Isaac Scientific Publishing

Theoretical Physics

An Extended Dynamical Equation of Motion, Phase Dependency and Inertial Backreaction

Download PDF (1076.6 KB) PP. 20 - 29 Pub. Date: March 21, 2017

DOI: 10.22606/tp.2017.21004


  • Mario J. Pinheiro*
    Department of Physics, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001 Lisboa, Portugal
  • Marcus Büker

    Department of Geography, Western Illinois University, & Macomb, IL, USA 61455


Newton’s second law has limited scope of application when transient phenomena are present. We consider a modification of Newton’s second law in order to take into account a sudden change (surge) of angular momentum or linear momentum. We hypothesize that space itself resists such surges according to a kind of induction law (related to inertia); additionally, this backreaction apparently gives some evidence of the "fluidic" nature of space itself. This "back-reaction" is quantified by the tendency of angular momentum flux threading across a surface. This quantity is mass-dependent, and bears similarity to the quantum mechanics phase shift, present in the Aharonov-Bohm and Aharonov-Casher effects. Furthermore, this provides evidence of vacuum polarization, a phenomena which is relative to local space indicating that local geometry and topology should be taken into account in any fundamental physical theory.


Formalisms in classical mechanics, phases: geometric, dynamic or topological, wave generation and sources.


[1] M. J. Pinheiro, “The Fourth Law of Motion in Classical Mechanics and Electrodynamics,” AIP Conf. Proc., vol. 1208, pp. 359–365, 2010.

[2] S. Hacyan, “What does it mean to modify or test Newton’s second law?,” Am. J. Phys., vol. 77, no. 7, pp. 607–609, 2009.

[3] Sir William Thomson and Peter Guthrie Tait, Elements of Natural Philosophy. p.2, Cambridge University Press, Cambridge, 1885.

[4] M. Milgrom, “A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis,” Ap. J., vol. 270, pp. 365–370, 1983.

[5] M. Milgrom, “A modification of the Newtonian dynamics - Implications for galaxies,” AP. J., vol. 270, pp. 371–383, 1983.

[6] E. Mach, The Science of Mechanics. , Open Court, La Salle-Illinois, 1989.

[7] P. W. Bridgman, “Significance of the Mach Principle,” Am. J. Phys., vol. 29, pp. 32–36, 1961.

[8] D. W. Sciama, “On the Origin of Inertia,” Mon. Nat. Roy. Astron. Soc., vol. 113, pp. 34–42, 1953.

[9] A. D. Sakharov, “Vacuum Quantum Fluctuations in Curved Space and the Theory of Gravitation,” Sov. Phys. - Doklady, vol. 12, no. 11, pp. 1040–1041, 1968.

[10] H. E. Puthoff, “Gravity as a zero-point-fluctuation force,” Phys. Rev. A, vol. 39, pp. 2333–2342, 1994.

[11] B. Haisch and A. Rueda, Causality and Locality in Modern Physics. , Eds. G. Hunter, S. Jeffers, J.-P. Vigier, Kluwer, Dordrecht, 1998.

[12] Hendrik-Antoon Lorentz, The theory of electrons-and its applications to the phenomena of light and radiant heat. , éditions Jacques Gabay, Paris, 1992.

[13] M. Abraham, Dynamik des Electrons, Nachrichten von der Geselschaft der Wissenschafften zu G?ttingen, Mathematisch-Physikalische Klasse, S. 20.

[14] O. W. Richardson, The Electron Theory of Matter. , Cambridge, University Press, 1916.

[15] A. Yu. Ignatiev, “Newton’s second law versus modified-inertia MOND: A test using the high-latitude effect,” Phys. Rev. D, vol. 77, 102001-1–102001-9, 2008.

[16] A. D. Yaghjian, Relativistic Dyanamics of a Charged Sphere-Updating the Lorentz-Abraham Model. , 2nd edition, Springer, New York, 2006.

[17] A. Harpaz and N. Soker, “Radiation from a Uniformly Accelerated Charge,” Gen. Rel. Grav., vol. 30, no. 8, pp. 1217–1227, 1998.

[18] A. Harpaz and N. Soker, “Equation of Motion of an Electric Charge,” Found. Phys., vol. 33, no. 8, pp. 1207–1221, 2003.

[19] A. A. Martins and M. J. Pinheiro, “On the Electromagnetic Origin of Inertia and Inertial Mass,” Int. J. Theor. Phys., vol. 47, no. 10, pp. 2706–2715, 2008.

[20] G. M. Graham and D. G. Lahoz, “Observation of Static Electromagnetic angular Momentum in Vacuo,” Nature, vol. 285, pp.154–155, 1980.

[21] F. Rohrlich, “The self-force and radiation reaction,” Am. J. Phys., vol. 68, no. 12, pp. 1109–1112, 2000.

[22] F. Rohrlich, Classical charged particles. , Addison-Wesley, Reading, Mass., 1965; 2-nd edition: (Redwood City, CA, 1990)

[23] Vilhelm Friman Koren Bjerknes, Fields of Force. , The Columbia University Press, New York, 1906.

[24] Louis Brand, E. E., Vectorial Mechanics. , John Wiley & Sons, London, 1930.

[25] H. L. Armstrong, “On the Precession and Nutation og Gyroscopes,” Am. J. Phys., vol. 35, no. 9, pp. 883–885, 1967.

[26] E. R. Laithwaite, “The bigger they are, the harder thay fall," Electrical Review 14th Feb. 1975, pp. 40-42

[27] H. C. Corben and P. Stehle, Classical Mechanics. , 2nd Ed. John Wiley & Sons, New York, 1960.

[28] C. F. Curtiss, “Kinetic Theory of Nonspherical Molecules,” J. Chem. Phys., vol. 24, no. 2, pp. 225–241, 1956.

[29] J. -L. Staudenmann, S. A. Werner, R. Colella, and A. W. Overhauser, “Gravity and inertia in quantum mechanics,” Phys. Rev. A, vol. 21, no. 5, pp. 1419–1438, 1980.

[30] A. A. Martins and M. J. Pinheiro, “Fluidic electrodynamics: Approach to electromagnetic propulsion,” Phys. of Fluids, vol. 21, pp. 097103-1–097103-7, 2009.

[31] G. V. Meholic, “Another approach to the cause of inertia,” in 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 7-10 July 2002, Indianapolis, Indiana, pp. 1–11.

[32] M. Berry, “Quantal Phase Factors Accompanying Adiabatic Changes,” Proc. R. Soc. Lond. A, vol. 392, pp. 45–57, 1984.

[33] D. Chrusscinski and A. Jamio?kowski, Geometric Phases in Classical and Quantum Mechanics. , Birkh?user, Boston, 2004.

[34] A. V. Balatsky and B. L. Altshuler, “Persistent Spin and Mass Currents and Aharonov-Casher Effect,” Phys. Rev. Lett, vol. 70, no. 11, pp. 1678–1681, 1993.

[35] J. Overduin and H. -J. Fahr, “Matter, spacetime and the vacuum,” Naturwissenzxhaften, vol. 88, pp. 491–503, 2001.

[36] R. A. Muller, “The Cosmic Background Radiation and the New Aether Drift,” Sci. Am., vol. 238, pp. 64–90, 1978.

[37] G. Fontana and B. Binder, “Electromagnetic to Gravitational wave Conversion via Nuclear Holonomy,” AIP Conference Proceedings, vol. 1103, pp. 524–531, 2009.

[38] M. Abraham, “Die Grundhypothesen der Electronentheorie,” Phys. Z., vol. 5, pp. 576-579, 1904.