Isaac Scientific Publishing

Journal of Advances in Nanomaterials

O-Phenylenediamine-Cysteine Nanosphere Having Conjugated Structures: A Highly Selective Fluorescent Probe for Mercury Ion

Download PDF (958.8 KB) PP. 21 - 32 Pub. Date: September 12, 2016

DOI: 10.22606/jan.2016.11003

Author(s)

  • Liping Duan1*
    1Chemical Synthesis and Pollution Control, Key Laboratory of Sichuan Province, School of Chemistry and Chemical Industry, China West Normal University, Nanchong,637002,China
  • Xun Song1, Huaiyu Sun2
    2Applied Technique College of Southwest Petroleum University, Nanchong, 637002, China
  • Siwei Yang3 and Fang Liao*
    3State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Shanghai, 20050, China

Abstract

A sensitive fluorescent o-phenylenediamine-cysteine copolymer dots (O-Cys) detection system for Hg2+ was synthesized by a facile and one step hydrothermal method. As a sensitive fluorescent probe, the O-Cys showed excellent linear relationships with detection limit as low as 1.0×10-11 M with the concentrations of Hg2+ increasing from 2×10-11 M to 9×10-11 M . What's more, the O-Cys for the detection of Hg2+ was superior to most current methods and fluorescent material. At the same time, the working mechanism of O-Cys for Hg2+ detection was also explored. Hg2+ had higher fluorescent quenching ability for as-prepared O-Cys because Hg2+ was interation with amino group (– NH2) and thiol group (-SH) via a series of contrast test. And –SH enhanced the ability of Hg2+ detection to some extent. Therefore, this paper provided a good exponent of detection Hg2+ with low detection limit.

Keywords

O-phenylenediamine-cysteine, nanosphere, Hg2+ detection, fluorescent probe.

References

[1] Y. F. Zhang, Q. Yuan, T. Chen, X. B. Zhang, Y. Chen, W. H. Tan, “DNA-Capped Mesoporous Silica Nanoparticles as an Ion-Responsive Release System to Determine the Presence of Mercury in Aqueous Solutions,” Anal. Chem. , vol. 84, no. 4, pp. 1956–1962, 2012.

[2] E. S. Childress, C. A. Roberts, D. Y. Sherwood, C. L. M. LeGuyader, E. J. Harbron, “Ratiometric Fluorescence Detection of Mercury Ions in Water by Conjugated Polymer Nanoparticles,” Anal. Chem. , vol. 84, no. 3, pp. 1235-1239, 2012.

[3] L. Deng, X. Y. Ouyang, J. Y. Jin, C. Ma, Y. Jiang, J. Zheng, J. S. Li, Y. H. Li, W. H. Tan, R. H. Yang, “Exploiting the Higher Specificity of Silver Amalgamation: Selective Detection of Mercury(II) by Forming Ag/Hg Amalgam,” Anal. Chem. , vol. 85, no. 18, pp. 8594-8600, 2013.

[4] G. Sener, L. Uzun, A. Denizli, “Lysine-Promoted Colorimetric Response of Gold Nanoparticles: A Simple Assay for Ultrasensitive Mercury(II) Detection,” Anal. Chem. , vol. 86, no. 1, pp. 514-520, 2014.

[5] W. B. Lu, X. Y. Qin, S. Liu, G. H. Chang, Y. W. Zhang, Y. L. Luo, A. M. Asiri, A. O. Al-Youbi, X. P.Sun, “Economical, Green Synthesis of Fluorescent Carbon Nanoparticles and Their Use as Probes for Sensitive and Selective Detection of Mercury(II) Ions,” Anal. Chem. , vol. 84, no. 12, pp. 5351-5357, 2012.

[6] D. G. He, X. X. He, K. M. Wang, Y. X. Zhao, Z. Zou, “Regenerable Multifunctional Mesoporous Silica Nanocomposites for Simultaneous Detection and Removal of Mercury(II), Langmuir,” vol. 29, no. 19, pp. 5896-5904, 2013.

