Isaac Scientific Publishing

Advances in Analysis

The Grunsky Coefficients as a Model of Universal Teichmüller Space

Download PDF (546.4 KB) PP. 219 - 226 Pub. Date: May 3, 2017

DOI: 10.22606/aan.2017.23006

Author(s)

  • Samuel L. Krushkal*
    Department of Mathematics, Bar-Ilan University, 5290002 Ramat-Gan, Israel, and Department of Mathematics, University of Virginia, Charlottesville, VA 22904-4137, USA

Abstract

Some models of the universal Teichmüller space that are given by its holomorphic embedding into appropriate Banach spaces play a crucial role in various applications of this space. We provide a new model of this space as a domain formed by the Grunsky coefficients of basic univalent functions with quasiconformal extension.

Keywords

Universal Teichmüller space, Grunsky coefficients, Schwarzian derivative, holomorphic embedding

References

[1] J. Becker, Conformal mappings with quasiconformal extensions, Aspects of Contemporary Complex Analysis, Proc. Confer. Durham 1979 (D. A. Brannan and J. G. Clunie, eds.), Academic Press, New York, 1980, pp. 37-77.

[2] L. Bers, A non-standard integral equation with applications to quasiconformal mappings, Acta Math. 116 (1966), 113-134.

[3] C.J. Earle, On quasiconformal extensions of the Beurling-Ahlfors type, Contribution to Analysis, Acad. Press, NY, 1974, pp. 99-105.

[4] F.P. Gardiner and N. Lakic, Quasiconformal Teichmüller Theory, Amer. Math. Soc., Providence, RI, 2000.

[5] H. Grunsky, Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen, Math. Z. 45 (1939), 29-61.

[6] S.L. Krushkal, On the question of the structure of the universal Teichmüller space, Soviet Math. Dokl. 38 (1989), 435-437.

[7] S.L. Krushkal, Strengthened Moser’s conjecture, geometry of Grunsky inequalities and Fredholm eigenvalues, Central European J. Math. 5(3) (2007), 551-580.

[8] S.L. Krushkal, On shape of Teichmüller spaces, Journal of Analysis 22 (2014), 69-76.

[9] S.L. Krushkal, Strengthened Grunsky and Milin inequalities, Contemporary Mathematics 667 (2016), 159-179.

[10] S.L. Krushkal and R. Kühnau, Quasikonforme Abbildungen - neue Methoden und Anwendungen, Teubner- Texte zur Math., Bd. 54, Teubner, Leipzig, 1983.

[11] R. Kühnau, Verzerrungss?tze und Koeffizientenbedingungen vom Grunskyschen Typ für quasikonforme Abbildungen, Math. Nachr. 48 (1971), 77-105.

[12] R. Kühnau, über die Grunskyschen Koeffizientenbedingungen, Ann. Univ. Mariae Curie-Sklodowska, sect. A 54 (2000), 53-60.

[13] I.M. Milin, Univalent Functions and Orthonormal Systems, Transl. of Mathematical Monographs, vol. 49, Transl. of Odnolistnye funktcii i normirovannie systemy, Amer. Math. Soc., Providence, RI, 1977.

[14] Chr. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, G?ttingen, 1975.

[15] L.A. Takhtajan and L.-P. Teo, Weil-Petersson metric on the universal Teichmüller space, Mem. Amer. Math. Soc. 183 (2006), no. 861.

[16] I.V. Zhuravlev, Univalent functions and Teichmüller spaces, Inst. of Mathematics, Novosibirsk, preprint, 1979, 23 pp. (Russian).

[17] I.V. Zhuravlev, On a model of the universal Teichmüller space, Siber. Math. J. 27 (1986), 691-697.