# Theoretical Physics

### Observational Constraints on Cosmological Superstrings

Download PDF (2629.1 KB) PP. 70 - 78 Pub. Date: April 27, 2017

### Author(s)

**Olga S. Sazhina**^{*}

Sternberg State Astronomical Institute of Lomonosov Moscow State University, Moscow, Russian Federation**Alfiia I. Mukhaeva**

Dubna State University, Dubna, Russian Federation

### Abstract

### Keywords

### References

[1] A. Vilenkin, “Gravitational field of vacuum domain walls and strings,” Phys.Rev.D 23 4, p. 852, 1981.

[2] ——, “Cosmic strings as gravitational lenses,” Ap. J. L51 282, p. 282, 1984.

[3] E. Shellard and A. Vilenkin, “Cosmic strings and other topological defects,” Cambridge Univ.Press, UK, 1994.

[4] A. Vilenkin, “Looking for cosmic strings,” Nature 322, p. 613, 1986.

[5] Y. Zeldovich, “Cosmological fluctuations produced near a singularity,” MNRAS 192, p. 663, 1980.

[6] T. Kibble, “Topology of cosmic domains and strings,” J.Phys.A:Math.Gen., p. 9, 1976.

[7] M. Hindmarsh and T. Kibble, “Cosmic strings,” Rept.Prog.Phys.58, pp. 477–562, 1995. [Online]. Available: arXiv:hep-ph/9411342

[8] P. C. Ade, N. Aghanim, C. Armitage-Caplan, and et al., “Planck 2013 results. xxv. searches for cosmic strings and other topological defects,” A&A, pp. 571, A25, 2014. [Online]. Available: arXiv:1303.5085

[9] T. W. B. Kibble and T. Vachaspati, “Monopoles on strings,” J. Phys. G: Nucl. Part. Phys. 42 094002, 2015. [Online]. Available: arXiv:1506.02022

[10] A.-C. Davis and T. Kibble, “Fundamental cosmic strings,” Contemp.Phys. 46, pp. 313–322, 2005. [Online]. Available: arXiv:hep-th/0505050

[11] G. R. Dvali and S. H. H. Tye, “Brane inflation,” Phys. Lett. B450, p. 72, 1999. [Online]. Available: arXiv:hep-ph/9812483

[12] C. P. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G. Rajesh, and R.-J. Zhang, “The inflationary brane-antibrane universe,” JHEP 07, p. 47, 2001. [Online]. Available: arXiv:hep-th/0105204

[13] M. Majumdar and A. Christine-Davis, “Cosmological creation of d-branes and anti-d-branes,” JHEP 03, p. 56, 2002. [Online]. Available: arXiv:hep-th/0202148

[14] R. J. Danos and R. H. Brandenberger, “Canny algorithm, cosmic strings and the cosmic microwave background,” Int.J.Mod.Phys. D19, p. 183, 2010. [Online]. Available: arXiv:0811.2004

[15] O. S. Sazhina, D. Scognamiglio, and M. Sazhin, “Observational constraints on the types of cosmic strings,” The European Physical Journal C 74:2972, 2014. [Online]. Available: arXiv:1312.6106

[16] E. Morganson, P. Marshall, and et al., “Direct observation of cosmic strings via their strong gravitational lensing effect: Ii. results from the hst/acs image archive.” [Online]. Available: arXiv:0908.0602v1

[17] M. Sazhin and et al., “Gravitational lensing by cosmic strings: what we learn from the csl-1 case,” MNRAS 376, p. 1731, 2007.

[18] ——, “Csl-1: chance projection effect or serendipitous discovery of a gravitational lens induced by a cosmic string?” MNRAS 343, p. 353, 2003.

[19] P. Bhattacharjee and G. Sigl, Phys. Rep. 327, p. 109, 2000.

[20] T. Vachaspati, Phys. Rev. D 81 043531 1, 2010.

[21] R. Caldwell, R. Battye, and E. Shellard, Phys. Rev. D54, 7146, 1996.

[22] C. Corda, “Interferometric detection of gravitational waves: the definitive test for general relativity,” Int. J. Mod. Phys. D 18, 2275, 2009. [Online]. Available: arXiv:0905.2502v3

[23] J. Polchinski, “Introduction to cosmic f- and d-strings.” [Online]. Available: arXiv:hep-th/0412244

[24] V. A. Rubakov, “Large and infinite extra dimensions,” Phys. Usp. 44, pp. 871–893, 2001.

[25] Schwarz and J. An, “Sl(2,z) multiple of type iib superstrings,” Phys. Lett. B 360, p. 13, 1995.

[26] N. Kaiser and A. Stebbins, “Microwave anisotropy due to cosmic strings,” Nature 310, pp. 391–393, 1984.

[27] O. Sazhina, M. Sazhin, V. Sementsov, M. Capaccioli, G. Longo, G. Riccio, and G. D’Angelo, “Cmb anisotropy induced by a moving straight cosmic string,” Journal of Experimental and Theoretical Physics 106, 5, pp. 878–887, 2008.

[28] E. Copeland and T. Kibble, “Cosmic strings and superstrings,” Proc. Roy. Soc. Lond. A 466, 623657, 2010. [Online]. Available: arXiv:0911.1345v3

[29] D. Bennet and F. Bouchet, “High resolution simulations of cosmic string evolution: network evolution,” Phys. Rev. D41, p. 2408, 1990.

[30] B. Allen and E. Shellard, “Cosmic string evolution – a numerical simulation,” Phys. Rev. Lett. 64, p. 119, 1990.

[31] S. H. H. Sarangi, S.and Tye, “Cosmic string production towards the end of brane inflation,” Phys. Lett. B536, p. 185, 2002. [Online]. Available: arXiv:hep-th/0204074

[32] H. Jones, N. T.and Stoica and S. H. H. Tye, “Brane inflation and semilocal strings,” Phys. Lett. B563, p. 6, 2003. [Online]. Available: arXiv:hep-th/0303269