79-C, no. 12, pp. 1751-1759, 1996.

[24] K. Oe, H. Okamoto, "New semiconductor alloy GaAs1-xBix grown by metal organic vapor phase epitaxy," Japanese Journal of Applied Physics, vol. 37 Part 2, no. 11A, pp. L1283-L1285, 1998.

[25] H. Okamoto and K. Oe, "Growth of metastable alloy InAsBi by low-pressure MOVPE," Japanese Journal of Applied Physics, vol. 37, no. 3B, pp. 1608-1613, 1998.

[26] H. Okamoto and K. Oe, "Structural and energy-gap characterization of metalorganic-vapor-phase-epitaxy-grown InAsBi," Japanese Journal of Applied Physics, vol. 38, no. 2B, pp. 1022-1025, 1999.

[27] H. Okamoto, H. Gotoh, N. I. Cade, H. Kamada, and T. Sogawa, "MOVPE growth of In(Ga)As-quantum dots using Bi as a surfactant," in Extended Abstract of 53rd Spring Meeting, 2006; Japan Society of Applied Physics and Related Societies, 25p-T-19 [in Japanese], 2006.

[28] H. Okamoto, T. Tawara, H. Gotoh, H. Kamada, and T. Sogawa, "Growth and characterization of telecommunication-wavelength quantum dots using Bi as a surfactant," Japanese Journal of Applied Physics, vol. 49 Part 1, no. 2B, pp. 06GJ01_1- 06GJ01_6, 2010.

[29] N. I. Cade, H. Gotoh, H. Kamada, H. Tawara, T. Sogawa, H. Nakano, and H. Okamoto, "Charged exciton emission at 1.3 μm from single InAs quantum dots grown by metalorganic chemical vapor deposition," Applied Physics Letters, vol. 87, no. 17, pp. 172101_1-172101_3, 2005.

[30] N. I. Cade, H. Gotoh, H. Kamada, H. Nakano, and H. Okamoto, "Fine structure and magneto-optics of exciton, trion, and charged biexciton states in single InAs quantum dots emitting at 1.3 μm," Physical Review B, vol. 73, no. 11, pp. 115322_1-115322_7, 2006.

[31] T. Yamaguchi, T. Tawara, H. Kamada, H. Gotoh, H. Okamoto, H. Nakano, and O. Mikami, "Single-photon emission from single quantum dots in a hybrid pillar microcavity," Applied Physics Letters, vol. 92, no. 8, pp. 081906_1-081906_3, 2008.

[32] T. Tawara, H. Kamada, S. Hughes, H. Okamoto, M. Notomi, and T. Sogawa, "Cavity mode emission in weakly coupled quantum dot – cavity systems," Optics Express, vol. 17, no. 8, pp. 6643-6654, 2009.

[33] T. Tawara, H. Kamada, T. Tanabe, T. Sogawa, H. Okamoto, P. Yao, P. K. Pathak, and S. Hughes, "Cavity-QED assisted attraction between a cavity mode and an exciton mode in a planar photonic-crystal cavity," Optics Express vol. 18, no 3, pp. 2719-2728, 2010.

[34] H. Gotoh, S. W. Chang, S. L. Chuang, H. Okamoto, and Y. Shibata, "Tunable Slow Light of 1.3μm Region in Quantum Dots at Room Temperature," Japanese Journal of Applied Physics, vol. 46, no. 4B, pp. 2369-2372, 2007.

[35] P. A. Lane, T. Martin, R. W. Freer, P. D. J. Calcott, C. R. Whitehouse, A. C. Jones, and S. Rushworth, "Tri-isopropyl gallium: A very promising precursor for chemical beam epitaxy," Applied Physics Letters, vol. 61, no. 3, pp. 285-287, 1992.

[36] L. f. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K. J. Malloy, "Optical characteristics of 1.24-μm InAs quantum-dot laser diodes," IEEE Photonics Technol. Letters, vol. 11, no. 8, pp. 931-933, 1999.

[37] K. Nishi, H. Saito, S. Sugou, and J.-S. Lee, "A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates," Applied Physics Letters, vol. 74, no. 8, pp. 1111-1113, 1999.

[38] V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, and D. Bimberg, "InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 μm," Applied Physics Letters, vol. 74, no. 19, pp. 2815-2817, 1999.

