Theoretical Physics
Electrodynamics in Uniformly Rotating Frames the Central Observer Point of View
Download PDF (375.3 KB) PP. 177 - 187 Pub. Date: December 1, 2017
Author(s)
- A. Sfarti*
CS Dept, 387 Soda Hall, UC Berkeley
Abstract
Keywords
References
[1] Moller, C. “The Theory of Relativity,” Oxford Press (1960).
[2] Thomas, L. H. "Motion of the spinning electron," Nature. 117 (1926).
[3] Ben-Menahem, A. "Wigner's rotation revisited," Am. J. Phys. 53 (1985).
[4] Ben-Menahem, S. "The Thomas precession and velocityspace curvature," J. Math. Phys. 27 (1986).
[5] Kroemer, H. "The Thomas precession factor in spin-orbit interaction" Am J. Physics. 72 (2004).
[6] Rhodes, J. A, “Semon, M. D. "Relativistic velocity space, Wigner rotation and Thomas precession,” Am. J. Phys. 72, (2005).
[7] Malykin, G. B. "Thomas precession: correct and incorrect solutions," Phys. Usp. 49 (8): (2006).
[8] Krivoruchenko, M. I. "Rotation of the swing plane of Foucault's pendulum and Thomas spin preession: Two faces of one coin," Phys. Usp., 52. 8 (2009)
[9] Sfarti, A. “Hyperbolic Motion Treatment for Bell's Spaceship Experiment,” Fizika A, 18, 2 (2009)
[10] Sfarti, A. “Coordinate Time Hyperbolic Motion for Bell's Spaceship Experiment,” Fizika A, 19, 3 (2010)
[11] Sfarti, A. “Relativity solution for “Twin paradox”: a comprehensive solution,” IJP, 86, 10 (2012)
[12] Sfarti, A. “Generalization of Coordinate Transformations between Accelerated and Inertial Frames – General Formulas of Thomas Precession,” JAPSI, 8, 2, (2017)
[13] C. Corda, “The M?ssbauer rotor experiment and the general theory of relativity,” Ann. Phys. 368, 258 (2016).