[7] Y. C. Shih, C. Y. Ke, C. J. Yu, C. Y. Lu, W. L. Tseng, “Combined Tween 20-Stabilized Gold Nanoparticles and Reduced Graphite Oxide–Fe3O4 Nanoparticle Composites for Rapid and Efficient Removal of Mercury Species from a Complex Matrix,” ACS Appl. Mater. Interfaces, vol. 6, no. 20, pp. 17437-17445, 2014.

[8] J. Jung, J. C. Kim, Y. Rho, M. Kim, W. Kwon, H. Kim, M. Ree, “Molecular Layer-by-Layer Self-Assembly and Mercury Sensing Characteristics of Novel Brush Polymers Bearing Thymine Moieties,” ACS Appl. Mater. Interfaces, vol. 3, no. 7, pp. 2655-2664, 2011.

[9] W. B. Lu, X. Y. Qin, S. Liu, G. H. Chang, Y. W. Zhang, Y. L. Luo, A. M. Asiri, A. O. Al-Youbi, X. P. Sun, “Economical, Green Synthesis of Fluorescent Carbon Nanoparticles and Their Use as Probes for Sensitive and Selective Detection of Mercury(II) Ions,” Anal. Chem. , vol. 84, no. 12, pp. 5351-5357, 2012.

[10] G. Fang, M. Y. Xu, F. Zeng, S. Z. Wu, “β-Cyclodextrin as the Vehicle for Forming Ratiometric Mercury Ion Sensor Usable in Aqueous Media, Biological Fluids,” and Live Cells, Langmuir, vol. 26, no. 22, pp. 17764-17771, 2010.

[11] G. H. Chen, W. Y. Chen, Y. C. Yen, C. W. Wang, H. T. Chang, C. Fu.Chen, “Detection of Mercury(II) Ions Using Colorimetric Gold Nanoparticles on Paper-Based Analytical Devices,” Anal. Chem. , vol. 86, no. 14, pp. 6843-6849, 2014.

[12] J. H. An, S. J. Park, O. S. Kwon, J. Bae, J. Jang, “High-Performance Flexible Graphene Aptasensor for Mercury Detection in Mussels, ACS Nano,” vol. 7, no. 12, pp. 10563-10571, 2013.

[13] Q. S. Wei, R. Nagi, K. Sadeghi, S. Feng, E. Yan, S. J. Ki, R. Caire,D. Tseng, A. Ozcan, “Detection and Spatial Mapping of Mercury Contamination in Water Samples Using a Smart-Phone,” ACS Nano. , vol. 8, no. 2, pp. 1121– 1129, 2014.

[14] L. Zhang, H. X. Chang, A. Hirata, H. K. Wu, Qi. K. Xue, M. W. Chen, “Nanoporous Gold Based Optical Sensor for Sub-ppt Detection of Mercury Ions,” ACS Nano. , vol. 7, no. 5, pp. 4595-4600, 2013.

[15] X. H. Li, Y. Q. Wu, Y. Liu, X. M. Zou, L. M. Yao, F. Y. Li ,W. Feng, “Cyclometallated ruthenium complex-modified upconversion nanophosphors for selective detection of Hg2+ ions in water,” Nanoscale, vol. 6, no. 2, pp. 1020-1028, 2014.

[16] W. F. Luo, H. E. Jiang, K. M. Zhang, W. Liu, X. L. Tang, W. Dou, Z. H. Ju, Z. Q. Li, W. S. Liu, “A reusable ratiometric two-photon chemodosimeter for Hg2+ detection based on ESIPT and its application in bioimaging,” J. Mater. Chem. B, vol. 3, no. 17, pp. 3459-3464, 2015.

[17] J. Q. Pan, Y. Z. Sheng, J. X. Zhang, J. M. Wei, P. Huang, X. Zhang, B. X. Feng, “Preparation of carbon quantum dots/TiO2 nanotubes composites and their visible light catalytic applications,” J. Mater. Chem. A, vol. 2, no. 42, pp. 18082-18086, 2014.