[39] K. Mukai, and M. Sugawara, "Suppression of temperature sensitivity of interband emission energy in 1.3-μm-region by an InGaAs overgrowth on self-assembled InGaAs/GaAs quantum dots," Applied Physics Letters, vol. 74, no. 26, pp. 3963-3965, 1999.

[40] J. Tatebayashi, M. Nishioka, and Y. Arakawa, "Over 1.5 μm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition," Applied Physics Letters, vol. 78, no. 22, pp. 3469-3471, 2001.

[41] W. Ostwald, “über die vermeintliche isometric des roten undgelben quecksilberxyds und die oberflachenspannung fester k?rper,” Zeitschrift für Physikalische Chemie, vol. 34, pp. 495–503, 1900.

[42] P. W. Voorhees, "Ostwald ripening of two-phase mixtures," Annual Review of Materials Science, vol. 22, pp. 197-215, 1992.

[43] S. H. Xin, P. D. Wang, A. Yin, C. Kim, M. Dobrowolska, J.L. Merz, and J. K. Furdyna, "Formation of self-assembling CdSe quantum dots on ZnSe by molecular beam epitaxy," Applied Physics Letters, vol. 69, no. 25, pp. 3884-3886, 1996.

[44] S. Lee et al, "Dynamics of ripening of self-assembled II-VI semiconductor quantum dots," Physical Review Letters, vol. 81, no. 16, pp. 3479-3482, 1998.

[45] Y. Kim, B. D. Min, and E. K. Kim, "Ripening suppression and large photoluminescence blueshift in aligned InGaAs quantum dots on a vicinal (100) GaAs substrate," Journal of applied physics, vol. 85, no. 4, pp. 2140-2145, 1999.

[46] K. P?tschke, L. Müller-Kirsch, R. Heitz, R. L. Sellin, U. W. Pohl, D. Bimberg, N. Zakharov, and P. Werner, "Ripening of self-organized InAs quantum dots," Physica E, vol. 21, no. 2-4, pp. 606-610, 2004.

[47] T. J. Krzyzewski, and T. S. Jones, "Ripening and annealing effects in InAs/GaAs(001) quantum dot formation," Journal of applied physics, vol. 96, no. 1, pp. 668-674, 2004.

[48] T. Kaizu, M. Takahashi, K. Yamaguchi, J. Mizuki, "Modification of InAs quantum dot structure during annealing," Journal of Crystal Growth, vol. 301-302, pp. 248-251, 2007.

[49] R. Kremzow, M. Pristovsek, and M. Kneissl, " Ripening of InAs quantum dots on GaAs (001) investigated with in situ scanning tunneling microscopy in metal–organic vapor phase epitaxy," Journal of Crystal Growth, vol. 310, no. 23, pp. 4751-4753, 2008.

[50] I. Suemune, K. Yoshida, H. Kumano, T. Tawara, A. Ueta, and S. Tanaka, "II–VI quantum dots grown by MOVPE," Journal of Crystal Growth, vol. 248, pp. 301-309, 2003.

[51] H. Okamoto T. Tawara, K. Tateno, H. Gotoh, H. Kamada, and T. Sogawa, "Distinctive feature of ripening during growth interruption of InGaAs quantum dot epitaxy using Bi as a surfactant," Japanese Journal of Applied Physics, vol. 50, no. 6, pp. 06GH07_1- 06GH07_ 4, 2011.

[52] M. V. Maximov, A. F. Tsatsul'nikov, B. V. Volovic, D. S. Sizov, Yu. M. Shernyakov, I. N. Kaiander, A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, v. M. Ustinov, Zh. I. Alferov, R. Heitz, V. A. Shchukin, N. N. Ledentsov, D. Bimberg, Yu. G. Musikhin, and W. Neumann, "Tuning quantum dot properties by activated phase separation of an InGa(Al)As alloy grown on InAs stressors," Physical Review B, vol. 62, no. 24, pp. 16671-16680, 2000.

[53] Y. Wakayama, T. Tagami1, and S, Tanaka, "Three-dimensional islands of Si and Ge formed on SiO2 through crystallization and agglomeration from amorphous thin films," Thin Solid Films, vol. 350 no. 1-2, pp. 300-307, 1999.