# Theoretical Physics

### Coherent States of Systems with Non-Equidistant Energy Levels

Download PDF (349.7 KB) PP. 97 - 107 Pub. Date: April 27, 2017

### Author(s)

**Dušan POPOV**^{*}

Department of Physical Foundations of Engineering, University Politehnica Timisoara, Romania

### Abstract

### Keywords

### References

[1] S. H. Dong, Factorization Method in Quantum Mechanics, Springer, Dordrecht, 2007.

[2] A. Jellal, “Coherent States for Generalized Laguerre Functions”, Modern Physics Letters A, vol.17, pp. 671-682, 2002.

[3] T. Appl and D. H. Schiller, “Generalized hypergeometric coherent states”, Journal of Physics A: Mathematical and General, vol. 37, no. 7, pp. 2731-2750, 2004.

[4] D. Popov, “Some Properties of Generalized Hypergeometric Thermal Coherent States”, Electronic Journal of Theoretical Physics, vol. 3, no. 11, pp. 123 -132, 2006; http://www.ejtp.com/articles/ejtpv3i11p123.pdf

[5] J.R. Klauder and B. Skagerstam, Coherent States, World Scientific, Singapore, 1985.

[6] Hong-yi Fan, “The Development of Dirac’s Symbolic Method by Virtue of IWOP Technique”, Communications in Theoretical Physics, vol. 31, no. 2, pp. 285-290, 1999.

[7] D. Popov and M. Popov, “Some operatorial properties of the generalized hypergeometric coherent states”, Physica Scripta, vol. 90, no. 035101, pp. 1-16, 2015.

[8] A. O. Barut and L. Girardello, “New “Coherent” States associated with non-compact groups”, Communications in Mathematical Physics, vol. 21, no. 1, pp. 41-55, 1971.

[9] A. M. Mathai and R. K. Saxena, “Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences”, Lecture Notes in Mathematics, vol. 348, Springer-Verlag, Berlin, 1973.

[10] I. S. Gradshteyn and I. M. Ryshik, Table of Integrals, Series and Products, Seventh ed., Academic Press, Amsterdam, 2007.

[11] http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric0F1/13/01/01/

[12] L. Mandel, “Sub-Poissonian photon statistics in resonance fluorescence”, Optics Letters, vol. 4, no. 7, pp. 205- 207, 1979.

[13] http://functions.wolfram.com/Bessel-TypeFunctions/BesselI/26/01/02/

[14] E. Neuman, “Inequalities involving modified Bessel functions of the first kind”, Journal of Mathematical Analysis and Applications, vol. 171, no. 2, pp. 532-536, 1992.

[15] D. Popov, “Gazeau-Klauder quasi-coherent states for the Morse oscillator”, Physics Letters A, vol. 316, no. 6, pp. 369-381, 2003.

[16] D. F. Walls and G. J. Milburn, Quantum Optics, Springer-Verlag, Berlin, 1995.

[17] J.-P. Antoine, J.-P. Gazeau, P. Monceau, J. R. Klauder, and K. A. Penson, “Temporally stable coherent states for infinite well and P?schl–Teller potentials”, Journal of Mathematical Physics, vol. 42, no. 6, pp. 2349-2387, 2001.

[18] J.-P. Antoine, J.-P. Gazeau, P. Monceau, J. R. Klauder, and K. A. Penson, “Coherent states for infinite well and P?schl–Teller potentials: a unified SU(1, 1) approach”, preprint UCL-IPT-99-12 (1999).

[19] D. Popov, V. Sajfert, J. P. ?etraj?i?, and N. Pop, ?Coherent states formalism applied to the quantum well model“, Quantum Matter, vol. 3, no. 4, pp. 388-393, 2014.

[20] D. Popov, S. –H. Dong, and M. Popov, “Diagonal ordering operation technique applied to Morse oscillator”, Annals of Physics, vol. 362, pp. 449-472, 2015.

[21] D. Popov, “Spin coherent states defined in the Barut-Girardello manner”, Proceedings of the Romanian Academy, Series A, vol. 17, no. 4, pp. 328-335, 2016.

[22] J. M. Radcliffe, “Some properties of coherent spin states”, J. Phys. A: Gen. Phys., vol. 4, no. 3, pp. 313-323.

[23] J.-P. Gazeau, Coherent States in Quantum Physics, Wiley-Verlag, Weinheim, 2009.

[24] D. Popov, R. Negrea, M. Popov, “Gazeau-Klauder coherent states examined from the viewpoint of diagonal ordering operation technique”, Chinese Physics B, vol. 25, no. 7, 070301, pp. 1-10, 2016.

[25] D. Popov, M. Popov, “Coherent states for continuous spectrum as limiting case of hypergeometric coherent states”, Romanian Reports in Physics, vol. 68, no. 4, pp. 1335-1348, 2016.