[18] S. Mitra, S. Chandra, P. Patra, P. Pramanik, A, Goswami, “Novel fluorescent matrix embedded carbon quantum dots for the production of stable gold and silver hydrosols,” J. Mater. Chem. , vol. 2, pp. 17638-17641, 2011.

[19] G. S. Kumar, R. Roy, D. Sen, U. K. Ghorai, R. Thapa, N. Mazumder, S. Saha, K. K. Chattopadhyay, “Amino-functionalized graphene quantum dots: origin of tunable heterogeneous photoluminescence,” Nanoscale, vol. 6, no. 6, pp. 18082-18086, 2014.

[20] I. Yildiz, M. Tomasulo, F. M. Raymo, “ Electron and energy transfer mechanisms to switch the luminescence of semiconductor quantum dots,” J. Mater. Chem. , vol. 18, no. 46, pp. 5577-5584, 2008.

[21] Y. H. Chan, F. M. Ye, M. E. Gallina, X. J. Zhang, Y. H. Jin, I. C. Wu, D. T. Chiu, “ Hybrid Semiconducting Polymer Dot?Quantum Dot with Narrow-Band Emission, Near-Infrared Fluorescence, and High Brightness,” J. Am. Chem. Soc. , vol. 134, no. 17, pp. 7309-7312, 2012.

[22] C. Wu, B. Bull, C. Szymanski, K.Christensen, J. McNeill, “ Multicolor Conjugated Polymer Dots for Biological Fluorescence Imaging,” ACS Nano. , vol. 2, no. 11, pp. 2415-2423, 2008.

[23] F. M. Ye, C. F. Wu, Y. H. Jin, M. Wang, Y. H. Chan, J. B. Yu,W. Sun, S. Hayden , D. T. Chiu, “ A compact and highly fluorescent orange-emitting polymer dot for specific subcellular imagingw,” Chem. Commun. , vol. 48, no. 12, pp. 1778-1780, 2012.

[24] P. J. Wu, S. Y. Kuo, Y. C. Huang, C. P. Chen, Y. H. Chan, “ Polydiacetylene-Enclosed Near-Infrared Fluorescent Semiconducting Polymer Dots for Bioimaging and SensingAnal,” Chem. , vol. 86, no. 10, pp. 4831-4839, 2014.

[25] D. Tuncel, H. V. Demir, “ Conjugated polymer nanoparticles are highly versatile nano-structured materials that can potentially find applications in various areas such as optoelectronics, photonics, bio-imaging, bio-sensing and nanomedicine,” Nanoscale, vol. 2, no. 4, pp. 484-494, 2010.

[26] C. F. Wu, S. J. Hansen, Q. Hou, J. B.Yu, M. Zeigler, Y. H. Jin, D. R. Burnham, J. D. McNeill, J. M. Olson, D. T. Chiu, “ Design of Highly Emissive Polymer Dot Bioconjugates for In Vivo Tumor Targeting,” Angew. Chem. Int. Ed. , vol. 50, no. 15, pp. 3430-3434, 2011.

[27] K. Sun, H. B. Chen, L. Wang, S. Y. Yin, H. Y. Wang, G. X. Xu, D. N. Chen, X. J. Zhang, C. F. Wu, W. P. Qin, “ Size-Dependent Property and Cell Labeling of Semiconducting Polymer Dots,” ACS Appl. Mater. Interfaces, vol. 6, no. 13, pp. 10802-10812, 2014.

[28] Y. Rong, C. F. Wu, J. B.Yu, X. J. Zhang, F. M. Ye, M. Zeigler, M. E. Gallina, I. C. Wu,Y. Zhang, Y. H. Chan, W. Sun, K. Uvdal, D. T. Chiu, “ Multicolor Fluorescent Semiconducting Polymer Dots with Narrow Emissions and High Brightness,” ACS Nano. , vol. 7, no. 1, pp. 376-384, 2013.

