联系我们
Isaac Scientific Publishing
Theoretical Physics
TP > Volume 4, Number 4, December 2019

On Schwarzschild anti De Sitter and Reissner-Nördstrom Wormholes

Download PDF  (9635.8 KB)PP. 133-149,  Pub. Date:October 21, 2019
DOI: 10.22606/tp.2019.44001

Author(s)
Oscar Brauer, Miguel Socolovsky
Affiliation(s)
Facultad de Ciencias, Universidad Nacional Autónoma de México
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510, Ciudad de México, México; Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föringher Ring 6, 80805, München, Germany
Abstract
We discuss the wormholes associated with the four-dimensional Schwarzschild (S4), Schwarzschild anti De Sitter (SaDS4), and Reissner-Nördstrom (RN4) black holes, in Schwarzschild, isotropic and Kruskal-Szekeres cordinates. The first two coordinate systems are valid outside the horizons, while the third one is used for the interiors. In Schwarzschild coordinates, embedding for SaDS4 exists only for a finite interval of the radial coordinate r, and similar restrictions exist for RN4. The use of the K-S coordinates allows us to give an explicit proof of the pinching-off of the bridges, making them non-traversable. The case of the extreme Reissner-Nördstrom (ERN4) is also discussed.
Keywords
Wormholes, Schwarzschild anti De Sitter, Reissner-Nordström, black holes PACS numbers: 04.70.-s, 04.70.Bw
References
  • [1]  Kruskal, M.D. Maximal extension of Schwarzschild metric, Phys. Rev. 119, 1743-1745 (1960).
  • [2]  Szekeres, G. On the singularities of a Riemannian manifold, Publ. Math. Debrecen 7, 285-301 (1960).
  • [3]  Misner, C.W. and Wheeler, J.A. Classical Physics as Geometry, Ann. of Phys. 2, 525-603 (1957).
  • [4]  Einstein, A. and Rosen, N. The particle problem in the general theory of relativity, Phys. Rev. 48, 73-77 (1935).
  • [5]  Fuller, R.W. and Wheeler, J.A. Causality and Multiply Connected Space-Time, Phys. Rev. 128, 919-929 (1962).
  • [6]  Carroll, S. “Spacetime and Geometry. An Introduction to General Relativity”, Addison Wesley, San Francisco (2004).
  • [7]  Collas, P. and Klein, D. Embeddings and time evolution of the Schwarzschild wormhole, Am. J. Phys. 80, 203-210 (2012).
  • [8]  Morris, M.S. and Thorne, K.S. Wormholes in spacetime and their use for interstellar travel: A tool for teaching General Relativity, Am. J. Phys. 56, 395-412 (1988).
  • [9]  Visser, M. “Lorentzian Wormholes: From Einstein to Hawking”, American Institute of Physics, New York (1995).
  • [10]  Lobo, F.S.N. “From the Flamm-Einstein-Rosen bridge to the modern renaissence of traversable wormholes”, The Fourteenth Marcel Grossmann Meeting, University of Rome “La Sapienza”, World Scientific, 409-427 (2017).
  • [11]  Witten, E. Light Rays, Singularities, and All That, arXiv: hep-th/1901.03928v1 (2019).
  • [12]  Flamm, L. Beiträge zur Einsteinschen Gravitationtheorie, Physikalische Zeitschrift XVII, 448-454 (1916); reprinted: Contributions to Einstein’s theory of gravitation, Gen. Relat. Gravit. 47:72 (2015).
  • [13]  Townsend, P.K. “Black Holes”, Lecture notes, DAMTP, Cambridge (1997); arXiv: gr-qc/9707012v1.
  • [14]  Socolovsky, M. Schwarzschild Black Hole in Anti-De Sitter Space, Adv. App. Clifford Algebras 28:18 (2018).
  • [15]  Gao,P., Jafferis,D.L., and Wall, A.C. Traversable Wormholes via a Double Trace Deformation, arXiv: hepth/ 1608.05687v2 (2017).
  • [16]  Maldacena, J. and Qi, X.L. Eternal traversable wormhole, arXiv: hep-th/1804.00491v3 (2018).
Copyright © 2019 Isaac Scientific Publishing Co. All rights reserved.