Isaac Scientific Publishing

Theoretical Physics

Observational Constraints on Cosmological Superstrings

Download PDF (2629.1 KB) PP. 70 - 78 Pub. Date: April 27, 2017

DOI: 10.22606/tp.2017.22003


  • Olga S. Sazhina*
    Sternberg State Astronomical Institute of Lomonosov Moscow State University, Moscow, Russian Federation
  • Alfiia I. Mukhaeva

    Dubna State University, Dubna, Russian Federation


The existance of cosmic strings does not contradict to the current observational cosmological data. From theoretical point of view the cosmic strings can be of the different origins and type and be characterized by wide range of energies. The cosmic superstrings naturally arise in the brane-world scenario. The paper is devoted to discussing possible cosmological observational tests on superstring theory, and to the identification of observational properties allowing to distinguish between cosmological superstring of different type. In the paper we obtained a lower limit on the superstring tension as function of the deficit angle.


Cosmic strings, cosmological FD-strings, CMB anisotropy


[1] A. Vilenkin, “Gravitational field of vacuum domain walls and strings,” Phys.Rev.D 23 4, p. 852, 1981.

[2] ——, “Cosmic strings as gravitational lenses,” Ap. J. L51 282, p. 282, 1984.

[3] E. Shellard and A. Vilenkin, “Cosmic strings and other topological defects,” Cambridge Univ.Press, UK, 1994.

[4] A. Vilenkin, “Looking for cosmic strings,” Nature 322, p. 613, 1986.

[5] Y. Zeldovich, “Cosmological fluctuations produced near a singularity,” MNRAS 192, p. 663, 1980.

[6] T. Kibble, “Topology of cosmic domains and strings,” J.Phys.A:Math.Gen., p. 9, 1976.

[7] M. Hindmarsh and T. Kibble, “Cosmic strings,” Rept.Prog.Phys.58, pp. 477–562, 1995. [Online]. Available: arXiv:hep-ph/9411342

[8] P. C. Ade, N. Aghanim, C. Armitage-Caplan, and et al., “Planck 2013 results. xxv. searches for cosmic strings and other topological defects,” A&A, pp. 571, A25, 2014. [Online]. Available: arXiv:1303.5085

[9] T. W. B. Kibble and T. Vachaspati, “Monopoles on strings,” J. Phys. G: Nucl. Part. Phys. 42 094002, 2015. [Online]. Available: arXiv:1506.02022

[10] A.-C. Davis and T. Kibble, “Fundamental cosmic strings,” Contemp.Phys. 46, pp. 313–322, 2005. [Online]. Available: arXiv:hep-th/0505050

[11] G. R. Dvali and S. H. H. Tye, “Brane inflation,” Phys. Lett. B450, p. 72, 1999. [Online]. Available: arXiv:hep-ph/9812483

[12] C. P. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G. Rajesh, and R.-J. Zhang, “The inflationary brane-antibrane universe,” JHEP 07, p. 47, 2001. [Online]. Available: arXiv:hep-th/0105204

[13] M. Majumdar and A. Christine-Davis, “Cosmological creation of d-branes and anti-d-branes,” JHEP 03, p. 56, 2002. [Online]. Available: arXiv:hep-th/0202148

[14] R. J. Danos and R. H. Brandenberger, “Canny algorithm, cosmic strings and the cosmic microwave background,” Int.J.Mod.Phys. D19, p. 183, 2010. [Online]. Available: arXiv:0811.2004

[15] O. S. Sazhina, D. Scognamiglio, and M. Sazhin, “Observational constraints on the types of cosmic strings,” The European Physical Journal C 74:2972, 2014. [Online]. Available: arXiv:1312.6106

[16] E. Morganson, P. Marshall, and et al., “Direct observation of cosmic strings via their strong gravitational lensing effect: Ii. results from the hst/acs image archive.” [Online]. Available: arXiv:0908.0602v1

[17] M. Sazhin and et al., “Gravitational lensing by cosmic strings: what we learn from the csl-1 case,” MNRAS 376, p. 1731, 2007.

[18] ——, “Csl-1: chance projection effect or serendipitous discovery of a gravitational lens induced by a cosmic string?” MNRAS 343, p. 353, 2003.

[19] P. Bhattacharjee and G. Sigl, Phys. Rep. 327, p. 109, 2000.

[20] T. Vachaspati, Phys. Rev. D 81 043531 1, 2010.

[21] R. Caldwell, R. Battye, and E. Shellard, Phys. Rev. D54, 7146, 1996.

[22] C. Corda, “Interferometric detection of gravitational waves: the definitive test for general relativity,” Int. J. Mod. Phys. D 18, 2275, 2009. [Online]. Available: arXiv:0905.2502v3

[23] J. Polchinski, “Introduction to cosmic f- and d-strings.” [Online]. Available: arXiv:hep-th/0412244

[24] V. A. Rubakov, “Large and infinite extra dimensions,” Phys. Usp. 44, pp. 871–893, 2001.

[25] Schwarz and J. An, “Sl(2,z) multiple of type iib superstrings,” Phys. Lett. B 360, p. 13, 1995.

[26] N. Kaiser and A. Stebbins, “Microwave anisotropy due to cosmic strings,” Nature 310, pp. 391–393, 1984.

[27] O. Sazhina, M. Sazhin, V. Sementsov, M. Capaccioli, G. Longo, G. Riccio, and G. D’Angelo, “Cmb anisotropy induced by a moving straight cosmic string,” Journal of Experimental and Theoretical Physics 106, 5, pp. 878–887, 2008.

[28] E. Copeland and T. Kibble, “Cosmic strings and superstrings,” Proc. Roy. Soc. Lond. A 466, 623657, 2010. [Online]. Available: arXiv:0911.1345v3

[29] D. Bennet and F. Bouchet, “High resolution simulations of cosmic string evolution: network evolution,” Phys. Rev. D41, p. 2408, 1990.

[30] B. Allen and E. Shellard, “Cosmic string evolution – a numerical simulation,” Phys. Rev. Lett. 64, p. 119, 1990.

[31] S. H. H. Sarangi, S.and Tye, “Cosmic string production towards the end of brane inflation,” Phys. Lett. B536, p. 185, 2002. [Online]. Available: arXiv:hep-th/0204074

[32] H. Jones, N. T.and Stoica and S. H. H. Tye, “Brane inflation and semilocal strings,” Phys. Lett. B563, p. 6, 2003. [Online]. Available: arXiv:hep-th/0303269