[29] X. J. Zhang, J. B. Yu, C. F. Wu, Y. H. Jin, Y. Rong, F. M. Ye, D. T. Chiu, “ Importance of Having Low-Density Functional Groups for Generating High-Performance Semiconducting Polymer Dots,” ACS Nano. , vol. 6, no. 6, pp. 5429-5439, 2012.

[30] F. Ye, C. Wu, Y. Jin, M. Wang, Y. H. Chan, J. Yu, W. Sun, S. Hayden and D. T. Chiu, “ A compact and highly fluorescent orange-emitting polymer dot for specific subcellular imaging,” Chem. Commun., vol. 48, no. 12, pp. 1778-1780, 2012.

[31] Y. Zhang, J. B. Yu, M. E. Gallina, W. Sun, Y. Rong. D. T. Chiu, “ Highly luminescent, fluorinated semiconducting polymer dots for cellular imaging and analysis,” Chem. Commun. , vol. 49, no. 74, pp. 8256-8258, 2013.

[32] Y. H. Chan, Y. H. Jin, C. F. Wu, D. T. Chiu, “ Copper(II) and iron(II) ion sensing with semiconducting polymer dots,” Chem. Commun. , vol. 47, no. 10, pp. 2820-2822, 2011.

[33] L. Chai; Q. Li; Y. Zhu; Z. Zhang; Q. Wang; Y. Wang; Z. Yang, “ Synthesis of thiol-functionalized spent grain as a novel adsorbent for divalent metal ions,” Bioresour. Technol. , vol. 101, pp. 6269?6272, 2010.

[34] S. Wang, M. H. Wei, Y.M. Huang, “ Biosorption of Multifold Toxic Heavy Metal Ions from Aqueous Water onto Food Residue Eggshell Membrane Functionalized with Ammonium Thioglycolate,” J. Agric. Food Chem. , vol. 61, no. 21, pp. 4988?4996, 2013.

[35] G. Li; Z. Zhao; J. Liu; G. Jiang, “ Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica,” J. Hazard. Mater. , vol. 192, no. 1, pp. 277?283, 2011.

[36] Y. Rao, B. Xiang, E. Bramanti, A. D’Ulivo, Z. Mester, “ Determination of Thiols in Yeast by HPLC Coupled with LTQ-Orbitrap Mass Spectrometry after Derivatization with p-(Hydroxymercuri)benzoate,” J. Agric. Food Chem. , vol. 58, no. 3, pp. 1462–1468, 2010.

[37] H. Pesonen, R. Aksela, K.Laasonen, “ Density Functional Complexation Study of Metal Ions with Cysteine,” J. Phys. Chem. A , vol. 114, no. 1, pp. 466–473, 2010.

[38] H. Huang, C. G. Li, S. J. Zhu, H. L. Wang, C. L. Chen, Z. R. Wang, T. Y. Bai, Z. Shi, S. H. Feng, “ Histidine-Derived Nontoxic Nitrogen-Doped Carbon Dots for Sensing and Bioimaging Applications,” Langmuir, vol. 30, no. 45, pp. 13542-13548, 2014.

[39] H. Li, L. Wang, Y. Zhang, J. Tian, X. P. Sun, “ Coordination Polymer Nanobelts as an Effective Sensing Platform for Fluorescence-enhanced Nucleic Acid DetectionMacromol,” Rapid Commun. , vol. 32, no. 12, pp. 899-904, 2011.

[40] H. Li, Y. Zhang, Y. Luo, X. P. Sun, “ Nano-C60: A Novel, Effective, Fluorescent Sensing Platform for Biomolecular Detection,” Small, vol. 7, no. 11, pp. 1562-1568, 2011.

[41] H. L. Li, X. P. Sun, “Fluorescence-enhanced nucleic acid detection: using coordinationpolymer colloids as a sensing platform,” Chem. Commun, vol. 47, no. 9, pp. 2625-2627, 2011.

[42] Z. X. Wang, S. N. Ding, “ One-Pot Green Synthesis of High Quantum Yield Oxygen-Doped, Nitrogen-Rich, Photoluminescent Polymer Carbon Nanoribbons as an Effective Fluorescent Sensing Platform for Sensitive and Selective Detection of Silver(I) and Mercury(II) Ions,” Anal. Chem. , vol. 86, no. 15, pp. 7436?7445, 2014.

[43] Z. L.Zhu, G. C .Chan, S. J. Ray, X. R. Zhang, G. M. Hieftje, “ Use of a Solution Cathode Glow Discharge for Cold Vapor Generation of Mercury with Determination by ICP-Atomic Emission Spectrometry,” Anal. Chem. , vol. 80, no. 18, pp. 7043-7050, 2008.

[44] K. Y. Pu, Z. T. Luo, K. Li, J. P. Xie, B. Liu, “ Energy Transfer between Conjugated-Oligoelectrolyte-Substituted POSS and Gold Nanocluster for Multicolor Intracellular Detection of Mercury Ion,” J. Phys. Chem. C, vol. 115, no. 26, pp. 13069-13075, 2011.

[45] E . Gkika , A . Troupis, A . Hiskia, E . Papaconstantinou, “ Photocatalytic Reduction and Recovery of Mercury by Polyoxometalates,” Environ. Sci. Technol. , vol. 39, no. 11, pp. 4242-4248, 2005.

[46] C. Ma, F. Zeng, L. F. Huang, S. Z. Wu, “ FRET-Based Ratiometric Detection System for Mercury Ions in Water with Polymeric Particles as Scaffolds,” J. Phys. Chem. B, vol. 115, no. 5, pp. 874-882, 2011.

[47] H. Erxleben, J. Ruzicka, “Atomic Absorption Spectroscopy for Mercury, Automated by Sequential Injection and Miniaturized in Lab-on-Valve System,” Anal. Chem. , vol. 77, no. 16, pp. 5124-5128, 2005.

[48] T. Placido, G.Aragay, J. Pons, R. Comparelli, M. Lucia Curri, A. Merkoc?I, “ Ion-Directed Assembly of Gold Nanorods: A Strategy for Mercury Detection,” ACS Appl. Mater. Interfaces, vol. 5, no. 3, pp. 1084-1092, 2013.

[49] D. B. Liu, W. S. Qu, W. W. Chen, W. Zhang, Z. Wang, X. Y. Jiang, “ Highly Sensitive, Colorimetric Detection of Mercury(II) in Aqueous Media by Quaternary Ammonium Group-Capped Gold Nanoparticles at Room Temperature,” Anal. Chem. , vol. 82, no. 23, pp. 9606-9610, 2010.

[50] K. A. Joseph, N. Dave, J. W. Liu, “ Electrostatically Directed Visual Fluorescence Response of DNA-Functionalized Monolithic Hydrogels for Highly Sensitive Hg2+ Detection,” ACS Appl. Mater. Interfaces, vol. 3, no. 3, pp. 733-739, 2011.

[51] G. V. Ramesh,T. P. Radhakrishnan, “ A Universal Sensor for Mercury (Hg, HgI, HgII) Based on Silver Nanoparticle-Embedded Polymer Thin Film,” ACS Appl. Mater. Interfaces, vol. 3, no. 4, pp. 988-994, 2011.

[52] C. Yuan, B. H. Liu, F. Liu, M. Y. Han, Z. P. Zhang, “ Fluorescence “Turn On” Detection of Mercuric Ion Based on Bis(dithiocarbamato)copper(II) Complex Functionalized Carbon Nanodots,” Anal. Chem. , vol. 86, no. 2, pp. 1123-1130, 2014.

[53] L. L. Li, G. H. Wu, T. Hong, Z. Y. Yin, D. Sun, E. S. Abdel-Halim, J. J. Zhu, “ Graphene Quantum Dots as Fluorescence Probes for Turn-off Sensing of Melamine in the Presence of Hg2+,” ACS Appl. Mater. Interfaces, vol. 6, no. 4, pp. 2858-2864, 2014.